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MULTILINEARITY OF SKETCHES

DAVID B. BENSON
Transmitted by Ji�r�i Rosick�y

ABSTRACT. We give a precise characterization for when the models of the tensor
product of sketches are structurally isomorphic to the models of either sketch in the
models of the other. For each base category K call the just mentioned property (sketch)
K-multilinearity. Say that two sketches are K-compatible with respect to base category
K just in case in each K-model, the limits for each limit speci�cation in each sketch
commute with the colimits for each colimit speci�cation in the other sketch and all
limits and colimits are pointwise. Two sketches are K-multilinear if and only if the two
sketches are K-compatible. This property then extends to strong Colimits of sketches.

We shall use the technically useful property of limited completeness and completeness
of every category of models of sketches. That is, categories of sketch models have all
limits commuting with the sketched colimits and and all colimits commuting with the
sketched limits. Often used implicitly, the precise statement of this property and its
proof appears here.

1. Introduction

As Ageron mentions in [2], the equivalence of the models of one sketch in the models
of another to the models of the second sketch in the models of the �rst sketch depends
upon the commutivity of the limits and colimits speci�ed. More is required to obtain
this equivalence in a structural manner. What is required is the pointwise construction of
the limits and colimits in the model categories, these being full subcategories of functor
categories. We develop these conditions, both necessary and su�cient, through the use of
tensor sketches, [2]. The tensor sketch formed from two sketches inherently contains only
the acceptable limits and colimits, that is, those formed pointwise. We de�ne a tensor
sketch of two sketches to be K-multilinear if and only if it is structurally isomorphic to
the models of the �rst sketch in the models of the second with respect to base category
K.

We shall use the fact that, provided the base category K for models has enough limits
and colimits, the category of modelsMod(s;K) for sketch s has all limits which commute
with the colimits speci�ed by the sketch colimit speci�cations in Cs and has all the colimits
which commute with the limits speci�ed by the limit speci�cations Ls. This fact is implicit
in studies such as [5, 1] and is stated here as a lemma.

A preliminary version of these ideas was presented at the Fourth Workshop on Foundational Methods
in Computer Science, June 1995, organized by Robin Cockett, the University of Calgary.
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Two sketches are said to be K-compatible when, indeed, the speci�ed limits in models
of the �rst sketch commute with the speci�ed colimits in models of the second sketch and
the speci�ed limits in models of the second sketch commute with the speci�ed colimits
in models of the �rst sketch and also all the speci�ed limits and colimits are acceptable.
In section 3 we show that a tensor sketch is K-multilinear if and only if the two sketches
involved are K-compatible. In section 4 we outline the fact that the tensor product
of sketches commutes with the formation of any strong Colimit of a small diagram of
sketches.

2. Preliminaries

Fix a base category K. Throughout, K is assumed to have enough limits and colimits. In
particular, in every subcategory of functors F � KA that we consider, determining which
limits and colimits are pointwise will be of central importance.

In each diagram in any category B, D : D // B , the shape category D is small. For
simplicity of notation, limits and colimits are written as class representatives rather than
the class of isomorphic objects. So we write in the style of � = colim D for the apex of the
representative colimiting cone of the diagram D : D // B , and say that � is the colimit

of D. We shall use any of the following notations for the limit of a diagram D : D // B :

lim D = limD D = limd2D D(d): In some places the limits and colimits are taken with a
parameter, [4], not indicated in the subscripting but clear from the diagram form.

2.1. Closures of Limits and Colimits. As usual for small category A,

" : A�KA // K is the evaluation functor. For each subcategory of functors F � KA,

" : A�F // K is the domain restriction of the evaluation functor.

2.2. Definition. Let F be a subcategory of functors F � KA. The diagram C : C // F
is said to be an acceptable colimit diagram if the colimit of C, colim C, exists in F and
moreover

colim C = colimC " � (A� C);

that is, the colimit of C is a pointwise colimit. The de�nition of acceptable limit diagram
is entirely similar.

2.3. Definition. Let A be a small category and let F � KA be a category of functors.
A diagram L : L // A is said to be a limit constraint for F if every diagram F � L,
for F 2 F , has a limit. Similarly for colimit constraints. A limit constraint establishes
a functor Lim(L) : F // K with value for each F 2 F being lim F � L. Similarly for
colimit constraints.

It is clear that Lim(L) = limL "�(L�F) although complete precision requires another
universe since F is not necessarily small. Our purpose is simply explicating the various
notations for the limits and colimits of immediate interest.
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2.4. Definition. With the notation just established, let L denote the class of all accept-
able colimit diagrams in F with colimits which in fact commute, up to isomorphism in K,
with every limit constraint in the class of limit constraints L. Precisely,

L = fC : C // Fj C acceptable and colimC Lim(L) � C �= limL (colim C) � L

for all L : L // A 2 L g

Similarly, C is the class of all acceptable limit diagrams with limits which commute, up to
isomorphism in K, with every colimit constraint in the class of colimit constraints C.

