
Theory and Applications of Categories, Vol. 16, No. 32, 2006, pp. 923–956.

COPOWER OBJECTS AND THEIR APPLICATIONS TO
FINITENESS IN TOPOI

TOBY KENNEY

Abstract. In this paper, we examine a new approach to topos theory – rather than
considering subobjects, look at quotients. This leads to the notion of a copower object,
which is the object of quotients of a given object. We study some properties of copower
objects, many of which are similar to the properties of a power objects. Given enough
categorical structure (i.e. in a pretopos) it is possible to get power objects from copower
objects, and vice versa.

We then examine some new definitions of finiteness arising from the notion of a copower
object. We will see that the most naturally occurring such notions are equivalent to the
standard notions, K-finiteness (at least for well-pointed objects) and K̃-finiteness, but
that this new way of looking at them gives new information, and in fact gives rise to
another notion of finiteness, which is related to the classical notion of an amorphous set
— i.e. an infinite set that is not the disjoint union of two infinite sets.

Finally, We look briefly at two similar notions: potency objects and per objects.
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1. Introduction and Background

The standard definition of an (elementary) topos is based on power objects. A power
object is the object that classifies subobjects of a fixed object. A natural question to
ask is whether the definition in terms of power objects is the only reasonable way to
approach elementary topos theory, or whether things like an object that classifies the
quotient objects of a fixed object can be used to define an elementary topos. This would
mean that in proofs in a general topos, the use of power objects could be replaced by
these copower objects. However, it seems likely that while there are many things that are
better understood using the standard power object based methods, the fact that copower
objects have the same expressive power means that there should also be some things that
can be better understood in terms of copower objects, so hopefully a study of copower
objects and the best ways to use them will lead to new insights in a variety of areas.
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In Section 2, we show that while copower objects do not produce as simple a definition
of a topos, for a pretopos (a coherent category in which all equivalence relations occur as
kernel pairs and in which there are disjoint coproducts), the existence of copower objects
is equivalent to the existence of power objects. We also prove some simple properties of
copower objects that are similar to useful properties of power objects. To express some
of the results in this section in full generality, we will need the notion of a quasitopos:

1.1. Definition. [J. Penon] A weak subobject classifier is the codomain of a morphism
from 1 of which every strong monomorphism (morphism that doesn’t factor through an
epi) is a pullback along a unique morphism. A quasitopos is a locally cartesian closed
cocartesian (i.e. having all finite colimits) category with a weak subobject classifier.

As any topos is a quasitopos, the reader unfamiliar with quasitopoi may simply read
“topos” instead of “quasitopos” wherever it occurs.

Also, for Proposition 2.12, we will need to recall the definitions of the closed subtopos
complementary to a given subterminal object U of E , denoted, Shc(U)(E), and an internally
widespread subterminal object.

The objects of Shc(U)(E) (called c(U)-sheaves) are objectsX of E such thatX×U ∼= U .
For example, if E is the topos of sheaves on a topological space or locale X, then a
subterminal object U in E will correspond to an open subspace or sublocale of X. The
subtopos Shc(U)(E) will then be equivalent to the topos of sheaves on the complement of
U , with the topology that a subset of this complement is open if its union with U is open
in X.

A subterminal object U is called internally widespread if the subtopos Shc(U)(E) is
boolean — i.e. all its subobject lattices have complements. For example, in sheaves on
a 3-point topological space {0, 1, 2} whose open sets are exactly those that contain 0,
the subterminal object corresponding to {0} is internally widespread, since the topology
induced on its complement is discrete.

If the reader is unfamiliar with these concepts, Proposition 2.12 is not important in
the rest of the paper. I believe that there should be an easier proof of the result, not
involving power objects.

In Section 3, we examine the partial order on copower objects. We show that they
are in fact lattices. In the topos of sets, these lattices have already been studied. In
this context they are called partition lattices, with copower objects being viewed as sets
of equivalence relations, rather than quotients. (The order on them is by inclusion of
equivalence relations, which is the opposite of the order we consider in this section, since
smaller equivalence relations lead to larger quotients). One reason for their importance is
a theorem of P. M. Whitman [7] that any lattice can be embedded in a partition lattice.

Whitman’s proof of this result is fairly long and complicated. The main ideas are as
follows:

1. For each element x in the lattice that we wish to embed, we take some set Sx with
elements l(x) and r(x), so that we will embed our lattice in the partition lattice of the
disjoint union of the Sx, in such a way that the equivalence relation corresponding to y
will relate l(x) and r(x) if and only if x 6 y. This will ensure that the map is injective.
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2. The problem with this is that we might have y1 and y2 such that x 6 y1 ∨ y2 but
neither x 6 y1 nor x 6 y2. Therefore, we need to do something to force the join of the
equivalence relations corresponding to y1 and y2 to relate l(x) and r(x). To achieve this,
we introduce some extra points p1(y1, y2), . . . , p5(y1, y2) to Sx, for every pair of points
y1, y2 such that x 6 y1 ∨ y2, with the idea that the equivalence relation corresponding
to y1 should relate l(x) to p1(y1, y2), p2(y1, y2) to p3(y1, y2), and p4(y1, y2) to p5(y1, y2),
while the equivalence relation corresponding to y2 should relate p1(y1, y2) to p2(y1, y2),
p3(y1, y2) to p4(y1, y2) and p5(y1, y2) to r(x). (Introducing 5 new points rather than just
one is necessary in order to get both joins and meets to work.)

3. This still leaves the problem that if y1 6 z1 ∨ z2, while neither y1 6 z1 nor y1 6 z2

holds, we need to ensure that the join of the equivalence relations corresponding to z1

and z2 should relate l(x) to p1(y1, y2), and the other pairs of elements that we required to
be related above. To achieve this, we introduce more points between them – indeed we
eventually want to introduce a copy of Sy1 between them. We do this iteratively; at each
stage, adding a copy of what we currently have in Sy1 between them. Then we take the
union of all the iterations.

Each element of Sx, apart from r(x) can be viewed as a list of pairs of elements of
the lattice, with a natural number from 1 to 5, indicating to which of the pi the element
corresponds. (l(x) corresponds to the empty list.) This construction can be implemented
in any topos with a natural numbers object (see Example 1.7 for a recap of the definition
of a natural numbers object). Therefore, Whitman’s theorem should hold in any such
topos.

It has also been proved in the topos of finite sets by P. Pudlák and J. Tůma [5].
It would be interesting to determine whether Whitman’s theorem actually holds in any
topos, but I suspect that this would be hard to prove, since the finite case was an open
problem for 30 years, and a proof for a general topos would almost certainly give a new
proof of the finite case.

1.2. Remark. For distributive lattices, things are much easier: If L is distributive, then

the morphism L
f

//QL, sending a to Ra given by bRac ⇔ (b ∨ a = c ∨ a) is a lattice
embedding, so any distributive lattice embeds in its own partition lattice in an arbitrary
topos.

Another relevant result: in [3], G. Grätzer and E. T. Schmidt show that every com-
pactly generated lattice in Set is the lattice of global sections of a copower object in
[M,Set] for some monoid M . (They use the terms unary algebra for a functor in [M,Set],
and lattice of congruences for the lattice of global sections of its copower object.) Again,
this proof requires a natural number object, but other than that, should be able to be
done in an arbitrary topos.

In Section 4 we look at one possible application of copower objects in the study of
finiteness in topoi. Classically, there are many different definitions of finiteness, all of
which give rise to the same concept. Constructively, these definitions give rise to different
types of finiteness. In some cases, two different definitions of finiteness are only equivalent
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if the axiom of choice holds. These different definitions of finiteness are useful in different
cases – some results hold for one definition of finiteness, while other results will hold for
another.

We introduce a new definition of finiteness, based on copower objects, which we call
K∗-finiteness, because the way in which it is defined is similar to the definition of K̃-
finiteness (recalled below). We then show that this definition is equivalent to K̃-finiteness,

so can be used to help us study K̃-finiteness.
Here is a recap of some well-known notions of finiteness, and some of their properties

that we will need.

1.3. Definition. Given an object X in a topos, KX is the sub-join-semilattice of PX

generated by {} : X // //PX. X is Kuratowski finite (or K-finite for short) if 1 pXq //PX
factors through KX.

It is well known that:

1.4. Lemma. KA is the object of K-finite subobjects of A, i.e. given A′ // m //A, A′ is
K-finite if and only if pmq : 1 // //PA factors through KA // //PA.

K-finiteness corresponds to the following induction principle: “If all singleton subob-
jects of X have property Φ, where Φ is expressible in the internal language of the topos,
and the class of objects with property Φ is closed under union, then all K-finite subobjects
of X have property Φ.”

