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ABSTRACT� For an adjoint string V a W a X a Y � B �� C� with Y fully
faithful� it is frequently� but not always� the case that the composite V Y underlies an
idempotent monad� When it does� we call the string distributive� We also study shorter
and longer 	distributive
 adjoint strings and how to generate them� These provide a new
construction of the simplicial ��category� ��

�� Introduction

Consider a string of adjoint functors� V a W a X a Y � B �� C� with Y fully faithful�
The composite V Y is a well�pointed endofunctor so that it is natural to ask whether it
underlies an idempotent monad on B� Somewhat surprisingly� in light of the examples
that come readily to mind� this is an additional property for a string of adjoint functors�

If the string above has also Y a Z then it is equivalent to ask whether the composite
ZW underlies an idempotent comonad� Since the question makes sense in any bicategory
and any functor Y has a right adjoint in the larger bicategory of profunctors� it follows that
the question can be asked for a shorter string of adjoint functors� W a X a Y � B �� C�
with Y fully faithful� the situation that Lawvere ��� refers to as a unity and identity of
adjoint opposites and abbreviates by UIAO�

In fact� these observations allow us to ask our question for a UIAO in a ��category
with proarrow equipment�

We begin with a section of examples and a counterexample� After a brief section on
comonads and distributive laws we settle the original question and prove some related
exactness results� Here the point of view is that certain adjoint strings� which we call
distributive� admit a calculus of what might be called cosimplicial kernels� We speak here
of constructing �shorter	 adjoint strings�

It transpires that the same set of conditions also permit the construction of cosim�
plicial cokernels� We speak of constructing �longer	 adjoint strings� The shortening and
lengthening constructions are related� as we note� It becomes clear that our distributivity
conditions 
nd their paradigm in�� the simplicial ��category and we close with a section
that addresses this point�
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Throughout this paper we work in a ��category K equipped with proarrows 
��� �
K ��M which satisfy the axioms in ����� restated below without comment� In Section
� we introduce Axiom �� a weakening of the Axiom 
S� which appeared in ����� Thus� our
results apply not only to functors but also� for example� to geometric morphisms between
toposes� However� we will refer to the arrows of K as functors and to the arrows of M as
profunctors� whenever possible� so that familiarity with ���� is a prerequisite only for the
fullest extent of the results�

Axiom � 
��� � K �� M is a homomorphism of bicategories which is the identity on
objects and locally fully faithful�

Axiom � For every arrow Y � B �� C in K� there is an adjunction �Y � �Y � Y a Y � in
M�

Axiom � M has 
nite sums with injections in K� Universality restricts to K and the
right adjoints of injections provide also product projections in M�

Axiom � M has Kleisli objects for monads with injections in K� Universality restricts
to K and the right adjoints of injections provide also Eilenberg�Moore projections in M�

Arrows of M that are not assumed to be arrows of K are denoted by slashed arrows
of the form C � B�

�� Examples and a Counterexample

�� For B any category� take C to be B� and V � codomain � C �� B� Then V a 
W �
identity� a 
X � domain�� If B has a terminal object then we have also X a Y where
Y B � 
B �� ��� Here V Y B � �� for all B� so that V Y underlies an idempotent monad�

�� Consider V � connectedcomponents a discrete a objects a indiscrete � Y � set ��
cat� Now V Y S � � for S �� � and V Y � � � so that V Y is idempotent�

�� In Example �� replace cat by ord� The same conclusion holds�

�� In Example �� replace cat by top and rename objects as points� However� if top is to be
understood as the category of all topological spaces then we do not have a functor V left
adjoint to W � discrete� We have merely a UIAO as in the second paragraph of the Intro�
duction� Here the profunctor Z� right adjoint to Y � indiscrete in the bicategory of cate�
gories and profunctors� has� for a set S and a topological space T � Z
S� T � � top
Y S� T ��
The composite ZW � for sets S�� S�� is given by ZW 
S�� S�� � top
Y S��WS��� Write
�S��S� � top
Y S��WS�� �� set
S�� S�� for the inclusion� This de
nes the components of
a transformation � � ZW �� �set� 
Recall that the identity profunctor is the hom func�
tor�� An element of ZWZW 
S�� S�� is an equivalence class of pairs 
Y S� �� WS�Y S ��
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WS�� 
equivalence being de
ned by the usual ��condition�� It is a generality� to be es�
tablished shortly� that ZW� � �ZW � The e�ect of this transformation on an equivalence
class is to provide the composite Y S� �� WS �� Y S �� WS�� where WS �� Y S is
the canonical continuous function� Thus� idempotence of 
ZW��� amounts to the asser�
tion that any Y S� �� WS� admits a factorization as above� unique up to the equivalence
in question� This is easily verifed after noting that any Y S� �� WS�� for non�empty S�
and S�� is given by a constant�

�� Let L be a constructively completely distributive lattice as in ����� Write Y � L �� DL
for the down�segment embedding of L into its lattice of down�closed subsets� ThenX is the
supremum function and W � the de
ning adjoint for constructive complete distributivity�
classi
es the totally below relation� which is an order ideal �� L � L� In this example
the ambient ��category is ord and the relevant proarrows are order ideals� Moreover� the
composite ZW is �� Its idempotence expresses the fact that a � b implies there exists
c such that a� c� b�

�� In Example �� replace L by an ordered set and DL by IL� the ordered set of down�
closed and up�directed subsets of L� With Y as before the adjoint string now prescribes
that L is a continuous ordered set and� is known as the way below relation� The theorem
which asserts that � is idempotent is often known as the Interpolation Lemma�

�� Entirely analogous to Example �� is the idempotence of the �wavy hom	 for a contin�
uous category as in ����

�� Also related to Example �� is the string U a V a W a X a Y � set �� setset
op

� with
Y the Yoneda embedding� which was shown in ���� to characterize set among categories
with set�valued homs� Here V Y has constant value � and XU has constant value ��

�� In ���� co
brations were studied in the context of proarrow equipment� It was observed
there that the de
ning adjoint strings for both left co
brations and right co
brations have
the property in question� For the particular case of toposes� geometric morphisms and
left exact functors this example was 
rst pointed out in �����

��� In the simplicial ��category� �� any UIAO of the form n �� n� � satis
es the
idempotence condition� This example provides the paradigm for Sections �� � and � of
this paper� In Example �� the string V a W a X is obtained from a string in � by
exponentiation�

��� We display below the counterexample promised earlier� In the following� B is the
ordered set of natural numbers and C is the �long fork� above h� The e�ects 
from the
left in the diagram� of V�W�X and Y are indicated by the tailed arrows� Note that
V Y 
n� � n� � which shows that V Y is not idempotent�
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This counterexample exhibits other aspects of our problem and will be referenced later�

�� Idempotents and Distributive Laws

We start with a functor Y � B �� C� There may or may not be a functor right adjoint
to Y but in any event we have an adjunction �� � � Y a Z with Z a profunctor� 
Note that
we cannot assume that Z has a right adjoint�� We refer to Y as an adjoint string of length
� from B to C� A functor X and an adjunction �� � � X a Y provide an adjoint string of
length � from B to C� A further functor W and an adjunction �� � � W a X produces a
string of length � and so on� Note that our somewhat informal de
nition is not to convey
any notion of maximality� a string of length n starting from Y might very well underly
a string of length n � � starting from Y � Obviously� a very systematic� integer�labelled
de
nition could be provided but it would transcend our present needs�

The functor Y � B �� C is always assumed to be fully faithful� In the generality
of proarrow equipment this means that the unit� �� for the adjunction Y a Z is an
isomorphism� 
For strings of length greater than � this de
nition agrees with that given
in terms of representability�� In fact� fully faithfulness is really a property of an adjoint
string� For if we have X a Y then the counit� �� is an isomorphism if and only if the unit
for Y a Z� �� is an isomorphism� This follows by dualizing the following folk�lemma� We
have used it in a variety of earlier papers� Some history of it and a detailed proof can be
found in ����
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���� Lemma� If W a X a Y � B �� C then the counit for X a Y � �� is an isomorphism
if and only if the unit for W a X� �� is an isomorphism� When this is the case there is a
transformation � �W �� Y � unique with the property

� �X� � ���	

Note that the characterizing equation for � can be solved explicitly to give

� � �Y �W���

and similarly

� � Y ���	�W	

It follows that for longer strings� � � �U a V a W a X a Y � the functors � � �U�W� Y �
B �� C are all fully faithful and there are canonical transformations � � �U �� W �� Y
as above� The latter give rise� by adjointness� to transformations � � �V �� X �� Z
satisfying characterizing equations which will be introduced as required�

For a su�ciently long string� write G � Y Z� T � Y X� H � WX� S � WV and so on�
giving rise to an adjoint string� � � �S a H a T a G � C � C� of arrows 
note that G is
typically merely a profunctor� which underly idempotent comonads and monads� Indeed�
with the nomenclature above� the counit for G is �� the unit for T is � and the counit
for H is �� Recall that a pointed endoarrow� � � �C �� T � is said to be well�pointed
if T� � �T � Idempotent comonads and monads are much simpler than their general
counterparts� The following lemma will serve to summarize�

���� Lemma� For a monad 
T� �� 
�� 
 � TT �� T is an isomorphism if and only if

T� �� is a well�pointed endoarrow� A well�pointed endoarrow 
T� �� underlies a monad if
and only if T� � �T � T �� TT is an isomorphism�

Of course� a similar lemma holds for comonads and we will not always comment on
obvious dualizations in the sequel� Idempotence also greatly simpli
es the equations
required of distributive laws�

���� Lemma� For idempotent comonads� 
G� �� and 
H� ��� a transformation � � GH ��
HG is a distributive law if it satis�es either of the following equations�

GH HG�

G

G�

�
�
�
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�G
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�
�
��R
��

H

�H
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Proof� Write � for the comultiplication of 
G� �� and 
 for the comultiplication of 
H� ���
So G� � ��� � �G and H� � 
�� � �H� Recall the equations for a distributive law and
label them �������� �����
� according to the single structural transformation that appears in
each� Thus ��� and ��� are the displayed triangles and ��� and �
� are pentagons� From
idempotence of G it is easy to show that ��� implies ��� and similarly ��� implies �
�� Now
given ��� construct the ��� diagram and adjoin the diagrams G��� and ���G� Adjoin G to
the resultant diagram via evident arrows from each instance of GH and HG� Join GHG
to G via GHG �� GG �� G� Now ��� follows from a few naturality observations� A
similar diagram chase produces ��� from ����

In fact� idempotence can be characterized in terms of distributivity�

���� Lemma� For a comonad 
G� �� ��� G is idempotent if and only if �GG � GG �� GG
is a distributive law�

For an idempotent comonad H and a general comonad G� existence of a distributive
law � � GH �� HG is a property� rather than extra structure� Semantically� this is clear
in CAT� We give a syntactic proof�

���� Lemma� For a comonad 
G� �� �� and an idempotent comonad 
H� ��� there is at
most one distributive law � � GH �� HG�

Proof� First observe that for any such �� �C is an isomorphism� for any H�coalgebra
C � X � C� For in this case GC is also an H�coalgebra and the inverse to �GC is
�C �G
�C���� In particular this consideration applies to the H�coalgebra H � C � C

so that in the following naturality square both the top and left sides are isomorphisms�

GH HG�
�

GHH HGH��H

�

GH�

�

HG�

Thus � is explicitly given by HG� � 
�GH��� �G�H �G
H���� � HG� � 
�GH����

In an adjoint string of comonads and monads� mates of distributive laws are distribu�
tive laws�

���� Lemma� For an adjoint string� � � �S a H a T a G � C � C of comonads

� � �H�G� and monads 
� � �S� T �� the bijections

GH �� HG�SG �� GS �TS �� ST � � � � �

mediated by the adjunctions� restrict to distributive laws �those involving both a monad
and a comonad being what have been called �mixed	 distributive laws
�
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We note that mixed distributive laws of the form �comonad
�monad
 �� �mon�
ad
�comonad
� which do appear in the sequence suggested above� appear to be rare in
the literature� They play the same role with respect to Kleisli objects as do the more fa�
miliar form� 
monad�
comonad��� 
comonad�
monad�� with respect to Eilenberg�Moore
objects� An excellent reference for the latter is �����

If any one of � � �S�H� T�G is idempotent then they are all idempotent� 
While this
is obvious in any event� it is interesting to note that it follows from Lemma ��� and an
evident variant of Lemma ����� In light of Lemma ���� the sense of distributivity given
by Lemma ��� is a property of an adjoint string of idempotent comonads and monads�
Bearing in mind also Lemma ���� we make the following de
nitions�

���� Definition� An adjoint string of length �� Y � B �� C� is said to be distributive
if Y is fully faithful� An adjoint string H a T a G� where G underlies a comonad� is said
to be distributive if �GG � GG �� GG is a distributive law and there exists a distributive
law GH �� HG� A fully faithful adjoint string of length �� in other words a UIAO�
W a X a Y � B �� C� is said to be distributive if the corresponding string of comonads
and monads� WX a Y X a Y Z� is distributive�

Note that our terminology is also suggested by Examples �� through ���

�� Shorter Adjoint Strings

Given a UIAO� W a X a Y � B �� C� recall the transformation � � W �� Y
introduced in Lemma ���� We de
ne � � Z �� X as the transformation corresponding to
� by adjointness but it is also the unique solution of

� � �Y � ���

The explicit solutions

� � X� � ���Z

� � ���X � Z�

follow from the characterizing equation� The characterizing equations for � and � also
give X� � � � ��� � �Y � ��

���� Lemma� The following diagram commutes�

ZY �B�
���

ZW XW��W

�

Z�

�

���
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Proof� Insert XY in the centre of the diagram and join ZY to XY by �Y � XW to XY
by X� and XY to �B by �� The resulting quadrilateral commutes by naturality and each
of the triangles expresses a characterizing equation�

De
ne � � ZW �� �B to be the composite transformation above and observe� from
the proof� that it is given symmetrically by � � � � ���

���� Lemma� The arrow ZW is well�augmented by � in the sense that ZW� � �ZW �

Proof� Consider the following diagram�

Y Z �C�
�

WZ WX�W�

�

�Z

�

�

Insert WXY Z in the centre of the diagram and join WXY Z to Y Z by �Y Z� WXY Z to
WX by WX� and WZ to WXY Z by W���Z� The resulting quadrilateral commutes by
naturality and each of the triangles commutes from the explicit descriptions of � and � �

Now apply Z
��W to the diagram displayed above� Since �W � W��� the top�
followed�by�right composite yields ZW� using the top�followed�by�right description of �
in Lemma ���� Similarly� the other composite is seen to be �ZW �

Of course� by duality� Lemma ��� establishes our earlier assertion that V Y is a well�
pointed endofunctor� for adjoint strings of length �� From either point of view we can
now state and prove a Theorem which answers our opening question�

���� Theorem� For a UIAO� W a X a Y � B �� C� 
ZW��� underlies an idempotent
comonad if and only if the UIAO is distributive�

Proof� It su�ces to show that invertibility of ZW� � �ZW is equivalent to the exis�
tence of a distributive law Y ZWX �� WXY Z� From invertibility of � � XY �� �B
and adjointness we have bijections

Y ZWX �� WXY Z �Y ZWX ��WZ �ZW �� ZWZW

and a diagram chase shows that if a transformation Y ZWX �� WXY Z satis
es either
one of the equations for a distributive law then its counterpart ZW �� ZWZW provides
a section for ZW� � �ZW and conversely� However� such a section is necessarily an
isomorphism� This follows from naturality and the equation ZW� � �ZW �

It is now possible to explain the generation of Counterexample ��� and rationalize the
names of the objects of the ordered set C displayed there� For if Theorem ��� is stated for
adjoint strings of length � then by Lemma ��� the relevant distributive law is TS �� ST �
Thus� in an ordered set counterexample there must not be TS � ST but all composites of
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H and either S or T reduce by adjunction inequalities and idempotence� The remaining
ideas are somewhat similar to those found in �����

For the moment� let B be any object and let C � 
C� �� be an idempotent comonad
in M on B� In our working terminology� C is a profunctor� Then a C�coalgebra in M
with domain Y is an arrow B � Y � B� in M� together with a C�coalgebra structure
transformation b � B �� CB� By idempotence� the usual requirements for such b reduce
to �B	b � �B and this implies� by naturality and C� � �C� that b � 
�B���� Thus� being
a C�coalgebra is a property of B� If both B and B� are C�coalgebras then any transforma�
tion B �� B � is a coalgebra homomorphism in the usual sense� WriteM
Y�B�C for the
category of C�coalgebras inM with domainY� It is just the full subcategory ofM
Y�B�

determined by the B which invert �� If B � Y � B is a C�coalgebra then composition
with B de
nes� for every object X in M� a functor M
X�Y� �� M
X�B�C� Recall

that an Eilenberg�Moore object for C is a C�coalgebra� I � BC
� B� such that� for all

X� composing with I provides an equivalence of categories� M
X�BC� �� M
X�B�C�
It is clear from the discussion that if I is Eilenberg�Moore for C then it also provides an
inverter for the transformation � � C �� �B�

Recall the proarrow equipment for toposes and geometric morphisms extensively stud�
ied in ����� namely the transformational dual of toposes and left exact functors� It does
admit Eilenberg�Moore objects for comonads in M� However� it was shown in ���� that
the paradigm for proarrows� namely categories and profunctors in the usual sense� does
not� The paradigm does admit a weaker notion which we now describe�

For C � 
C� �� an idempotent comonad on B in M� suppose that B � Y �� B is a
C�coalgebra with B in K� In this event� composing with B� M
X�Y� �� M
X�B�C�
has a right adjoint which is given by composing with B�� the right adjoint of B in M�

This follows from the fact that M
X�B�C is a full subcategory of M
X�B��� Write
K
X�B�C for the full subcategory of M
X�B�C determined by the C�coalgebras in K�
Henceforth we assume the following�

Axiom � For every idempotent comonad 
B� C� inM there is a C�coalgebra I � B
C� ��
B inK such that� for eachX� the adjunction given by composing with I�M
X�B
C�� ��
M
X�B�C restricts to an equivalence K
X�B
C�� �� K
X�B�C�

One could say that the Axiom provides� for each idempotent comonad in M� an
Eilenberg�Moore object as seen by K� With an obvious extension of such terminology� it
is clear that I � B
C� �� B provides an inverter as seen by K for �� For categories
and profunctors� I � B
C� �� B was 
rst described in ����� In that context� a variety
of descriptions of B
C� were given in ����� Note that the Axiom ensures that if the
idempotent comonad C is in K then I � B
C� �� B in K is a true Eilenberg�Moore
object in K and may be written I � BC �� B� In this case� regarding C as an idempotent
comonad in M� I � BC �� B is also an Eilenberg�Moore object in M� 
The limit in
question is preserved by all homomorphisms of bicategories� in particular� it is preserved
by 
��� � K �� M�� It may well be the case that for C in M� not necessarily in K�
that I � B
C� �� B provides an Eilenberg�Moore object in M� In any event� writing
Q for the right adjoint of I we have IQ �� C corresponding by adjointness to the
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coalgebra structure I �� CI� In ���� the following observation was made in the case of

��� � CAT �� PRO�

���� Lemma� A functor I � B
C� �� B as provided by Axiom �� with right adjoint Q in
M� is an Eilenberg�Moore object for C in M if and only if the canonical transformation
IQ �� C is an isomorphism�

Eilenberg�Moore coalgebras for idempotent comonads in a bicategory are representably
fully faithful� For the weaker notion of Axiom � we have�

���� Lemma� The functors I � B
C� �� B provided by Axiom � are fully faithful and
the unit for I� a Q� �M
X�B�C ��M
X�B
C�� is an isomorphism�

Proof� For X � B
C�� the �B�C� component of the unit of the adjunction given in
Axiom � is �B�C� �� QI� the unit for the adjunction I a Q in M and� by Axiom ��
it is an isomorphism because �B�C� is in K� Thus I is fully faithful and the rest of the
statement of the Lemma follows from this�

Thus� by Theorem ���� a distributive UIAO� that is a distributive adjoint string of
length �� W a X a Y � B �� C� gives rise to I � A � B
ZW � �� B� a distributive
adjoint string of length ��

Lawvere has taken the point of view that a UIAO�W a X a Y � B �� C� provides C
with the structure of an oriented cylinder� Both the top and bottom are copies of B� The
former is provided by W � the latter by Y and the orientation by � �W �� Y � He further
points out in ��� that the top and bottom are not necessarily disjoint� in the sense that
part of the top may be isomorphic to part of the bottom in C� The following theorem
shows that this overlap is provided precisely by I � A � B
ZW � �� B�

���� Theorem� If W a X a Y � B �� C is a distributive UIAO then I � A �
B
ZW � �� B is the inverter in K of � �W �� Y � B �� C�

Proof� We have already remarked that I � B
ZW � �� B is the inverter as seen by K

of � � ZW �� �B � B � B� It su�ces to show� for a functor B � X �� B� that �B
is an isomorphism if and only if �B is an isomorphism� Since �B � ���B	Z�B the �if	
part is clear� On the other hand� if �B is an isomorphism with inverse b � B �� ZWB
then the transformation �WB	Y b � Y B �� WB can be shown� with the help of Lemmas
��� and ���� to be the inverse of �B �WB �� Y B�

There remains the question of whether or not I � B
ZW � �� B is actually Eilenberg�
Moore inM for the comonad ZW � 
After all� by construction� Y � B �� C is Eilenberg�
Moore for G and W � B �� C is Eilenberg�Moore for H�� Again writing Q for the right
adjoint of I in M� Lemma ��� shows that this determination rests on the invertibility of
the canonical transformation IQ �� ZW � We will show that IQ �� ZW can fail to be
an isomorphism�

To explain� it is convenient to generalize� temporarily� the situation with which we are
preoccupied� So let G and H be idempotent comonads in M on C� without our usual
adjointness assumptioms� for which there exists a distributive law� GH �� HG� Assume
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that H admits an Eilenberg�Moore object� W � CH �� C� From the general theory of
comonads� the comonad G restricts to a comonad Gj on CH � That is we haveWGj 	� GW
with Gj � XGW � where X is right adjoint to W � Invoking our Axiom � we have

CH C�
W

CH
Gj� C
G��J

�

I

�

Y�
��

in K� 
The functor J is the �
ll�in	 that results from WI being a G�coalgebra in K� It
is necessarily fully faithful because the composite WI is fully faithful�� Each functor has
a right adjoint in M� say Q in the case of I and Z in the case of Y � The isomorphism
Y J �� WI gives� by adjointness� a transformation� JQ �� ZW � In ��� invertibility of
JQ �� ZW � a Beck condition� was called distributivity for the adjoint square and the
condition is satis
ed when I and Y are Eilenberg�Moore coalgebras�

Returning to our case of interest� we have CH � B � C
G� with Y also Eilenberg�
Moore� Here Gj � XGW � XY ZW 	� ZW and we can take J � I� However� the
resulting adjoint square�

B C�
W

B
ZW � B�I

�

I

�

Y�
��

�

may fail to be distributive� even in the paradigm 
��� � CAT �� PRO�

Counterexample� Let B be the rationals with the usual order� Let the objects of C
be pairs 
b� i�� with b a rational and i in f�� �g� ordered by 
b� i� � 
b�� i�� if and only if
b � b� and i � i� or b � b� and i � � and i� � �� De
ning Wb � 
b� ��� X
b� i� � b and
Y b � 
b� �� produces a UIAO in ord and hence in CAT� Direct calculation shows that

the profunctor ZW � B � B is the order ideal � � B � B� which is an idempotent�
However� the inverter of W � Y is I � � �� B so that the composite IQ is � � B � B�

The reader who is familiar with ��� may 
nd the following to be more natural�

Counterexample� Let B be the closed unit interval and Y � B �� C the down�
segment embedding into the lattice of down�closed subsets of B� This is a special case
of �� in Section �� It follows from remarks in ��� that ZW � B � B is the order ideal

� � B � B but� again� the inverter of W � Y is empty so that the composite IQ is ��



Theory and Applications of Categories� Vol� �� No� � ���

However� even in the general situation that we described in the second to last dia�
gram� either diagonal composite CH
Gj� �� C is Eilenberg�Moore as seen by K for the
composite comonad GH� In short� we always have CH
Gj� 
 C
GH�� for idempotent
comonads inM� whenH admits an Eilenberg�Moore object and there exists a distributive
law GH �� HG�

We would like now to investigate the generation of distributive UIAOs from longer ad�
joint strings by several instances of the �shortening	 procedure that we have just discussed�
We will see that the subtlety of constructed functors actually providing Eilenberg�Moore
objects in M disappears but that the longer starting string must satisfy higher order
distributivity conditions� At 
rst these conditions appear somewhat strange but they are
satis
ed in naturally occuring examples� Moreover� at this stage a pattern emerges which
enables us in Section � to deal with strings of arbitrary length� It is convenient to begin
with a lemma that admits Theorem ��� as a corollary�

���� Lemma� If Y � B �� C and Y � � B� �� C are fully faithful arrows in K with right
adjoints Z and Z � respectively� possibly inM� then a transformation Y ZY �Z � �� Y �Z �Y Z
is a distributive law if and only if the transformation ZY � �� ZY �Z �Y ZY �� corresponding
by adjointness� is the inverse of Z���Y � � ZY �Z �Y ZY � �� ZY �� where � and �� are the
respective counits�

Proof� A very direct calculation su�ces�

Lemma ��� admits a simple interpretation in CAT� Considering B and B� to be
subcategories of C� the distributive law in question asserts that every arrow of the form
c � Y B �� Y �B� in C admits a factorization�

Y B
c��� Y �B�

�
s
�� Y B�

c��� Y �B�

with unique tensor product 
see ������ c��Bs�B� c�� The UIAO situation� where Y � � W a
X a Y � simpli
es this condition by the requirement that s � �B� � WB� �� Y B�� The
case when GH � Y ZWX admits an Eilenberg�Moore object is the further specialization
to invertible �B��

Suppose now that U a V a W a X a Y � B �� C is a distributive adjoint string
of length �� This gives rise to a string of idempotents� L a S a H a T a G� where we
have extended our earlier terminology with S � WV and L � UV � The distributive laws
in Lemma ��� now continue to include explicitly LT �� TL and HL �� LH� Thus we
can apply Theorems ��� and ��� to the distributive UIAOs W a X a Y and U a V a W
to produce I � B
ZW � �� B the inverter of W �� Y and J � BXU �� B the inverter
of U �� W � 
Of course XU is a comonad in K and we have oserved that in this case
the requisite Eilenberg�Moore object exists�� But we have also the idempotent monad
V Y with XU a V Y a ZW and it is convenient to revise� perhaps extend� a well�known
result of ���� We refer to the theorem which states that if a monad M is left adjoint to a
comonad C 
in CAT� then the category of M �algebras is isomorphic to the category of
C�coalgebras via an isomorphism that identi
es the forgetful functors� This theorem can
be generalized in many ways� Here we collect just what we need� without proof�
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���� Lemma� IfM � B �� B is an idempotent monad in K with right adjoint C �possibly
not in K
 then B
C� �� B provides both an Eilenberg�Moore object in K for M and an
Eilenberg�Moore object in M for C�

���� Lemma� If a monad M in K has an Eilenberg�Moore object I � BM �� B then I
has a left adjoint� P � and if M is idempotent then P � B �� BM provides a Kleisli object
for M �

Axiom � for proarrow equipment 
��� � K ��M ensures that every monad M in K
has a Kleisli object P � B �� BM in K�

����� Lemma� If a monad M in K has a left adjoint D then P � B �� BM provides a
Kleisli object for the comonad D�

Finally� let us explicitly state a dual of Lemma ����

����� Lemma� If a comonad D in K has a Kleisli object P � B �� BD then P has a left
adjoint� J � and if D is idempotent then J � BD �� B provides an Eilenberg�Moore object
for D�

It follows� from Lemmas ��� through ����� that if we start with an adjoint string of
length �� U a V a W a X a Y � B �� C� where U a V a W � or equivalentlyW a X a Y �
is a distributive UIAO� then our construction generates a fully faithful adjoint string of
length �� J a P a I � A �� B� where we can take A to be B
ZW �� Note� for future
reference� that J is Eilenberg�Moore for XU and that I is Eilenberg�Moore for both V Y
and ZW �

Considering just the composable UIAOs J a P a I and U a V a W and the fact that J
inverts U ��W we have an instance of Lawvere�s interpretation of Hegel�s �Aufhebung	
as described in ����

Note that if� as before� we write Q for the right adjoint of I in M then we do in this
case have

IQ 	� ZW


by Lemmas ��� and ����� In fact� a distributive adjoint string of length � ensures this
conclusion� We have also

IP 	� V Y

and
JP 	� XU	

To see that such compatible composable adjoints strings do not arise in the absence of
distributivity� even if the construction of inverters is available generally� it is instructive
to return to the Counterexample in ��� of Section �� Inspection shows that the functor V
there has a further left adjoint� U � given by U� � h� U� � �� U� � t� U� � ts and so on
up the right hand side of the long fork� 
In fact this U has itself a left adjoint which does
not have a further left adjoint�� The inverter of U �� W is � � � �� B but the inverter
of W �� Y is � �� B�

Our constructed string� J a P a I � A �� B� cannot be shown to be a distributive
UIAO without further conditions on the given data� U a V a W a X a Y � B �� C�
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����� Lemma� Let E be either an idempotent monad or an idempotent comonad on C�
Assume the same of E� and the existence of a distributive law EE� �� E�E� If the
distributive law is invertible then its inverse is also a distributive law and� conversely� if
there is a distributive law E�E �� EE � then it is the inverse of the original distributive
law�

����� Definition� A string of idempotent comonads and monads� L a S a H a T a G�
is said to be distributive if there are distributive laws

GH � HG
GS � SG
GL � LG	

A fully faithful adjoint string of length �� U a V a W a X a Y � B �� C� is said to
be distributive if the corresponding string of idempotents is distributive�

The law SG �� GS is an equivalent of the law GH �� HG� by Lemma ���� There�
fore� by Lemma ����� the law GS �� SG is an isomorphism� Also TL �� LT is an
equivalent of GS �� SG and we will 
nd it convenient to use this formulation� Since
LT �� TL is another equivalent of GH �� HG� TL �� LT is an isomorphism too� Still
another equivalent of GS �� SG is LG �� GL so that the last two distributivities in
the de
nition above could be combined as a single isomorphic distributivity GL

�
�� LG�

In the proof of the following theorem we content ourselves with exhibiting the existence
of the requisite arrows and isomorphisms� It should be clear to the reader by now that this�
not coherence� is the central problem� In fact� a full coherence theorem for distributive
adjoint strings will appear elsewhere�

����� Theorem� If U a V a W a X a Y � B �� C is a distributive adjoint string of
length � then J a P a I � A � B
ZW � �� B is a distributive adjoint string of length ��

Proof� The distributive law TL �� LT provides a restriction of L to the Eilenberg�
Moore object for T � Y � B �� C� The restriction� Lj� is given by Lj � XLY �
XUV Y 	� JPIP 	� J�AP 	� JP 	� XU and the Eilenberg�Moore object for XU is
J � A 
 BLj �� B� Similarly� TL �� LT provides the restriction T j � V TU �
V Y XU 	� IPJP 	� I�AP 	� IP 	� V Y of T to the Eilenberg�Moore object for L�
U � B �� C� The Eilenberg�Moore object for V Y is I � A 
 BT j �� B� Now from ����
it can be inferred that

B C�
Y

A B�I

�

J

�

U�
��
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is a bi�pullback� In particular� we have UI 	� Y J as displayed� Taking right adjoints� we
have also QV 	� PZ�

The distributive law GL �� LG� expands to Y ZUV �� UV Y Z� An application of
Lemma ��� gives the 
rst isomorphism in ZU 	� ZUV Y ZU 	� ZUIPZU 	� ZY JQV U 	�
�BJQ�B 	� JQ�

The distributive law GH �� HG� expanded and with V 
��U applied to it� gives
V Y ZWXU �� VWXY ZU � which by fully faithfulness of W and Y gives an arrow
V Y ZWXU �� ZU � Substituting along the isomorphisms we have derived yields an
arrow IPIQJP �� JQ� which can be rewritten I�AQJP �� J�AQ 	� JPIQ� Finally�
we have IQJP �� JPIQ� which is distributivity for the UIAO J a P a I�

It is instructive to picture some aspects of the proof of Theorem ���� in terms of
Lawvere�s cylinders as mentioned in the paragraph preceding Theorem ���� Prior to the
proof of Theorem ���� and the assumption of further distributivity for the stringB �� C�
we had already constructed a UIAO A �� B so that we knew B to have the structure
of a directed cylinder� The functors U � W and Y thus provided for three copies of the
cylinder B� fully faithfully in C� Adjointness further provided for two �cylinders	� where
the top and bottom of the �cylinders	 each had the shape of cylinder B� Inversion of
U �� W by J showed that the cylinders U and W are glued at their tops in C while
inversion of W �� Y by I showed that cylinders W and Y are glued at their bottoms�
In establishing the isomorphism UI 	� Y J in the proof above� which explicitly used the
higher order distributivity� we were joining the bottom of cylinder U to the top of cylinder
Y � as suggested in the picture below�

�
�

�
�UJ 	� WJ

�
�

�
�UI

�
�

�
�Y I 	� WI�

�
�
�Y J

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
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���

Y

� ��

�

Note that the �triangle	 structure bounded by cylinders� that this provides for C� is
not �hollow	�



Theory and Applications of Categories� Vol� �� No� � ���

�� Longer Adjoint Strings

Given a distributive adjoint string from B to C we consider now the construction of a
longer adjoint string� with domain C� Our �lengthening	 construction will in fact be left
adjoint to the �shortening	 construction for distributive adjoint strings that we described
in the last section�

In particular� suppose that we have a fully faithful Y � B �� C� a distributive adjoint
string of length �� As before� write G for the composite Y Z� Now Axiom � ensures the
coalescence of 
nite sums and 
nite products in M� Thus we use direct sum notation
below and there is a profunctor� M � C�C � C�C� whereM is the following matrix��

� G
� �

�

in which the ��s denote �C � C �� C� 
Here and elsewhere in this section the i� jth
entry of such a matrix denotes an arrow from the ith summand of the domain to the
jth summand of the codomain�� Recall from ���� that Axiom � ensures that the hom
categories of M have 
nite sums and that matrix multiplication� using this additive
structure� provides for composition of profunctors given by matrices� In particular� the
identity on C�C is� �

� �
� �

�

where the ��s denote the initial object ofM
C�C�� Recall that a transformation �C�C ��
M is a matrix of transformations� given componentwise� Evidently such is provided by��

� �
� �

�

where the ��s denote the unique transformation� in each case� with domain �� Thus M is
a pointed endo�arrow of M� The composite MM � C � C � C � C is given by the
matrix� �

� �G G�G
� � � G� �

�

where the ��s denote binary sum in the hom categories ofM� Consider the transformation
MM ��M given by� �

� ��� � � � �G� �G �
� ��� �� � � �� �� �

�

where we have used �row vectors	� bracketed by � and � to display transformations out
of local sums�

���� Lemma� The transformations MM ��M �� � introduced above provide a monad
structure on M �

It should be noted that a detailed proof of Lemma ��� must take into account the
associativity isomorphisms of the bicategory M and the further isomorphisms that are
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implicit in using categorical sum� � and � in the matrices above� for a matrix calculus�
However� note too that Lemma ��� holds given only that G is well�augmented by ��

Now Axiom � provides for a Kleisli opalgebra� K � C�C �� 
C�C�M in K and by
Axiom � the arrow K is a � by � �column vector	�

�
J
I

�

with J and I in K� Writing D for 
C � C�M � we have functors J� I � C �� D� The
opalgebra action KM �� K can be analyzed by 
rst computing the matrix KM �

�
J � IG
J � I

�

and examining the unitary and associativity requirements in terms of the components�
The unitary requirement says that two of the four components are identities so that
KM �� K amounts to� say� � � IG �� J and � � J �� I� By associativity these satisfy�

� � �G � J�

� � � � I�	

However� the transformation � corresponds� by adjointness� to a transformation � �
IY �� JY � It is a simple calculation to show that � is the the inverse of �Y precisely
when the two equations above hold�

Recall that for any arrow Y � B �� C in a bicategory� the coinvertee of Y is a
transformation� � � J �� I � C �� D� with �Y an isomorphism and which is moreover

bi��universal with this property� The notion of coinvertee does not seem to have been
explicitly studied to the same extent as the dual notion� invertee� of an arrow� As an
example� the coinvertee in CAT of � �� � is � � � � � �� ��

���� Lemma� For Y � B �� C fully faithful� the transformation � � J �� I � C ��

C �C�M � D above is a coinvertee in M with universality restricting to K�

Proof� Observe that the data and equational considerations in the discussion above
apply to any opalgebra for M � The universality of the Kleisli opalgebra provides the
universality required of a coinvertee�

Of course a particular transformation with domain C that is inverted by Y � B �� C

is ��
C

� �C �� �C � C �� C� so universality ensures a functor P � D �� C and

isomorphisms� which we may elect to direct as � � �C
�
�� PJ and � � PI

�
�� �C�

satisfying � � P� � ���� Similar considerations produce a transformation � � JP �� �D
satisfying �J � J��� and �I � � � J� and a transformation � � �D �� IP satisfying
�J � I� � � and �I � I���� From these equations it follows that we have adjunctions
�� � � J a P and �� � � P a I� Moreover� invertibility of � and � provides that J a P a
I � C �� D is a UIAO�
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���� Theorem� For Y � B �� C fully faithful� the adjoint string above� J a P a I �
C �� D� is distributive�

Proof� Observe that � � G �� �C � C � C is also a transformation inverted by
Y � since G � Y Z and � is the counit for Y a Z� This gives rise to a Q � D � C�
not necessarily in K because G is not necessarily in K� and compatible isomorphisms�
QJ

�
�� G and �C

�
�� QI� Direct computation shows that I a Q and� by Theorem ����

the isomorphism QJ
�
�� G and idempotence of G shows that the UIAO in question is

distributive�

It is interesting to note that the arrow components of P � respectivelyQ� as determined
by the universal property of D� constitute the 
rst� respectively second� column of the
matrix M � This will be elaborated upon elsewhere�

Of course� given a functor� Y � B �� C� and a transformation� � � J �� I � C �� D�
we can ask both whether � is the coinvertee of Y and whether Y is the inverter of ��
When both conditions hold we have a form of ��dimensional exactness� The �lengthening	
procedure for a fully faithful Y as described above does indeed produce an exact diagram
in this sense�

���� Corollary� For Y � B �� C fully faithful� the lengthening construction under
consideration� followed by the shortening construction that precedes Theorem ��
� recovers
Y � Moreover� Y satis�es the stronger property of being Eilenberg�Moore in M for the
comonad QJ �

We now consider the problem of generating� from a distributive UIAO W a X a
Y � B �� C� a distributive adjoint string� C �� D� of length �� As in the previous
section� we write H for WX� T for Y X and G for Y Z� Consider the profunctor M �
C �C �C � C �C �C where M is the following matrix��

B�
� H HG
� � G
T � �

�
CA

with conventions as above� There is an evident pointing� �C�C�C �� M � so consider
MM � the matrix��

B� � �H � THG H �H �HG HG �GH �HG
� � � � TG H � � �G HG �G�G
T � � � T HT � � � � HGT �G � �

�
CA

and the transformation MM ��M given by��
B� � �� �� � � Y �Z � T�G � � H�H�H� � � HG���HG �

� �� �� � � Y �Z � � �� �� � � � �G�G�G �
� T��� T � � � �W�X� �� � � � � �W�X �H�T� �� � �

�
CA

where we have written � for ��� H for �H etc�� The calculations required to prove the next
Lemma are straightforward but lengthy and tedious�
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���� Lemma� The transformations MM ��M �� � introduced above provide a monad
structure on M �

The Kleisli opalgebra for M is a � by � matrix� say�

�
B� K

J
I

�
CA

with domain C�C�C and codomain 
C�C �C�M � We will denote the latter by D�
so that we have functors K�J� I � C �� D� To analyze the opalgebra action we compute
the composite of the above � by � matrix and M to be�

�
B� K � JH � IHG

K � J � IG
KT � J � I

�
CA

and� again� examine the unitary and associativity requirements in terms of the compo�
nents� The unitary requirement says that all components of the form x �� x are identities
so that the data amounts to JH �� K� IHG �� K� K �� J � IG �� J � KT �� I
and J �� I� The 
rst� second� fourth and 
fth of these are equivalent� by adjointness�
to transformations JW �� KW � IW �� KY � IY �� JY and KY �� IW � respec�
tively� In terms of these� associativity states that the data consists of a transformation
K �� J and an isomorphism KW

�
�� JW � a transformation J �� I and an isomor�

phism JY
�
�� IY and an isomorphism KY

�
�� IW � This last will provide� as explained

in the closing paragraphs of Section �� the glue to join a chain of three linked cylinders
into a triangle�

���� Lemma� For a distributive UIAO� W a X a Y � B �� C� the functors K� J and
I and transformations described above are universal in M with universality restricting to
K�

Proof� Again� the data and equational considerations apply to any opalgebra for the
monad M �

Now consider the 
rst column of matrix M � remembering that the ��s are �C�s� Triv�
ially� we have the transformation ��

C
� �C �� �C inverted by W � We have the unit

for T � � � �C �� T which� since T � Y X� is inverted by Y � We have an isomorphism
�CY

�
�� TW because T � Y X and ��� � XW

�
�� �B� Construing this data as an

opalgebra de
nes a functor Q � D �� C�
Similarly� examining the second column ofM � we consider � � H �� � and � � � �� ��

The necessary isomorphisms for an opalgebra structure are easily found and so we have
a functor P � D �� C�

Finally� consideration of the third column suggests �G � HG �� G and � � G �� ��
Inversion of the 
rst by W is equivalent to invertibility of �ZW and this follows from the
considerations of Section �� in particular from the proof of Theorem ���� Inversion of � by
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Y follows simply from the de
nition of G� An isomorphism 
HG�Y
�
�� �CW is found

by noting that HG � WXY Z� The opalgebra de
nes a profunctor R � D � C

If we note carefully the compatibility isomorphisms and equations that universality
further provides in the de
nitions of Q� P and R� as we did in the simpler case preceding
Theorem ���� then we can prove K a Q a J a P a I a R� For example� in the de
nition
of Q we have isomorphisms QK 	� �� QJ 	� � and QI 	� T � The 
rst of these provides
a unit for K a Q� It is an isomorphism so the adjoint string of length � in K is fully
faithful�

The isomorphism PK 	� H� arising from the de
nition of P � establishes� since H is
an idempotent� that the constructed string is at least distributive in the sense we de
ned

rst for a UIAO�

���� Theorem� For W a X a Y � B �� C a distributive UIAO� the adjoint string of
length � constructed above� K a Q a J a P a I � C �� D� is distributive�

Proof� The higher order distributivity required here is the isomorphic distributivity�

IR�
KQ� 	� 
KQ�
IR�� The isomorphismKY 	� IW gives also� by taking right adjoints�
ZQ 	� XR� The de
nition of R gives RK 	� HG� We have noted QI 	� T above
and HG 	� WZ is familiar� Assembling these we have IRKQ 	� IHGQ 	� IWZQ 	�
KYXR 	� KTR 	� KQIR�

���� Corollary� For W a X a Y � B �� C a distributive UIAO� the lengthening
construction followed by the shortening construction recovers W a X a Y �

For the cases that we have considered� evident de
nitions of arrows between adjoint
strings allow us to say� �lengthening is fully faithful and left adjoint to shortening	�

�� Generalizing the Construction of �

For an adjoint string of comonads and monads� � � �R a L a S a H a T a G� consider the
following �table	 of distributive laws�
GG�GG
TG�GT GT�TG
TT�TT HG�GH GH�HG
HT�TH TH�HT SG�GS GS�SG
HH�HH ST�TS TS�ST LG�GL GL�LG
SH�HS HS�SH LT�TL TL�LT RG�GR GR�RG
SS�SS LH�HL HL�LH RT�TR TR�RT � � � � � �
LS�SL SL�LS RH�HR HR�RH � � �
LL�LL RS�SR SR�RS � � �
RL�LR LR�RL � � �
RR�RR � � �
� � �

It is to be understood that in each column the entries correspond via adjointness�
Moreover� let us assume that the 
�� �� entry is �GG � GG �� GG and that the 
rst non�
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blank entry in column n� entry 
n� n�� is the inverse of entry 
n� n� ��� Thus� by Lemmas
��� and ����� each column represents a single distributivity condition that a suitably long
string may� or may not� possess� We call �Condition �	 that given by the 
rst column� It
is� by Lemma ���� simply the condition that the string is comprised of idempotents� Of
course� Condition � is stateable for an adjoint string of length ��

Condition �� given by the second column of the table� is stateable for an adjoint string
of length �� Assuming Condition �� as we have throughout� we can write G � Y Z and
T � Y X� with Y � B �� C fully faithful� and employ our usual conventions for units
and counits� The distributive law TG �� GT is the composite

Y XY Z
Y �Z
�� Y Z

Y Z�
�� Y ZY X


and one should perhaps note that the isomorphisms TG 	� G and GT 	� T identify it with
the composite G �� �C �� T �� Since � is an isomorphism� Condition � holds precisely
if Z� is an isomorphism which in turn is equivalent to invertibility of � � Z �� X� Thus�
this distributivity condition leads to considerable degeneracy� It does not hold generally
in the examples and classes of examples that we considered in Section �� In particular�
it does not hold for the adjoint strings in �� For a UIAO satisfying this condition� the
isomorphism � � Z

�
�� X provides that � � W �� Y is also an isomorphism so that

the �cylinder	 becomes a �torus	� It should not be supposed though that Y � B �� C

is an equivalence� For example� � a � a � � � �� grp is a distributive UIAO satisfying
Condition � 
and obviously grp can be replaced by any category with a zero object��

While Condition � is not satis
ed in the examples that we have been studying� we
know by Lemma ��� that if Condition � is satis
ed then the condition given by the nth
column is unambiguous� Condition �� which is distributivity for a UIAO� needs no further
comment� On the other hand� the table makes it clear that the isomorphic distributivity
GL 	� LG� appearing in Theorems ��� and ����� is the conjunction of Conditions � and
�� Clearly too� this condition only becomes stateable for adjoint strings of length at least
�� Mere inspection reveals that the adjoint strings n �� n� � in �� which have length
�n��� satisfy all conditions i with � � i � �n�� and i �� �� For with � � i� the relevant
idempotents on n � � act independently and hence commute�

Example �� in Section � provides an interesting example of a string of length � that
satis
es the relevant higher order distributivities�

���� Proposition� The adjoint string of length �� U a V a W a X a Y � set ��
setset

op

� with Y the Yoneda embedding� satis�es Conditions ����� and ��

Proof� We remarked in Section � that this string satis
es the idempotence condition
for V Y so� with our standing notation� it su�ces to verify GL 	� LG� Let � and � be
objects of setset

op

� For any U a � � � a Y � B �� C� we have

GL
���� 	� Y 
ZUV �
����

	�
Z B

Y 
�� B�� ZUV 
B���
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	�
Z B

C
�� Y B��C
Y B�UV��

	�
Z B

B
X�� B��C
Y B�UV��

and

LG
���� 	� 
UV Y �Z
����

	�
Z B

UV Y 
�� B�� Z
B���

	�
Z B

C
�� UV Y B��C
Y B���	

In the case at hand� we recall from ���� that X� � �
��� V� � �
�� and US �
S�set
�� ��� where S�� denotes S�fold multiple� Now� in the last coend expression for
GL
����� taking account of the Yoneda lemma� we have GL
���� 	�

RB set
�
��� B��
�
���set
B� �� 	� set
�
��� �� � �
��� Also� LG
���� 	�

RB setsetop
�� set
�� ��� �
�
B� 	�

RB set
�
��� ����
B�� where we have invoked V Y B 	� �� for all B� the Yoneda
lemma and X � �
�� a Y � Here� the coended expression is constant in the covariant
variable so the coend reduces to a colimit� The indexing category for the colimit is setop�
whose terminal object is �� thus we have LG
���� 	� set
�
��� �� ��
���

In a way� Proposition ��� should not be too surprising� For to the extent that set���
op

is a monad on CAT 
the putative unit� the Yoneda embedding� exists only for locally
small arguments� it has the Kock�Lawvere property and thus arises� roughly speaking�
from a homomorphism with domain �� explicitly considered as a ��category� We refer
the reader to ���� for details�

The ideas of Proposition ��� also apply to completely distributive lattices� as in Ex�
ample �� For suppose that Y � B �� C is the down�segment embedding of an ordered
set� B� into its lattice of down�closed subsets and that we have an adjoint string of length
�� say U a V a W a X a Y � In ���� such strings were characterized as those arising from

constructively� completely distributive lattices� L� by application of the down�closed sub�
sets ��functor� D� to the de
ning adjoint string� 
a � a �� L �� DL� In other words�
the original string can be taken to be


�a D
a D� a D�a��� DL �� DDL�

where we have used 
���� respectively 
���� to denote left� respectively right� Kan exten�
sion�

���� Proposition� If L is a constructively completely distributive lattice then the adjoint
string 
�a D
a D� a D�a��� DL �� DDL satis�es Conditions ����� and ��

Proof� Since ��� 
�L�� ��DL is our generic Y � we have a particular instance of Example
�� so that Conditions � and � hold� Here we can take proarrows to be order ideals� Thus�
it su�ces to verify that the order ideals GL and LG are equal� Moreover� if we write
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� and � for objects of DDL and B for an object of DL then the general calculations
displayed in the proof of Proposition ��� adapt in this case to give

�
GL�� i� 
�B�
X� � B and Y B � UV ��

�
LG�� i� 
�B�
� � UV Y B and Y B � ��	

Now we have X � � and UV � �
� D
 � is the down�closure� with respect to contain�
ment� of the intersection of � with the image of 
 � L �� DL� It follows that we have
�
GL�� if and only if 
�B�
�� � B and 
�b�
B �
 b � ��� which holds if and only if

�B�
�b�
�� � B �
b � ��� Thus we have

�
GL�� i� 
�b�
�� �
b � ��	

On the other hand� the condition � � UV Y B can be seen to be


�A�
A � � implies 
�b�
A �
b � B��	

This condition is certainly implied by the condition 
�c�
�� �
 c � B� To see that it
actually implies the latter� note that since 
 is a left adjoint it takes suprema in L to
unions in DL so that �c� can be witnessed by �f�fb j A �
 b � Bg j A � �g� It follows
that we have �
LG�� if and only if 
�B�

�c�
�� �
 c � B� and B � �� which is the
case if and only if 
�B�
�c�
�� �
c � B � ��� Using down�closedness of �� this gives

�
LG�� i� 
�c�
�� �
c � ��	

In spite of Propositions ��� and ��� it should not be supposed that application of a
Yoneda�structure ��functor� such as set���

op

or D� to a distributive adjoint string of length
n will always produce a distributive adjoint string of length n � �� with the help of Kan
extensions� For example� the fully faithful f � � �� � which selects the middle element of
the chain gives rise to a non�distributive UIAO� 
�f� a Df a 
�f� � D� �� D�� 
It is easy
to apply Theorem ��� by showing that the order ideal 
�f��
�f� is not an idempotent��
Since Dn � n� � this also shows that not all fully faithful adjoint strings in � are
distributive� In fact� it shows further that distributivity of UIAOs is not composable� For
the UIAO just described� � �� �� factors as � �� � �� ��

There are a number of independence questions about the Conditions n of our table
that should be settled� We have dealt with some already� Let us note now that Condition
� is not a consequence of Conditions � and ��
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Counterexample� Consider the following lattices� C�

gh hg�

g

�
�
���

h

�
�
��R

�

�
�
��R

�
�
���

s

�
�
���

t

�
�
��R

�
�
��R

�
�
���

ts st�

�������������������������������
�������������������� R

��������������������������������������������������

sg gs�

and B�

� a�

c

�
�
��R �

�
���

�����������������������������
���������������������� R

��������������������������������������������������

b d�

e ��

De
ning Y � B �� C by

x � a b c d e �
Y x gh g sg t gs ts st

it is straightforward to show that an adjoint string of length � results which satis
es
Conditions � and � but SG� � sg �� gs � GS� is not invertible�

It is interesting to note that if C is collapsed by identifying sg �� gs and B is
collapsed by identifying b �� d then the resulting adjoint string becomes distributive

in the sense that Condition � then holds� while at the same time distributive lattices
result� We have not yet investigated the possible connections between these apparently
quite di�erent notions of �distributive	�

The reader will see from our notation above that the counterexample was freely gen�
erated in the same spirit as ��� of Section �� These techniques can also be employed to
show that Condition � does not follow from Conditions ��� and �� Here� however� we get
an in
nite counterexample� as in ��� of Section �� which is rather complicated to display�
We conjecture that quite generally Condition n � � is independent of the conjunction of
Conditions i� for � � i � n and i �� ��

Let us now turn explicitly to�� We have already implicitly remarked that the length�
ening construction� preceding Theorem ���� applied to � �� � yields the adjoint string
� �� � of �� Similarly� it is easy to see that the lengthening construction� preceding
Theorem ���� applied to the string � �� � yields a string equivalent to the string � �� �

of �� Of course� to continue much further we do need a more appropriate notation� as
we hinted at the beginning of Section �� We defer a full treatment of this� However� let
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us point out here that the relevant matrix for generating a distributive string of length �
from a distributive string of length � is��

BBB�
� L LH LHG
� � H HG
S � � G
TS T � �

�
CCCA

Proceding with this matrix� as we did in Section �� the reader should be able to show
how to generate a string equivalent to � �� � starting with the string � �� �� The
block structure of the family of matrices begins to emerge� In fact if the reader wishes
to �square	 the matrix above then the multiplication on it can be inferred from the
distributive lattice below� which provides the generic category C for the �free	 distributive
adjoint string of length �� 
At least the reader will see the availability of the necessary
component transformations with domain� or codomain� LHG��

ghl hglh�

glh

�
�
���

hgl

�
�
��R

�
�
��R

�
�
���

hg

�
�
���

lh

�
�
��R

�
�
��R

�
�
���

h ��

s

�
�
���

t

�
�
��R

�
�
��R

�
�
���
ts st�lhg gl�

�
�
���

�
�
��R

�
�
��R

�
�
���

hg g�

lh l�

gh

�
�
��� �

�
��R

hl

�
�
��R �

�
���

gs

�
�
��� �

�
��R

lt

�
�
��R �

�
���

Of course we are not claiming that our matrices are particularly e�cient for constructing
longer strings� Already we have seen that the data for the resulting monads is much
simpler than what one 
nds for a general matrix monad� The point is that being able
to organize in this fashion ensures the existence of the constructions in a rather general
axiomatic context�

It is classical that� as a category� � is generated by the face and degeneracy operators
subject to the cosimplicial identities� Lawvere in ��� showed that� as a monoidal category�
� is generated by � �� � �� � and the equations dictating that this data forms a
monoid� An account of this and the classical generation of � is also to be found in �����
In ��� Kock observed that� as a monoidal ��category� � is generated by Lawvere�s data
and equations and the transformation �� � �� � � �� � subject to the two equations
saying that this transformation is identi
ed by both � �� � and � �� ��

In ���� Street pointed out that �� regarded as a cosimplicial complex in CAT� is
generated by adjunction and pushout from the unique functors � �� � �� �� That is
to say
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n n � ��
��

n� � n���

�

�n��

�

�n

is a pushout for � � n and the �i shown are the ends of the relevant adjoint strings�
Our contention is that �� regarded as a cosimplicial complex in CAT� is generated from
� �� � by the lengthening constructions for adjoint strings� We note that pushout of
the ends of a distributive adjoint string does not generally produce an adjoint string�

Consider� for example� the distributive UIAO � a � a � � � �� set and the pushout of
� and ��� The case n � � is explicitly excluded in the pushout considerations of Street
above� while no exception arises with our lengthening constructions for adjoint strings�

Moreover� we are suggesting that given a distributive adjoint string� in a ��category
satisfying our axioms� that it can be completed so as to provide a surrogate for a truncation
of � of any desired length� For exponentiable starting data in the ��category of toposes
and geometric morphisms� this generalization holds promise�
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