The isomorphism de�ning L can also be written in the style

colimc2C liml2L C(c)(L(l)) �= liml2L colimc2C C(c)(L(l))

since the functor colimits are pointwise.
An example for the base category Sets: Let F be a Diers category, [5], a subcategory

of SetsA. Such a category is given by limit constraints and coproduct constraints. It is
known that each such Diers category has all connected limits which are formed pointwise
in SetsA, since connected limits commute with coproducts in Sets. Symbolically,

(connected limits)� (coproducts):

2.5. Sketch Definitions.

2.6. Definition. A sketch s = (As;Ls; Cs; �s) consists of a small category As, a class of
diagrams Ls called limit speci�cations, a class of diagrams Cs called colimit speci�cations,
and a function � = �s assigning a cone to every limit speci�cation in Ls and a cocone to
every colimit speci�cation in Cs.

2.7. Definition. A sketch map from sketch s to sketch t is a functor F : As
// At

such that F carries Ls into Lt and carries Cs to Ct homomorphically with respect to �.

2.8. Definition. A model of sketch s in category K is a functor M : As
// K such

that

lim M � L = M(�(L)) for all L in Ls;

colim M � C = M(�(C)) for all C in Cs:

The category of all models of sketch s in category K is denoted by Mod(s;K) and typically
by Mod s when K = Sets. The category of models Mod(s;K) is a full subcategory of
KAs.

In the subcategory of functors Mod(s;K) � KAs, each limit speci�cation of s is a
limit constraint and each colimit speci�cation of s is a colimit constraint.
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2.9. Lemma. Let s be a sketch. For each diagram L : L // Mod(s;K) such that

limL Colim(C) � L �= colimC (lim L) � C for all C 2 Cs, that is, such that the limit
of L commutes with all the colimits speci�ed in Cs,

L 2 Cs:

Similarly, for each diagram C such that the colimit of C commutes with all the limits
speci�ed in Ls, C 2 Ls:

Proof. Let L : L // Mod(s;K) be a diagram with limit commuting with all the co-

limits speci�ed in Cs. The pointwise limit of the diagram, liml2L L(l), is given in
the functor category KAs by �(x) = liml2L L(l)(x), x in s. It remains to show that

� 2 Mod(s;K). It su�ces to demonstrate, for each colimit speci�cation C : C // As

in Cs, that colim � � C = �(�(C)). We have colim L(l) � C = L(l)(�(C)); l 2 L, since
each L(l) is a model in Mod(s;K). Therefore,

�(�(C)) = liml2L L(l)(�(C)) = liml2L colimc2C L(l)(C(c))
�= colimc2C liml2L L(l)(C(c)) = colimc2C �(C(c)):

An entirely similar argument applies to diagrams which commute with all the limits
speci�ed in Ls.

From this lemma, we may say that the category of modelsMod(s;K) is Cs-replete and
also Ls-coreplete.

For properties of sketches and models in Sets see [1, 5, 3].

2.10. Definition. Sketch s said to be K-compatible with sketch t just in case both (i)
and (ii) hold for every model M 2 Mod(s;Mod(t;K)): (i) For every limit spec-

i�cation L : L // As in Ls, M � L 2 Ct. (ii) Symmetrically with regard to colimit

speci�cations in s and Lt.

When sketch s is K-compatible with sketch t, for each model M the M -limits deter-
mined by the limit speci�cations of sketch s commute with the colimits determined by the
colimit speci�cations of sketch t. To give details, consider modelM 2Mod(s;Mod(t;K))
and limit speci�cation L 2 Ls. We have, for each C 2 Ct,

limL Colim(C) � (M � L) �= colim (lim M � L) � C

which also may be written as

liml2L colimc2C M(L(l))(C(c)) �= colimc2C liml2L M(L(l))(C(c)):

Similarly with regard to colimit speci�cations in s and limit speci�cations in t.
In the next section we show that K-compatibility is symmetric with respect to the two

sketches.
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Here are some symbolic examples: A limit sketch, [1], is a sketch s in which the colimit
speci�cation set is empty, Cs = ;. We shall say that such a sketch s is a (limit, ;)-sketch.
Clearly every pair of (limit, ;)-sketches is K-compatible for every base category K with
su�cient limits.

A (connected limit, ;)-sketch is a (limit, ;)-sketch s in which the shape of every limit
speci�cation in Ls is nonempty and connected. A (limit, coproduct)-sketch is a sketch t

in which the shape of every colimit speci�cation in Ct is discrete. For each such sketch t,
Mod(t;Sets) is a Diers category. Each (connected limit, ;)-sketch s is Sets-compatible
with each (limit, coproduct)-sketch t.