K-finiteness is closed under quotients, products and unions, but not under subobjects
– K1 = 2, so all K-finite subterminal objects are complemented. To fix this problem, the
notion of K̃-finiteness was invented. This is similar to K-finiteness, but starts with the

partial map classifier X̃ of X, instead of the subobject X
{}

//PX. Recall that X̃ is an

object with a canonical monomorphism from X, such that morphisms A
f

// X̃ corre-

spond bijectively to partial morphisms from A to X. i.e. for every morphism A′
f

//X

from a subobject A′ // //A to X, there is a unique morphism A
f ′

// X̃ such that

A′
��

��

f
// X

��

��

A
f ′

// X̃

is a pullback. X̃ can be embedded in PX as the object of subsingleton subobjects of X,

i.e. the downset in PX generated by X
{}

//PX.

1.5. Definition. Given an object X in a topos, K̃X is the sub-join-semilattice of PX

generated by X̃ // //PX. X is K̃-finite if 1 pXq //PX factors through K̃X.

K̃-finiteness is closed under subobjects, quotients, products and unions. It corresponds
to the induction principle: “If all subsingleton subobjects of X have property Φ, where Φ
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is expressible in the internal language of the topos, and the class of objects with property
Φ is closed under union, then all K̃-finite subobjects of X have property Φ.”

To prove the result that K̃-finiteness and K∗-finiteness are equivalent, we will need to
use the theory of numerals, due to P. Freyd [2].

1.6. Definition. A pre-numeral is a poset with a constant 0 and a unary operation s
which is order preserving and inflationary.

A numeral is a minimal pre-numeral i.e. a pre-numeral whose only subobject that
contains 0 and is closed under application of s is itself.

This allows induction over numerals – if Φ(0) holds and Φ(x) ⇒ Φ(sx) holds for all x,
then Φ(x) holds for all x.

1.7. Examples. (i) A natural numbers object is an object N with morphisms 1 0 //N

and N s //N , such that for any other object X with morphisms 1 x //X and X
f

//X,

there is a unique morphism N
g

//X such that

1
s //

x

��
??

??
??

?? N
s //

g

��

N

g

��

X
f

// X
commutes i.e. N is an initial prenumeral. Any natural numbers object N is a numeral,
since given a subobject N ′ // //N that contains 0 and is closed under the action of s,

there is a unique morphism N
g

//N ′ as above, and the composite N
g

//N ′ // //N
commutes with 0 and s, and is therefore the identity on N . Thus, N ′ must be the whole
of N . If it exists, N is clearly therefore an initial numeral. Conversely, if there is an
initial numeral, then it will be a natural numbers object, as any pre-numeral contains a
numeral, and any morphism from the initial numeral to it is contained in this numeral.

(ii) If n is a natural number (in the set theoretic sense), then the coproduct of n copies
of 1 is a numeral, with 0 picking out the first copy of 1, and the successor map s sending
the kth copy of 1 to the (k+ 1)th copy of 1 for k < n, and sending the nth copy to itself.

(iii) In the Sierpinski topos (the functor category [2,Set], where 2 is the category

with two objects A and B and one non-identity morphism A
f

//B) the functor F with
F (A) = m, F (B) = n where m and n represent m and n element sets for natural numbers
m > n with F (f)(i) = min(i, n) is a numeral; 0 picks out the least element of m and n,
and s increases the elements of m and n by 1 if they are not the top element, and fixes
the top element.

(iv) Given a reflexive relation R on X, and a subobject X0 of X, form a pre-numeral
on PX by letting 0 be X0 and letting s send a subobject X ′ of X to the subobject of
elements of X related to something in X ′. Restricting to the numeral n, contained in
this pre-numeral, there is a relation, φ between n and X, given by φ(0, x) if x ∈ X0

and φ(si, x) if (∃y : X)(φ(i, y) ∧ (yRx)). The image of n under this relation is then the
R-closure of X0.
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1.8. Definition. When the relation R in Example 1.7(iv) is the relation “differ by a
singleton” on PX, i.e. the relation

(X1RX2) ⇔ (∃x : X)(X1 ∪ {x} = X2)

the transitive closure of the singleton containing the empty subset of X is just KX. In
this case, the numeral produced in forming the transitive closure is called numX .

In this paper, we use the notation Kn-finite for an object X that is K-finite and has
numX 6 n. We also define ñumX in the same way as numX , but using the relation “differ
by a partial singleton” – i.e. the construction of K̃X as a transitive closure.

1.9. Examples. (i) In Set, if X is an n element set for some natural number n, then X
is Kn-finite.

(ii) In the Sierpinski topos, any functor F with F (A) = m and F (B) = n (for m > n
natural numbers) is KG-finite, where G is the numeral with G(A) = m and G(B) = n
(defined in Example 1.7(iii)).

We then observe that the definition of K∗-finiteness leads to another definition, which
we call K∗∗-finiteness. This is not even classically equivalent to other definitions of finite-
ness without the axiom of choice – classically, it is related to the notion of an amorphous
set:

1.10. Definition. A set is amorphous if it is infinite but not the disjoint union of two
infinite sets.

1.11. Examples. (i) If G is the group of permutations of an infinite set X, given the
topology that sets containing the pointwise stabilizers of finite subsets of X are open,
then there is a Fraenkel-Mostowski model of set theory that is equivalent as a topos to
the topos of continuous G-sets for this topology. In this topos, X with the obvious G-
action (which is continuous) is an amorphous set, since a subset of X in the original model
of set theory will only give a subobject of X × U for some subterminal object U here if
its stabilizer is an open subgroup of G, and this only occurs if the set is either finite or
has finite complement.

Many of the properties of amorphous sets are studied in [6]. In any partition of an
amorphous set with infinitely many pieces, all the pieces must be finite, and all but finitely
many of the pieces must be the same size. This leads to the following definition.

1.12. Definition. An amorphous set X is bounded amorphous if there is a natural
number n, such that in any partition of X, all but finitely many of the pieces have size at
most n. X is strictly amorphous if this n is 1.

At the end of Section 4, we show that in a general topos, K∗∗-finite objects are exactly
some suitably constructive version of bounded amorphous objects with an extra property
which we call usual finiteness, which is necessary to compensate for the possibility that
the subobject classifier might not be K-finite. The proof of this result is fairly technical,
and so the reader might wish to move to Section 5 after Remark 4.10. In the proof, we
use a well-known theorem from combinatorics:



COPOWER OBJECTS AND THEIR APPLICATIONS TO FINITENESS IN TOPOI 929

1.13. Theorem. [F. P. Ramsey] For any two natural numbers m and n, there is an
N such that whenever the edges of a complete graph on N vertices is coloured with two
colours, red and blue, say, there is either a set of m vertices with all edges between them
coloured red, or a set of n vertices with all edges between them coloured blue.

The form we shall actually need is the following.

1.14. Theorem. Given a complete graph on a set X of vertices, and a two-colouring of
the edges of X, if there is a finite bound on the size of monochromatic subsets of X, then
there is a finite bound on the size of X.

This version of the theorem is constructive, and so true in any topos (there is an
infinite version also called “Ramsey’s theorem” which is not constructive).

In Section 5, we briefly consider some alternative approaches to topos theory that
might require further study, such as the object of all retracts of X, or the object of all
subquotients of X. The former does not lead to a definition of a topos, but might be of
use for studying weaker categories, while the latter does define a topos, and so might be
of use in topos theory.

2. Copower Objects

In this section, we investigate a new approach to topos theory, based on quotients rather
than subobjects. We show that in a pretopos (an effective regular, positive coherent cat-
egory), the existence of copower objects is equivalent to the existence of power objects,
and show how in this case, we can construct exponentials directly from copower objects.
We show that the assignment of copower objects can be made functorial in either a con-
travariant or a covariant way. (We will see in Section 3 that these functors are internally
adjoint with respect to the canonical lattice structure on copower objects.)

2.1. Definition. Given an object A in a cartesian category C, a copower object for A
is an object QA equipped with a cover (a morphism that doesn’t factor through any non-

identity monos) QA×A
q � //RA through which the projection QA×A

π1 //QA factors,

such that if X×A x � //Y is any other cover through which the projection π1 factors, then

there is an unique morphism X xxy //QA such that in the following diagram, where the
vertical composites are projections, both small squares are pullbacks:

X × A
xxy×1A//

x
_��

QA× A

q
_��

Y //

��

RA

��

X xxy
// QA
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2.2. Remark. Of course, the top square will be a pullback whenever the bottom one is
and the top square commutes, as the whole rectangle is always a pullback.

2.3. Remark. It would be nice to have a generic quotient, as well as a copower object for
each object. Unfortunately, this does not occur in any non-degenerate topos, or indeed
in any category with disjoint coproducts, since the functor sending an object to the set
of its quotients doesn’t send coproducts to products, and so cannot be representable.

2.4. Examples. (i) In Set, QA is just the set of all isomorphism classes of surjections
with domain A, or equivalently the set of all equivalence relations on A. RA is the set of
ordered pairs consisting of an equivalence relation on A and an equivalence class for this
relation, or equivalently pairs consisting of a surjection with domain A and an element of
the codomain.

(ii) In a poset with a top element, the top element is a copower object for every
element, since the only quotients are the identities.

(iii) In [C,Set], copower objects are given by the Yoneda lemma – for a functor F ,
and an object X of C,

QF (X) ∼= [C,Set](C(X, ), QF ) ∼= {quotients of C(X, )× F over C(X, )}

2.5. Lemma. (i) In a regular category, the assignment A 7→ QA can be made into a
contravariant functor Q. This functor sends covers to monos, and in a category with
monic pushouts of monos, it sends monos to covers.

(ii) In a regular category with pullback-stable pushouts of covers (e.g. a quasitopos),
A 7→ QA can be made into a covariant functor `. This functor preserves covers, and if
monos are stable under pushout then it preserves them also.

Proof. (i) LetA
f

//B be a morphism. We need to determine the morphismQB
Qf

//QA.
In Set, it sends a quotient q of B to the cover part of the composite qf , or in terms of
equivalence relations, it takes the pullback along f .

For a general topos, form the composite QB×A 1×f
//QB×B q � //RB. Let its cover-

mono factorization be QB×A c � //I // i //RB. π1 factors through c, so take QB
Qf

//QA
to be xcy. It is a straightforward diagram chase to verify that this is indeed a functor.

If f is a cover then for any X
xqy

//QA, Qfxqy = xq(f × 1X)y, so that whenever
Qfxqy = Qfxq′y, qf = q′f . f is epi, so this can only happen if q = q′. Therefore, Qf is
mono.

If f is mono and there are pushouts that preserve monos then the pushout of any
quotient q of X × A along 1X × f gives a quotient q′ of X × B such that Qfxq′y = xqy.
Therefore, Qf is a cover.

(ii) Let A
f

//B be a morphism. We need to determine the morphism QA
`f

//QB.
In Set, it sends a quotient q of A to its pushout along f , or in terms of equivalence
relations, `f(R) relates elements a and b of B if and only if a = f(c) and b = f(d) for
some elements c and d of A that are related by R.
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Covers are preserved under pushouts. Given A
f

//B, form the pushout:

QA× A
1×f

//

q
_��

QA×B

x
_��

RA // Rf

π1 clearly factors through x. We set `f = xxy. It remains to check that composition

works. Given A
f

//B
g

//C, there is a diagram:

QA×B

_��

`f×1B// QB ×B

q
_��

1QB×g
// QB × C

_��

Rf

��

// RB

��

// Rg

xxqqqqqqqqqqqq

QA
`f

// QB

where both left-hand squares are pullbacks. To show that `(gf) = `g`f , it is sufficient
to show that in the following diagram:

QA×B

_��

1QA×g
// QA× C

_��

`f×1C// QB × C

_��

Rf

&&MMMMMMMMMMMM
// Rgf

��

// Rg

��

QA
`f

// QB
the right-hand squares are pullbacks, and the left-hand one is a pushout. However, this
follows trivially from the fact that `f ∗ preserves pushouts of covers.

If f is a cover then for any quotient q of X×B the pushout of q(1X × f) along 1X × f
is just q, so `f is a cover.

If f is mono, and monos are stable under pushout, then any quotient q of X × A is
the cover part of the diagonal of the pushout square

X × A //
1X×f

//

q
_��

X ×B

r
_��

Q // // R
so Qf`f is the identity, making `f mono.

2.6. Proposition. In a quasitopos E, all objects have copower objects.

Proof. Given an object A, the copower object QA is just the object of (strong) equiva-
lence relations on A, i.e. the object

{R : P (A× A)|(∀a, b, c : A)((a, a) ∈ R ∧ (a, b) ∈ R⇒ (b, a) ∈ R ∧
(((a, b) ∈ R ∧ (b, c) ∈ R) ⇒ (a, c) ∈ R)}
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The object RA is then the coequalizer of the equivalence relation on QA×A that relates
(R, a) to (S, b) if and only if R = S and (a, b) ∈ R.

Given an arbitrary cover X × A
x � //Y through which the projection factors, xxy is

the factorization of the name of the relation

{(m, a, b) : X × A× A|x(m, a) = x(m, b)}

(which is a morphism X //P (A×A)) through QA // //P (A×A). Let the pullback of

RA along xxy be Y ′, and let the morphism (xxy)∗(q) be X × A x′ � //Y ′. Its kernel pair
is the pullback of the kernel pair of q, which is the relation on X × A that relates (m, a)
to (n, b) if and only if m = n and x(m, a) = x(m, b). This relation is the kernel pair of x.
Therefore, Y ′ = Y and x′ = x.

Let f be any morphism with f ∗(q) = x. Then the composite

X
f

//QA // //P (A× A)

names the kernel pair of x, so f = xxy as QA // //P (A× A) is monic.

There is an analogue of the Beck-Chevalley condition for copower objects in a qua-
sitopos.

2.7. Lemma. In a quasitopos, let

A
f

//

g

��

B

h
��

C
k // D

be a pushout. Then

QB
Qf

//

`h
��

QA

`g

��

QD
Qk

// QC
commutes.

Proof. LetQB×D � //Y be the pushout ofQB×B � //RB along 1QB×h. Qk`h corre-

sponds to the quotient QB×C � //Z, where Z // //Y is the image of QB×C
1QB×k

// QB×
D � //Y . On the other hand, if I // //RB is the image of

QB × A
1QB×f

// QB ×B � //RB

then `gQf corresponds to the pushout Z ′ of QB×A � //I along 1QB × g. To show that
these are the same, it is merely necessary to show that the morphism from Z ′ to Y is
mono. Consider the following diagram:
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QB × A //

_��

&&MMMMMMMMMM
QB ×B

_��

&&MMMMMMMMMM

QB × C //

_��

QB ×D

_��

I // //

''NNNNNNNNNNNNNN RB

''NNNNNNNNNNNNN

Z ′ // Y
The left-hand, right-hand and top squares are pushouts, so the bottom square is also

a pushout, making Z ′ //Y monic.

This shows that in a quasitopos Q sends covers to split monos and ` sends covers to
split epis. The proof of Lemma 2.5 has already shown that in a topos Q sends monos to
split epis and ` sends monos to split monos.

2.8. Theorem. A pretopos in which all objects have copower objects is a topos.

Proof. The idea here is that subobjects of A correspond bijectively to equivalence rela-
tions on Aq 1 whose only non-trivial equivalence class is the equivalence class containing
1. The object of these equivalence relations is a retract of the object of all equivalence re-
lations on A, since any equivalence relation can be restricted to just the equivalence class
containing 1. To obtain the power object PA, we just need to construct the composite
Q(Aq 1) � //PA // //Q(Aq 1), then we can take its cover-mono factorization.

First we construct the pullback:

P
� //

��

p

��

Q(Aq 1)
��

1×ν2

��

Q(Aq 1)× (Aq 1)

��

Q(Aq 1)× (Aq 1) � //R(Aq 1)

The right vertical morphism is monic because it is split by R(Aq 1) � //Q(Aq 1).

The idea here is that P should contain the equivalence class of 1 for each equivalence
relation on A q 1. We will next restrict to the equivalence relation q′ that relates two
elements (q, a) and (q, b) if and only if q relates both a and b to 1. The morphism xq′y
will then send two quotients of A to the same thing if and only if they relate the same
subset of A to 1, so its image will be isomorphic to the power object of A.

To do this, construct the intersection m in Sub(Q(A q 1)× (A q 1)× (A q 1)) of p12

and p13, where p12 is just the Cartesian product of the subobject p with Aq 1, and p13 is
the composite of this with the isomorphism that swaps the two copies of A q 1 – i.e. in
Set, p12 is the set of triples (q, a, b) such that (q, a) ∈ p, while p13 is the set of triples such
that (q, b) ∈ p, and thus, m is the set of triples (Q, a, b) such that both (q, a) ∈ p and
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(q, b) ∈ p. Let Q(A q 1) × (A q 1)
q′ � //R′(A q 1) be the coequalizer of π12m and π13m,

where π12 and π13 are the projections. This coequalizer exists because (π12m,π13m) is an
equivalence relation, and is therefore effective. It is a map over Q(Aq 1) because π1 has

the same composite with π12 and π13. Q(Aq1) c � //PA // i //Q(Aq1) is the cover-image
factorization of xq′y.

The universal relation, ∈ // //PA× A occurs as the pullback of the relation

S // //Q(Aq 1)× (Aq 1)× (Aq 1)

along PA× A ∼= PA× A× 1
i×ν1×ν2 //Q(Aq 1)× (Aq 1)× (Aq 1), where S is the ker-

nel pair of Q(Aq 1)× (Aq 1)
q � //R(Aq 1) and ν1 and ν2 are the coprojections.