The notion of a (connected limit, coproduct)-sketch is clear by example. Every pair
of (connected limit, coproduct)-sketches is Sets-compatible.

2.11. Sketch Tensor Products.

2.12. Definition. Let s and t be sketches. The tensor product of s and t is the sketch

s
 t = (As �At;Ls
t; Cs
t; �s
t)

where the limit speci�cation and colimit speci�cation data in the tensor product sketch
s 
 t is given as follows: For L 2 Ls; L : D // As; and each object y of At, written y

in t, let Ly denote the diagram

Ly : D // As �At : d
�

// (L(d); y)

and let

�s
t(Ly) = (�s(L); y):

For L 2 Lt; L : D // At; and each object x of As, written x in s, let Lx denote the
diagram

Lx : D // As �At : d
�

// (x;L(d))

and let

�s
t(Lx) = (x; �t(L)):

The class of limit speci�cations for s
 t is

Ls
t = fLxjL 2 Lt; x in sg [ fLyjL 2 Ls; y in tg:

The construction of the colimit speci�cation data is entirely similar.

One easily checks that s 
 t is the sketch in the product category As � At with the
coarest limit and colimit speci�cation data such that the canonical functors

(x;�) :At
// As �At; x in s;

(�; y) : As
// As �At; y in t;
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are sketch maps, written

(x;�) : t // s
 t; viz, (�; y) : s // s
 t:

This de�nition of tensor product thus agrees with that in [2].
Note that in every model M of s 
 t the M -limit of every limit speci�cation Lx for

L 2 Lt and x in s commutes with the M -colimit of every colimit speci�cation Cy for
C 2 Cs and y in t, and similarly regarding Ct and Ls. The sketch object (�s(C); �t(L)) of
s
 t provides, simultaneously, the M -limit of L�s(C) and the M -colimit of C�t(L) in every
model M of s 
 t. Here is the calculation for M 2 Mod(s 
 t;K), limit speci�cation

L : L // As 2 Ls and colimit speci�cation C : C // At 2 Ct :

colimc2C lim M � LC(c) = colimc2C M(�s
t(LC(c)))

= colimc2C M(�s(L); C(c))

= M(�s(L); �t(C))

= liml2L M(L(l); �t(C))

= liml2L M(�s
t(CL(l)))

= liml2L colim M � CL(l):

Therefore the model category Mod(s
 t;K) is empty if the limits and colimits speci�ed
by one of the sketches do not commute, in K, with the colimits and limits speci�ed by
the other. An example is found in [2].

2.13. Lemma. For any pair of sketches s and t, the functor Curry : KAs�At // KAtAs ;

where Curry(M)(x)(y) = M(x; y), domain and codomain restricts to

Curry :Mod(s
 t;K) // Mod(s;Mod(t;K)) :

This restricted functor Curry is injective on objects.

Proof. For each M 2 Mod(s 
 t;K); Curry(M) is a model of s in Mod(s;KAt) since

for each L : L // As 2 Ls and each y in s,

liml2L Curry(M)(L(l))(y) = liml2L M(L(l); y)

= lim M � Ly

= M(�s
t(Ly))

= M(�s(L); y)

= Curry(M)(�s(L))(y)

is pointwise so that limCurry(M)�L = Curry(M)(�s(L)) and similarly for the colimit
speci�cations in Cs. Further, Curry(M) is a model of s in Mod(s;Mod(t;K)) as for
each x in s, Mx = Curry(M)(x) enjoys the properties that

lim Mx � L = Mx(�t(L)) for all L 2 Lt;

colim Mx � C = Mx(�t(C)) for all C 2 Ct
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since: for each L 2 Ls, Mx(�t(L)) = M(�s
t(Lx)) = lim M � Lx = lim Mx � L and
similarly for colimit speci�cations. The injectivity follows immediately from the fact that
the original Curry is an isomorphism.

2.14. Definition. For sketches s and t, the tensor sketch s
t is said to be K-multilinear
if

Curry :Mod(s
 t;K) �=Mod(s;Mod(t;K))

is an isomorphism.

By the symmetry in the de�nition, s 
 t �= t 
 s. To repeat, in the next section we
show that multilinearity is also symmetric.