It remains to show that this is indeed a power object for A. Given an arbitrary relation

T // m //X × A, let m′ = (m12 ∩m13) ∪ (1X ×∆Aq1), where m12 is the subobject:

(T qX)× (Aq 1) //
(mq1)×1

//(X × AqX)× (Aq 1) ∼= X × (Aq 1)× (Aq 1)
and m13 is similar, but with the order of the copies of Aq1 swapped. The idea is that m′

should relate (x, a) to (x, 1) if and only if (x, a) ∈ m (consider the case X = 1, where m12

is just (mq 1)× (Aq 1), i.e. it relates the elements of mq 1 to all elements of A, while
m13 relates elements of A to elements of mq 1, so that two elements of A are related by
m12 ∩m13 if and only if they are both in mq 1).

Let X × (A q 1) x � //Y be the coequalizer of π12m
′ and π13m

′. (π12m
′, π13m

′) is an

equivalence relation, so the coequalizer exists. The composite X xxy //Q(A q 1) c � //PA
is then the name of T .

The pullback of R′(A q 1) along xxy is Y , so the pullback of its kernel pair is T ′, by
effectiveness, and xq′yxxy = xxy. Therefore, the pullback of ∈ along

X × A
xxy×1A// Q(Aq 1)× A

c×1A � //PA× A

is the pullback of T ′ along X × A //
1X×ν1×ν2 //X × (Aq 1)× (Aq 1), which is T .

On the other hand, if the pullback of ∈ along X ×A f×1
//PA×A is T , then if = xyy

for some X× (Aq1)
y � //Y ′ for which the pullback of Z // z //X× (Aq1)× (Aq1) along

1X×ν1×ν2 is T , where (π12z, π13z) is the kernel pair of y. Also, if = icif factors through
xq′y, meaning that Z only relates (v, a) and (v, b) if it also relates (v, a) and (v, 1). This
forces y = x, since y is the coequalizer of its kernel pair, and hence, f = cxxy.

The construction of exponentials from copower objects can be done directly by con-
sidering the cographs:

2.9. Theorem. In a topos E, the exponential AB is the intersection of the pullbacks:

P1
//

��

��

1

x1Ay
��

Q(AqB)
Qν1

// QA

and P2
//

��

��

1

x1qBy
��

Q(AqB)
`g

// Q(1qB)
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in Sub(Q(A q B)), where g is the morphism A q B
g

// 1 q B induced by A // 1 and
1B, and 1qB is used to refer to the morphism 1qB � //1.

Proof. The idea here is that given a quotient q of AqB, q is the cograph of a morphism

B
f

//A if and only if qν1
∼= 1A. Since a topos is balanced, it suffices to show that qν1

is monic and epic. However, q is in P1 if and only if qν1 is monic, since the cover part of
the cover-mono factorization of qν1 is the identity. On the other hand, q is in P2 if and
only if qν1 is epic, since

A //

ν1

��

1

ν1

��

AqB // 1qB
is a pushout, so the pushout of qν1 along A is the identity on 1, so qν1 must be a cover.

More formally, let f be the morphism X × A // //X × (A q B) x � //Y . We need to
prove:

(i) The morphism X
xxy //Q(AqB) factors through P1 if and only if f is monic.

(ii) xxy factors through P2 if and only if f is epic.

(i): Let Q(A q B) × A � //I // //R(A q B) be the cover-mono factorization of qν1.
The pullback of I along xxy is X × A if and only if Qν1xxy factors through x1Ay, or
equivalently, if and only if xxy factors through P1. The pullback of I along xxy is the
image of f , so saying that it is X × A is the same as saying that f is monic.

(ii): Let

Q(AqB)× (AqB) //

��

Q(AqB)× (1qB)

y

��

R(AqB) // W

be a pushout. Then `gxxy factors through x1 q By if and only if xxy∗(Y ) = X. We
therefore want to show that xxy∗(W ) = X if and only if f is epic.

Q(AqB)× A //

��

Q(AqB)
��

y′

��

R(AqB) // W

Is also a pushout. (The right-hand arrow is monic because it has a left inverse.) Let
Q(AqB)× A � //Z // //R(AqB) be the cover-mono factorization. Then

Z //

��

��

Q(AqB)
��

y′

��

R(AqB) // W
is a pushout, since pushouts preserve cover-mono factorizations, and therefore a pullback.

Let X h //W be the pullback of xxy along the left inverse of y′ (the domain is X because
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the left-hand edge in this pullback is an isomorphism). h factors through y′, since the
pullback of y′ along it is the identity. Therefore, in the following diagram, all squares are
pullbacks.

X × A
f � //

��

Y
∼= //

��

Y //

��

X //

h

��

X

xxy
��

Q(AqB)× A � //Z // // R(AqB) // W // Q(AqB)

Therefore, f is epi.
Having proved (i) and (ii), morphisms C //P1 ∩ P2 correspond bijectively to quo-

tients C × (A q B) c � //C × A over C, whose restriction to C × A is the identity. Each
such morphism is uniquely determined by its restriction to C×B, and the first projection
is fixed, so the morphism is uniquely determined by the second projection C ×B //A,
i.e. P1 ∩ P2 is the exponential AB.

2.10. Remark. The above proof did require E to be a topos, since in general, the pushout
of a mono won’t also be a pullback, so the above does not show that categories with
copower objects are cartesian closed in any weaker cases.

2.11. Proposition. Any slice of a cocartesian regular category with copower objects has
copower objects.

Proof. Given A
f

//B in C/B, Let A
f ′ � //B′ //

f ′′
//B be the cover-mono factorization of

f . The copower object Qf is given by the pullback:

Qf //

��

��

6
��

��

B ×QA
xgy×1

// QA×QA

where g is the pushout of f ′ along the graph of f , i.e. the quotient that identifies (a, b)
and (a′, b′) if and only if b = b′ and f(a) = f(a′) = b, and 6 is the order relation on
QA, where quotients are ordered by factorization. (This order on QA will be studied in
more detail in Section 3.) Qf can be thought of as the object of pairs (b, R) where b is
an element of B and R is a quotient of f−1({b}).

Given an object C h //B of C/B, morphisms from h to Qf in C/B correspond to
morphisms from C to B ×QA whose second projection names a quotient through which
h∗(g) factors, i.e. to quotients of h× f in C/B.

2.12. Proposition. In a topos E, an object A satisfies A ∼= QA if and only if there is a
pushout:

U // //

��

��

1
��

��

1 // // A
where U is an internally widespread subterminal object in E.
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Proof. Given a pushout diagram as above, A is a c(U)-sheaf, and A ∼= QA clearly holds
in Shc(U)(E), so it holds in E , since any quotient of A is also a c(U)-sheaf.

Conversely, let A ∼= QA. There are two canonical morphisms 1
> //

⊥
//A , where >

corresponds to the identity on A, and ⊥ to the map from A to its support (which is 1,
as A admits a morphism from 1). Let U // // 1 be the equalizer of > and ⊥, and let

A
c � //C be their coequalizer. Clearly, U is also the equalizer of > and xcy. Let V // // 1

be the equalizer of ⊥ and xcy.
As elements of A are quotients of A, they are partially ordered by factorization, i.e.

c1 6 c2 if and only if c1 factors through c2, so that ⊥ is a bottom element. Note that this
is the reverse of the inclusion ordering on the corresponding equivalence relations. Now
for any a ∈ A, we have the equivalence relation R, given by

(bRb′) ⇔ ((b 6 a) ∧ (b′ 6 a)) ∨ (b = b′)

This gives a morphism A
f

//A. f is monic because A has a bottom element, so if
f(a) = f(b) then both f(a) and f(b) relate a to ⊥, so a 6 b, and similarly b 6 a, making
b = a, as required.

Define an equivalence relation S by

aSb⇔ (a = b) ∨ ((xcy 6 a) ∧ (xcy 6 b))

xSy is in the image of f if and only if c = ⊥, which is an assertion whose truth value

is V . Let V // m //A be the pullback of xSy along f . There is a morphism PmA
g

//A,
where PmA is the object of subobjects of A containing m, given by x 7→ Rx, where

aRxb⇔ (a = b) ∨ (a ∈ (∃f (x) ∪ {xSy}) ∧ b ∈ (∃f (x) ∪ {xSy}))

Now g(x) = g(x′) if and only if ∃f (x)∪{xSy} = ∃f (x
′)∪{xSy}, which occurs if and only

if x ∪m = x′ ∪m. Therefore, in Shc(V )(E), g becomes a mono PA // //A, meaning that
Shc(V )(E) is degenerate, i.e. that V = 1.

Thus A is a quotient of 2. In Shc(U)(E), > and ⊥ are disjoint, so that A = 2.
Therefore, in this topos 2 ∼= Q2 ∼= Ω. Therefore, Shc(U)(E) is boolean. Hence U is
internally widespread and A is the pushout of U // // 1 along itself.

3. Lattice Structure of Copower Objects

Recall that there is a canonical way of inducing a partial order on a copower object by

factorization as in Proposition 2.12 – a quotient X
q � //Y is less than or equal to another

quotient X
q′ � //Y ′ if q factors through q′. In this section, we study this partial order

in more detail, and show that in a topos any copower object is a complete lattice, and
the canonical functors Q and ` send any morphism to an adjoint pair of order preserving
lattice homomorphisms.
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3.1. Proposition. In a quasitopos, QA is an internal lattice for any A.

Proof. Let X ×A y � //Y
y′

//X and X ×A z � //Z
z′ //X be two quotients. The least

upper bound of x and y is the image of

X × A //
1×∆A // X × A× A � //P

where P is the pullback

P
� //

_��

Z

z′

��

Y
y′

// X
since any upper bound factors through P and is a quotient of X. Therefore, we seek a
quotient q′ of QA×QA×A over QA×QA whose pullback along (xxy, xyy) is this image.

Then QA×QA ∨ //QA will just be xq′y.
The pullback of

QA×QA× A
1QA×QA×∆A

// QA×QA× A× A
q×q

//RA×RA

along (xxy, xyy) is

X × A //
1×∆A // X × A× A � //P

so q′ is just the cover part of the cover-mono factorization of (q×q)(1QA×QA×∆A), where
q is the generic cover QA× A � //RA.

The greatest lower bound of x and y is clearly the pushout

X × A
y � //

z
_��

Y

_��

Z
� //S ′

So we seek a quotient of QA × QA × A over QA × QA whose pullback along (xxy, xyy)
is the diagonal of the above pushout. The diagonal s of the pushout

QA×QA× A � //

_��

QA×RA

_��
RA×QA � //S

clearly has this property. We therefore obtain the binary meet ∧ as xsy.

3.2. Proposition. In a topos, QA is an internal complete lattice for any object A.

Proof. Given a subobject S // s //X×QA, the projection to QA is xty for some quotient

S × A t � //T . The meet of S is the pushout

S × A //

t
_��

X × A

z
_��

T // Z
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because for any quotient r : QA in S, any a and b related by r, will also be related by z, as

(r, a) and (r, b) are related by t. The morphism PQA
V

//QA must therefore be xyy for

some quotient PQA× A
y � //Y //PQA, such that for any subobject S // //X ×QA,

the following squares are both pullbacks:

X × A
pSq×1

//

z
_��

PQA× A

y
_��

Z //

��

Y

��

X
pSq // PQA

where z is the meet of the elements of S as described above.
Let ∈QA ×A � //I // //PQA×RA be the cover-mono factorization of

∈QA ×A // //PQA×QA× A � //PQA×RA

This means that ∈QA ×A � //I corresponds to the morphism ∈QA
// //PQA×QA π2 //QA.

We will show that the morphism y we require is the pushout:

∈QA ×A // //

_��

PQA×QA× A
π13 // PQA× A

y
_��

I // Y
Since T //X×RA is a pullback of S // //X×QA, it is mono. Also, in the following

diagram, both squares are pullbacks.

S × A //

��

��

∈QA ×A
��

��

X ×QA× A
pSq×1

//

��

PQA×QA× A

��

X ×RA
pSq×1

// PQA×RA

Therefore, in the following cube, the left, right, top and bottom faces are pullbacks (the
bottom face is a pullback because cover-mono factorizations are pullback-stable).

S × A //

_��

%%LLLLLLLLLL X × A

_��

&&MMMMMMMMMMM

∈QA ×A //

_��

PQA× A

_��

T // //

&&MMMMMMMMMMMMM Z

''NNNNNNNNNNNNN

I // // Y



940 TOBY KENNEY

The front face is a pushout, and pullback along Z //Y preserves pushouts because it
has a right adjoint, so the back square is also a pushout.

The existence of infinitary meets ensures the existence of infinitary joins. However, it is

enlightening to construct the joins explicitly. Given S and S t � //T as above, the join of S

must be a quotient X×A z′ � //Z ′ //Z such that for any quotient X×A y � //Y //X,

the pullback of y along S
π1s

//X factors through t if and only if z′ factors through y, since
the pullback factoring through t means that the quotient is > all quotients in S. This
means that z′ must be Ππ1s(t), where Ππ1s is the functor right adjoint to pullback along
π1s.

We therefore need to get Ππ1s(t) as the pullback along pSq of some

PQA× A
w � //W

w′
//PQA

for any S. The required object W is just Π
∈QA

// QA
(I), since pullback preserves Π-

functors and

S //

��

∈QA

��

X
pSq // PQA

is a pullback. The infinitary join
∨

is then just xwy.

3.3. Proposition. For any A
f

//B, Qf a `f as order-preserving morphisms. Thus,
Qf is a join-homomorphism and `f is a meet-homomorphism, and they are complete in
a topos.

Proof. Note that `fQf corresponds to the morphism QB × B � //P in the following
diagram, where the top left square is a pushout:

QB × A
1×f

//

_��

QB ×B

_��

x��
88

88
88

88
88

88
88

8

I //**

**VVVVVVVVVVVVVVVVVVVVVVVV P

�%%KKKKKKKKKK

RB

so for any x : QB, x 6 `fQf(x).

Qf`f corresponds to the morphism QA × A � //I ′ in the following diagram, where
the top square is a pushout.
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QA× A
1×f

//

_��

QA×B

_��

RA //

_��

P

I ′
88

88ppppppppppppp

RA //P factors through I ′ // //P because it is the image of QA×A //P . Thus
for any x : QA, Qf`f(x) 6 x. Therefore, Qf a `f as order-preserving morphisms.

3.4. Proposition. (i) If f is mono, then `f is a lattice homomorphism, and in a topos
preserves all inhabited meets.

(ii) If f is a cover, then Qf is a lattice homomorphism, and in a topos preserves all
inhabited joins.

Proof. (i) When f is mono, we will show that `fQf = ∨ c, so QA is order-isomorphic,
and therefore complete-lattice-isomorphic to the sublattice of QB consisting of quotients
that are > c. The embedding of this lattice into QB is a lattice homomorphism that
preserves inhabited joins, so `f will also preserve all inhabited joins.

Let

A //
f

//

_��

B

c
_��

σ(A) // // C

be a pushout, and let the cover-mono factorization of QB × A //
1×f

//QB × B
q � //RB be

QB×A � //I // //RB (Here σ(A) denotes the support of A, i.e. the image of the unique
morphism A // 1). Consider the following diagram in which both squares are pushouts
(and therefore also pullbacks).

QB × A

_��

//
1×f

// QB ×B

g
_��

I ′

_��

//
f

// I ′

_��
σ(A) // // C

q and c both factor through g, so q ∨ c also factors through g. This gives a diagram:

I //
f ′

//
%%

%%KKKKKKKKKKK

_��

I ′

x
_��

C ∨RB

_��
σ(A) // // C
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The kernel pair of x is contained in the kernel pair of I ′ � //C, which is (f ′× f ′)∪∆
as a relation on I ′ × I ′. Let S be the kernel pair of x as a relation on I ′ × I ′. Since
I // //C∨RB is monic, the intersection of S with f ′×f ′ is the diagonal, so S is contained
in the diagonal, meaning that x is an iso.

(ii) When f is a cover, we want to show that
∧
∃Qf = Qf

∧
when restricted to

P+QB. First we consider
∧
∃Qf . It will be xzy for some P+QB×A z � //Z //P+QB.

This occurs as a pullback:

P+QB × A
∃Qf×1

//

z
_��

P+QA× A

y
_��

Z //

��

Y

��

P+QB
∃Qf

// P+QA
where y is as in Proposition 3.2.

There is a commutative diagram:

QB × A
��

Qf×1
��

1×f � //QB ×B � //RB //

��

��

QB
��

Qf
��

QA× A � //RA // QA
where both squares are pullbacks. Therefore, the pullback of

∈QA ×A //P+QA×QA× A � //P+QA×RA

along ∃Qf × 1RA is

∈QB ×A
1×f � // ∈QB ×B //P+QB ×RB // //P+QB ×RA

Let the cover-mono factorization of this pullback be

∈QB ×A � //L // //P+QB ×RA

Then z is the pushout of ∈QB ×A � //L along ∈QB ×A � //P+QB × A.
Now consider Qf

∧
. This corresponds to the right-hand composite in the following

diagram, where the bottom square is a pushout and ∈QB ×B � //J // //P+QB×RB is
the cover-mono factorization of ∈QB ×B //P+QB ×RB:

∈QB ×A � //

1×f
_��

P+QB × A

1×f
_��

∈QB ×B � //

_��

P+QB ×B

_��

J
� //M
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However, since ∈QB
� //P+QB is a cover, the top square is also a pushout, and therefore,

so is the whole rectangle. Also, J ∼= L, as they are both the image of

∈QB ×A
1×f � // ∈QB ×B //P+QB ×RB // //P+QB ×RA

Thus, the quotients of P+QB × A corresponding to
∧
∃Qf and Qf

∧
are equal, so∧

∃Qf = Qf
∧

.