3. Multilinearity is equivalent to compatibility

3.1. Theorem. For all sketches s and t, s 
 t is K-multilinear if and only if s is K-
compatible with t.

Proof. Assume that sketch s is K-compatible with sketch t. From the previous lemma,
(2.5), Mod(s
 t;K) �

�

// Mod(s;Mod(t;K)) . It remains to show that every

model in Mod(s;Mod(t;K)) is isomorphic to a model in Mod(s 
 t;K) via Uncurry,
where Uncurry(M)(x; y) = M(x)(y): To this end consider M 2 Mod(s;Mod(t;K)):

First, M is a functor M : As
// KAt with the property that for each C : C // At

in Ct and for each x in s, colimC M(x) � C = M(x)(�t(C)): Via Uncurry, we have
colimC Uncurry(M) � Cx = Uncurry(M)(�s
t(Cx)). For each y in t the M -limit of

speci�cation L : L // As in Ls is liml2LM(L(l))(y) =M(�s(L))(y) byK-compatibility.

This establishes that limL Uncurry(M) � Ly = Uncurry(M)(�s
t(Ly)). The case
of limit speci�cations in t and colimit speci�cations in s is entirely similar. Therefore
Uncurry(M) 2 Mod(s
 t;K). Clearly the functor Uncurry is injective on objects. It
is immediately that Curry and Uncurry are bijective on natural transformations and
so Curry is an isomorphism.

Now assume that Mod(s;Mod(t;K)) �= Mod(s 
 t;K) via the functor Uncurry.

Consider any limit speci�cation L : L // As in Ls and M 2 Mod(s;Mod(t;K)). We
see that M � L is an acceptable limit diagram by the following in which for notational
convenience we let M 0 = Uncurry(M). For each y in t

(lim M � L)(y) = M(�s(L))(y) =M 0(�s
t(Ly)) = lim M 0 � Ly = liml2L M(L(l))(y)

so that limM �L is indeed pointwise. Continuing the same notation, consider in addition
any colimit speci�cation C : C // At in Ct. We have, by taking the colimit of the
above,

colimc2C liml2L M
0(L(l); C(c)) =M 0(�s(L); �t(C))

while for each l 2 L,

colimc2C M 0(L(l); C(c)) = M 0(L(l); �t(C))
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and so
liml2L colimc2C M 0(L(l); C(c)) = M 0(�s(L); �t(C)):

As the argument for colimit speci�cations in s is entirely similar, we have completed the
proof that s is K-compatible with t.

3.2. Remark. Since the case of Mod(t;Mod(s;K)) is symmetric to the situation just
considered we have that t in K-compatible with s if and only if s is K-compatible with t.

As a computer science application of this theorem, note that the natural join { in
the sense of relational databases { is a pullback. Pullbacks may be speci�ed in a (con-
nected limit, ;)-sketch. Lists and streams with cons, hd, and tl may be speci�ed in a
(limit, coproduct)-sketch. From the theorem we have that joins of lists are structurally
isomorphic to lists of joins.

As another example, note that the tensor product of two (connected limit, coproduct)-
sketches is again a (connected limit, coproduct)-sketch.

4. Colimits of Sketches commute with Tensor Products

The de�nition of the strong Colimit of sketches is given in Chapter 5 of [5] with respect

to a small weight W : Iop // Cats : These W -Colimits do not change the shapes of
the limit speci�cations or the colimit speci�cations in the sketches �I for any diagram of
sketches � : I // Sketches :

4.1. Definition. For each sketch s and each diagram of sketches �: I // Sketches;

the diagram of sketches s
 � is de�ned by

(s
 �)I = s
 (�I); I 2 I:

We may then elide the redundant parenthesis to write s
 �I. The following result is
entirely syntactic, that is, solely a property of sketches.

4.2. Theorem. For each sketch s, each diagram of sketches �: I // Sketches and

each small weight W : Iop // Cats ;

s
 StrongColimW� �= StrongColimW (s
 �):

Proof. (Outline.) The strong W -colimit construction has objects of the form


I(X)(A) = hI;X;Ai

for I in I, X in WI and A in �I, [5], p. 102. The Colimiting cocone is denoted by


I (X) : �I // StrongColimW� :

In s
 StrongColimW� the limit speci�cations arising from L : L // As in Ls have
the form

LhI;X;Ai : l
�

// (L(l); hI;X;Ai)
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for each I in I, each X in WI and each A in �I. The cone assigned is

�s
StrongColim
W
�(LhI;X;Ai) = (�s(L); hI;X;Ai):

In StrongColimW (s 
 �) the limit speci�cations arising from L : L // As in Ls have
the form


I(X) � LA : l
�

// hI;X; (L(l); A)i

for each I in I, each X in WI and each A in �I. The cone assigned is


I(X)(�s
�I (LA)) = hI;X; (�s(L); A)i:

These give equivalent constraints on the models. An entirely similar argument applies to
the colimit speci�cations.

4.3. Corollary. If sketch s is K-compatible with each sketch �I,

Mod(StrongColimW�;Mod(s;K)) �=Mod(s
 StrongColimW�;K):

This corollary generalizes the usual notion of multilinearity in mathematical module
theory and is the main motivation for calling these properties of compatible sketches
K-multilinearity.
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