4. Finiteness

In this section, we look at an application of copower objects to the study of finiteness. In a
topos, the many different classical definitions of finiteness are no longer equivalent, so we
have a number of different definitions which can be applied in different situations. We use
copower object based ideas to produce a new definition, which we call K∗-finiteness. We
then show that this is equivalent to K̃-finiteness – therefore giving a new way of studying
K̃-finiteness.

We then observe that the definition of K∗-finiteness gives rise to a new definition of
finiteness, which we call K∗∗-finiteness. We then characterise K∗∗-finiteness in terms of a
constructive version of amorphousness, and a concept which we call usual finiteness.

Given an object X in a topos E and elements a, b of X̃, we have a relation Rab that
relates only the members of a and b, i.e. two elements c and d are related if and only if
(c = d) ∨ (c ∈ a ∧ d ∈ b) ∨ (c ∈ b ∧ d ∈ a) holds. Now define a relation R on the copower

object QX, by setting xRy if (∃a, b : X̃)(x ∧ Rab = y ∧ Rab). (Recall that the order on
QX is by factorization – i.e. the opposite of inclusion of equivalence relations.) Let R be
the transitive closure of R.

4.1. Definition. Let K∗X be the quotient of QX corresponding to R above. X is K∗-
finite if K∗X ∼= 1.

4.2. Lemma. Subterminal objects are K∗-finite.

Proof. If U is subterminal then QU ∼= 1, so K∗U ∼= 1.

4.3. Lemma. (i) Subobjects of K∗-finite objects are K∗-finite.
(ii) Quotients of K∗-finite objects are K∗-finite.

Proof. (i) Let X be K∗-finite and let Y // m //X be a subobject of X. Qm(Rab) =
Rm∗(a)m∗(b), so the diagram:

QX
Qm � //

_��

QY

_��

K∗X ∼= 1 // K∗Y
commutes. Therefore, K∗Y ∼= 1.
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(ii) Let X be K∗-finite, and let X c � //Y be a quotient. `c(Rab) = Rc(a)c(b), so the
diagram:

QX `c � //

_��

QY

_��

K∗X ∼= 1 // K∗Y
commutes. Therefore, K∗Y ∼= 1.

4.4. Remark. This proof in fact gives that if X ′ is a subquotient of X, then K∗X ′ is a
quotient of K∗X.

4.5. Lemma. The disjoint union of two K∗-finite objects is K∗-finite.

Proof. Let X and Y be K∗-finite. There are embeddings of QX and QY into Q(XqY )
given by q 7→ q q 1Y and q′ 7→ (X � //σ(X)) q q′ respectively, where σ(X) denotes the
support of X, i.e. the image of the unique morphism X // 1. These embeddings both

preserve R, and are both quotiented to 1 in K∗(X q Y ), so 1XqYR(σ(X) q σ(Y )). But
(σ(X)q σ(Y ))Rσ(X q Y ), so K∗(X q Y ) ∼= 1.

4.6. Corollary. All K̃-finite objects are K∗-finite.

Proof. This is immediate from the preceding lemmas.

For the other direction we will need the following:

4.7. Lemma. [“outduction”] Let Φ(x) be a formula with one free variable x, expressible
in the internal language of a topos. Let (n, 0, s) be a numeral in which Φ(sx) ⇒ Φ(x)
holds for all x > l, and suppose (∃y : n)(y > l ∧ Φ(y)) holds. Then Φ(l) holds.

Proof. Let Ψ(x) = (Φ(x) ⇒ Φ(l)). Clearly Ψ(l) holds, and Ψ(x) ⇒ Ψ(sx) holds
for all x : n with x > l. Therefore, (∀x : n)(x > l ⇒ (Φ(x) ⇒ Φ(l))), and also,
(∃y : n)(y > l ∧ Φ(y)). Therefore, Φ(l) holds.

4.8. Lemma. If X
y � //Y and X z � //Z are quotients of X, and yRz, then Y is K̃-finite

if and only if Z is.

Proof. It is sufficient to prove the result when (∃a, b : X̃)(z = y∧Rab) and Z is K̃-finite,
since taking z′ = y ∧Rab = z ∧Rab reduces the general case to this one. We know that z′

is K̃-finite as it is a quotient of both y and z, one of which is K̃-finite.
The proof proceeds by induction on Z. If Z is a subsingleton, then Y is a quotient of

the union of {a} and {b}, so it is K̃-finite. Now suppose Z = U ∪V , where the hypothesis

holds for Z = U and Z = V . Let Y
f � //Z be the factorization of z through y. Let

X ′ = z∗(U), X ′′ = z∗(V ). Let R′
ab be R(a∩X′)(b∩X′) in QX ′, and let R′′

ab be R(a∩X′′)(b∩X′′)

in QX ′′. Then Y = f ∗(U) ∪ f ∗(V ), U = f ∗(U) ∧ R′
ab and V = f ∗(V ) ∧ R′′

ab, so by the

inductive hypothesis, f ∗(U) and f ∗(V ) are K̃-finite. Therefore, Y is also K̃-finite.
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Putting this all together gives:

4.9. Theorem. In a topos, E, an object X is K∗-finite if and only if it is K̃-finite.

Proof. One direction is just Corollary 4.6.

For the converse, suppose X is K∗-finite. Define a numeral (n, 0, s) in PQX by letting
0 be {1X}, and letting

sx = {z : QX|(∃y : QX)((y ∈ x) ∧ (yRz))}

Let Φ(x) be the assertion (∃y : QX)(y ∈ x∧K̃y). By Lemma 4.8, Φ(sx) ⇒ Φ(x). Because
X is K∗-finite, 1XR(X � //σ(X)), so

(∃x : n)((X � //σ(X)) ∈ x)

Therefore, (∃x : n)(Φ(x)), so by outduction Φ(0) holds, i.e. X is K̃-finite.

4.10. Remark. If R were taken to be (∃a, b : X)(x∧Rab = y∧Rab), and X were required
to have complemented support, then by the same argument as above, the resulting notion
of finiteness would be K-finiteness. The only tricky part in this modification is proving
the modified version of Lemma 4.8. If z = y ∧Rab and f is the factorisation of z through
y, as in the proof above, and f(a) = f(b) = a′, then for any K-finite subobject Z ′ of Z,
the preimage f ∗(Z ′ ∪ {a′}) is K-finite. This is shown by induction on Z ′ – It is obvious
that this property is preserved under unions, so it is sufficient to prove the result when Z ′

is a singleton. If X ′=z∗(Z ′∪{a′}) then in QX ′, z′ = y′∧Rab. Therefore, it is sufficient to
prove the case where Z is a singleton {x}. In this case, the following deduction is valid:

(∀x1, x2 ∈ f ∗(x))((x1 = x2) ∨ (x2 = a ∨ x2 = b))

(∀x1 ∈ f ∗(x))(f ∗(x) ∪ {a, b} = {x1} ∪ {a, b})
(∀x1 ∈ f ∗(x))(Kf∗(x)∪{a,b})

Kf∗(x)∪{a,b}

Therefore, f ∗(Z ′∪{a′}) is K-finite whenever Z ′ is, so in particular, Y is K-finite whenever
Z is.

So K∗-finiteness gives another way of looking at K̃-finiteness. This other way does
give some genuinely new information. It is well known that if K̃X is K̃-finite then so is
X. The same is not true for K∗X.

4.11. Example. In the topos [C,Set], where C is the 2-element monoid whose non-identity
element is idempotent, let X be the representable functor. Then K∗X = 2, so X is not
K∗-finite, but K∗X is.

This leads to the following definition:
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4.12. Definition. An object X is K∗∗-finite if K∗X is K∗-finite. More generally, X
is Kn∗-finite for a standard natural number n > 2 if K∗X is K(n−1)∗-finite, where K1∗-
finiteness is just K∗-finiteness.

This definition is weaker than the normal definition of finiteness in Set without AC
– any bounded amorphous set is K∗∗-finite. To study K∗∗-finiteness more thoroughly, it
will be necessary to look at the analogue of amorphous sets in general topoi. Classically
the definition of an amorphous set is non-constructive – it assumes that the set has
complements. The following is a more constructive definition.

4.13. Definition. An object X, in a topos, is amorphous if whenever Y and Z are
subobjects of X, with Y ∩ Z K̃-finite, either Y is K̃-finite, or Z is K̃-finite.

It is bounded amorphous if it is amorphous and there is a j : ñumX , such that for
any quotient of X with finite fibres, all but finitely many of the fibres {x ∈ X|f(x) = y}
are K̃j-finite. In this case, j is called a bound for X.

Two subobjects X ′ and X ′′ of X will be said to differ finitely if there is a K̃-finite
subobject Y of X, such that Y ∪X ′ = Y ∪X ′′. We will use P ∗X to denote the quotient
of PX by the relation

X ′RX ′′ ⇔ (∃Y : K̃X)(Y ∪X ′ = Y ∪X ′′)

For an amorphous object X, the term almost all elements of X will sometimes be used
to refer to subobjects of X that differ only finitely from X.

The collection of amorphous objects in a topos is clearly closed under subobjects, but
it is not closed under quotients – Let C be the category

A
''OOOOOO

C

B

77oooooo

and let X be an amorphous set. Then in [C,Set] the functor sending A, B and C all to X
and all morphisms to the identity on X is amorphous. However, the quotient that sends
A and B to X and C to 1 is not amorphous.

In Set (even without AC) K∗∗-finite sets are finite unions of bounded amorphous sets
(this will follow from the results later in this section). However, this is because if a set
has the property that whenever it is partitioned into 3 disjoint parts one is finite, then
the set must be a union of 2 amorphous sets, and similarly for sets with larger bounds
on the number of infinite parts into which they can be partitioned. However, in a topos,
this does not apply. For example, let X be an amorphous set and consider X ×R � //R
in LH/R, where LH is the category of locales and local homeomorphisms between them
(the topos LH/R is equivalent to the topos of sheaves on the real numbers). For any 2

K̃-finitely-intersecting subobjects A and B of X × R � //R, if A has an infinite fibre at
x, then taking a decreasing sequence xn ↘ x, let An be the set of elements of X that are
in all fibres of A above points in the interval [x, xn]. The An form an increasing sequence
of subsets of X whose union is infinite. Therefore, some An must be infinite (otherwise
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there would be an infinite subsequence with every An \ An−1 non-empty, and we could
partition X into

⋃∞
n=1A2n+1 \A2n and

⋃∞
n=1A2n \A2n−1, both of which are infinite). This

means that there must be a finite bound on the fibres of B in an open neighbourhood of
x. This means that given any 3 K-finitely intersecting subobjects of X × R � //R, and
any real number x, one of them has finite fibres on some neighbourhood of x. However,
X × R � //R is not amorphous, and all its amorphous subobjects are finite, so it is not
a union of amorphous sets. We will therefore need the following definition.

4.14. Definition. An object X in a topos, is S-weakly amorphous for some K-finite

numeral S, if for any S
f

//PX, with (∀y, z : S)(K̃f(y)∩f(z)∨ (y = z)), there is a K̃-finite
f(z) for some z ∈ S. X is weakly amorphous if there is a K-finite numeral S for which
it is S-weakly amorphous.

X is bounded weakly amorphous if it is weakly amorphous, and there is some j :
ñumX , such that for any quotient R of X, all but finitely many equivalence classes of R
are K̃j-finite. Again, j is called a bound for X.

In fact, weak amorphousness is still not enough, as we would like to know that if
we partition our object into subobjects whose intersections are S ′-weakly amorphous,
then one of these subobjects will be S ′-weakly amorphous. The appropriate definition is
therefore:

4.15. Definition. Let S be a K-finite numeral. An object X is S-pseudo-amorphous if

for any K-finite numeral S ′ < S, and any S
f

//PX such that for any i, j : S either
f(i) ∩ f(j) is S ′-pseudo-amorphous or i = j, there is an i : S such that f(i) is S ′-

pseudo-amorphous, where an object is 0-pseudo-amorphous if it is K̃-finite. X is pseudo-
amorphous if there is a K-finite numeral S for which it is S-pseudo-amorphous.

Clearly any S-pseudo-amorphous object is weakly amorphous. I have not yet been
able to determine whether pseudo-amorphous objects and weakly amorphous objects are
in fact the same thing.

The truth of the assertion “X is S-pseudo-amorphous” will sometimes be denoted
S-psamX . The definition of bounded pseudo-amorphous is analogous to the definitions of
bounded amorphous and bounded weakly amorphous.

The notion of pseudo-amorphousness is not sufficient to describe K∗∗-finiteness. For
example, if X is an amorphous set, then in [ω,Set], the constantly X functor is bounded
weakly amorphous, but it has an infinite number of quotients that are pairwise infinitely
different – all the associated sheaves complementary to U for subterminal U , i.e. the
quotients identifying any pair of elements to extent U . The problem is that Ω is infinite.
If Ω is K-finite, then bounded pseudo-amorphousness is sufficient to ensure K∗∗-finiteness.
To fix this problem, we introduce an extra condition on X which will allow our arguments
to work as if Ω were K-finite.

4.16. Definition. Given an object X in a topos E, define an equivalence relation RX on
Ω, by URXV if and only if the associated sheaf of X× (U ∪V ) is K̃-finite in Shc(U∩V )(E).



948 TOBY KENNEY

Let ΩX be the quotient of Ω by the relation RX . Say that X is usually finite if ΩX is
K̃-finite.

The remainder of this paper will be devoted to the proof of:

4.17. Theorem. An object X is K∗∗-finite if and only if it is bounded pseudo-amorphous
and usually finite.

To motivate what follows, we will start by giving a sketch proof:

Proof (sketch). Only if: We will start by dealing with the case where Ω is K-finite.
The general result will follow from this without too much difficulty.

Let j : ñumX be a bound for X. We will show (Theorem 4.22) that P ∗X is K̃-finite.

Therefore, there are only K̃-finitely many possible collections of infinite equivalence classes
up to finite difference. Therefore, if we can show that there are only K̃-finitely many
finitary equivalence relations (equivalence relations all of whose equivalence classes are

K̃-finite) up to finite difference, then X will be K∗∗-finite, since given any equivalence
relation R on X, we can map it to the finitary equivalence relation R′ given by x R′ y if
and only if x R y and the R-equivalence class [x]R of x is K̃-finite. We let K∗

finX denote
the object of finitary equivalence relations of X up to finite difference.

To show that K∗
finX is K̃-finite, we will start by forming some partially ordered ob-

ject L of possible ‘sizes’ of K̃-finite subobjects of X. This will give us the morphism

K∗
finX

f
// (LX)∗, where (LX)∗ is the quotient of LX that identifies functions that agree

on almost all elements of X, sending each equivalence relation R to the function that
sends x : X to the ‘size’ of [x]R (the R-equivalence class of x). We will choose L in such

a way that (LX)∗ is a K̃-finite poset with a top element.

We will then use an induction principle on posets of this type (Lemma 4.20) to

show that all the fibres of f are K̃-finite. This is where we will need Lemma 4.19 and
Lemma 4.23.

If: There is a monomorphism P ∗X // //K∗X, sending a subobject X ′ of X to the
equivalence relation that relates two elements of X if they are equal, or they are both in
X ′. Therefore, ifX isK∗∗-finite then P ∗X is K̃-finite, so (as we will show in Theorem 4.22)
X is pseudo-amorphous and usually finite.

We want to find a bound for X. We construct a morphism X ×QfinX
g

//U(ñumX)
sending (R, x) to the object of upper bounds on the size of [x]R. We will show (Lemma 4.25)

that any weakly amorphous subobject of a numeral is in fact K̃-finite, and therefore has
an upper bound. This means that for any finitary relation R, there is an inhabited object
iR of upper bounds on the size of [x]R. For each element of K∗

finX, we take the union of

the iR for relations on that equivalence class. The intersection of these unions is a K̃-finite
intersection of inhabited upsets of a numeral, and is therefore inhabited. An element of
this intersection is a bound for X.
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4.18. Lemma. (i) If X is Ksn-finite, then for any x : X, there is a Kn-finite X ′ ⊆ X
such that X = X ′ ∪ {x}.

(ii) If X is K̃sn-finite, then for any x : X, there is a K̃n-finite X ′ ⊆ X such that
X = X ′ ∪ {x}.

Proof. (i) Induction on X. If X is a singleton or empty, the result is obvious. If X =
X1 ∪ {y}, n = sm and φ(n,X1) (i.e. X1 is Kn-finite) then for any x : X, x ∈ X1 ∨ x = y.
If x = y, the result is trivial, so suppose x ∈ X1. φ(sm,X1), so there is an X ′

1 satisfying
φ(m,X ′

1) and X ′
1 ∪ {x} = X1. But now Y = X ′

1 ∪ {y} satisfies φ(n, Y ) and Y ∪ {x} = X.

(ii) The proof is essentially the same as (i).

As mentioned in the sketch proof, we will need a way of measuring the ‘size’ of an
equivalence class in order to get the object L that we use there. We will need this measure
of ‘size’ to distinguish proper subobjects, i.e. if A′ ⊆ A are K̃-finite subobjects of X, then
we will want A′ and A to have the same ‘size’ only if they are equal. The obvious measure
of ‘size’ – sending a K̃-finite subobject A of X to the least i : ñumX for which φX(i, A) –
won’t work, as a proper subobject of A can have the same ’size’ as A in this sense (also the
least such i may not be defined). One measure of size which does work is the upset U of
ñumΩX given by U = {i : ñumΩX |φΩX (i,ΩA)}. We need to check that this distinguishes
proper subobjects:

4.19. Lemma. If A // //B is a subobject of a K̃-finite object B, ΩB is K-finite, and
(∀j : ñumΩB)(φΩB(j,ΩA) ⇒ j = sj), then A // //B is an isomorphism.

Proof. Fix b : B̃. We will show that (∀i : ñumΩB)(b ∈ ΩA ∨ i = si). We prove this by
outduction on i. As ñumΩB is K-finite, it has a fixed point, which clearly satisfies the
hypothesis. Now suppose that si satisfies (b ∈ ΩA ∨ si = ssi). Clearly b ∈ ΩA implies
b ∈ ΩA ∨ i = si, so suppose si = ssi. Then φΩB(si,ΩB), so by Lemma 4.18, there is some
subobject C of ΩB such that φΩB(i, C)∧ ({b} ∪C = ΩB). Now as ΩA is injective, we can
pick a : ΩA such that b ∈ ΩA ⇒ b = a. Clearly (a ∈ C) ∨ (a = b) as C ∪ {b} = ΩB.

However, if a ∈ C then b ∈ ΩA ⇒ b ∈ C. Since ΩA = (ΩA ∩ C) ∪ (ΩA ∩ {b}), this
means that ΩA ⊆ C, and therefore, φΩB(i,ΩA), whence i = si.

Thus we have (b ∈ ΩA) ∨ (i = si), which completes the outduction, and allows us to
deduce that (b ∈ ΩA) ∨ (⊥ = s⊥). However ⊥ = s⊥ never holds, as ΩB has a point.

Therefore, we deduce that b ∈ ΩA. As b was arbitrary, B̃ ⊆ ΩA, and thus A ∼= B.

This lemma is related to the fact that Ω is an internal cogenerator (proved by F.
Borceux [1]).

The induction principal that we will need to use is the following:

4.20. Lemma. Given a formula Φ(x) in the internal logic of the topos and a K̃-finite
partial order L with a top element >, if (∀x : L)(((∀y : L)(y ∈ �(x) ⇒ Φ(y))) ⇒ Φ(x)),
where �(x) = {z : L|(x 6 z) ∧ (x = z ⇒ x = >)} and Φ(>), then (∀x : L)(Φ(x)).
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Proof. Induction on L: if L = {>}, then the result is obvious. If L = L′ ∪ x where x is
a subsingleton and > ∈ L′, and the lemma holds for L′, then as for any x′ : x, �(x′) ⊆ L′,
we have that (∀x′ : x)(∀y : L)(y ∈ �(x′) ⇒ Φ(y)), so by hypothesis, Φ(x′). Therefore, for
z : L′,

(∀y : L)(y ∈ �(z) ⇒ Φ(y)) ⇔ (∀y : L′)(y ∈ �(z) ⇒ Φ(y))

Hence, (∀y : L′)(Φ(y)), and thus (∀y : L)(Φ(y)).

4.21. Lemma. For any K̃-finite X, any monomorphism ñumX
//

f
//X is a cover.

Proof. Induction on ñumX . If ñumX = 0, the result is obvious. Let n : ñumX satisfy
sn = ssn, and let m : ñumX satisfy sm = n. By Lemma 4.18, there is an X ′ ⊆ X
such that φX(n,X ′) and X = X ′ ∪ f(sn). However, f(n) is a member of X, so (f(n) ∈
X ′) ∨ (f(n) = f(sn)). But since f is monic, (f(n) = f(sn)) ⇒ (n = sn) which means

that X is K̃n-finite. Therefore, in either case, X ′′ = X ′ ∪{y} is K̃n-finite. The restriction
of f to {i : ñumX |i 6 n} is therefore a monomorphism into X ′, and {i : ñumX |i 6 n} can
be made into a numeral isomorphic to ñumX′ . Therefore, by the inductive hypothesis, it
is a cover. Thus, f is also a cover.

4.22. Theorem. For any X, P ∗X is K̃-finite if and only if X is pseudo-amorphous and
usually finite.

Proof. If P ∗X is K̃-finite, then the subobject consisting of equivalence classes of subob-
jects of X of the form X × U for some subterminal U is also K̃-finite, but this subobject
is isomorphic to the quotient of Ω by RX , so X is usually finite.

By Lemma 4.21, any morphism ñumP ∗X
f

//PX whose composite with PX � //P ∗X
is mono covers P ∗X. If f satisfies

(∀i, j : ñumP ∗X)((i = j) ∨ S-psamf(i)∩f(j))

then the composite must either be mono or send some i to an S-pseudo-amorphous object.
If it is mono, then it must cover P ∗X, so in either case, some i must be sent to an S-
pseudo-amorphous object in P ∗X. Therefore, X is ñumP ∗X-pseudo-amorphous.

For the converse, it suffices to show that for any K-finite numeral S, the object P ∗
SX of

R-equivalence classes of subobjects of X that are S-pseudo-amorphous is K̃-finite. P ∗X
will then be K̃-finite.

Induct on S. If S = 1, then the subobjects in question are K̃-finite and so all equiv-
alent. If S = S1 ∪ {s}, then, for any R-closed and downwards closed collection A of
S1-pseudo-amorphous subobjects of X, the object of subobjects of X whose S1-pseudo-
amorphous subobjects are exactly those in A is K-finite. The object of R-closed and
downwards closed families of S1-pseudo-amorphous subobjects of X is K̃-finite, as it is a
subquotient of ΩX

P ∗
S1

X . Therefore, P ∗
SX is K̃-finite.



COPOWER OBJECTS AND THEIR APPLICATIONS TO FINITENESS IN TOPOI 951

In the proof of Theorem 4.17, we will need to consider refinements of given equivalence
relations. An equivalence relation R′ on X is a refinement of an equivalence relation R if
any pair of elements related by R′ is also related by R, i.e. if and only if R 6 R′ in the
order relation on QX. The following lemma will be necessary.

4.23. Lemma. Let X be a usually finite object, and let R be a finitary relation on X, such
that for some j : ñumX , all equivalence classes of R are K̃j-finite. Then R has K-finitely
many refinements up to finite difference.

Proof. Let T be the object of refinements of R, quotiented by finite difference. There is

a morphism T ×T g
//P ∗X sending a pair of relations (R1, R2) to the object of elements

of X whose R1 and R2 equivalence classes are the same. As almost all equivalence classes
of R are K̃j-finite, if we quotient each Q([x]R) (where [x]R denotes the equivalence class
of x) by relating two quotients R1 and R2 if there is a sequence 0 = U0 6 U1 6 U2 6
. . . 6 Un = 1 of subterminal objects such that in each Shc(U2n)(E), U2n+1 ⇒ R1 = R2,
while U2n+1 RX U2n+2 (i.e. relating two quotients if they agree unless X is finite), then

there is a finite numeral k such that all the resulting quotients are K̃k-finite. Therefore,
given any subobject T ′ of T , either T ′ is K̃k-finite, or for almost every equivalence class
of R there are two elements of T ′ that agree on all elements of this class. Therefore, the
image of the restriction of g to T ′ × T ′ is a K̃-finite collection of subobjects of X whose
union is almost the whole of X. Thus, every fibre of g has all of its cliques K̃k-finite (a
clique is a subobject of T any two elements of which are either related or equal). Thus,

by Ramsey’s theorem, there is some finite numeral l such that T is K̃l-finite.

4.24. Theorem. Let U be a subterminal object. If Ω × U is K-finite and X is bounded
pseudo-amorphous with support U , then X is K∗∗-finite.

Proof. As explained in the sketch proof, we need only show that K∗
finX is K̃-finite.

Let U(ñumΩX ) denote the object of inhabited upsets in ñumΩX , with the reverse of

the inclusion ordering. We will consider a morphism K∗
finX

f
// (U(ñumΩX )X)∗, where

(U(ñumΩX )X)∗ is the quotient of U(ñumΩX )X by the relation which relates two functions
if the subobject on which they agree is finitely different from the whole of X. The
morphism f is given by f(R)(x) = g(Ω[x]R) where g is the morphism sending a K̃-finite

subobject A of ΩX to the object {i : ñumΩX |φΩX (j, A)} (Ω[x]R is K̃-finite because [x]R is a

subobject of X, and therefore has support 6 U , so Ω[x]R = (Ω×U)[x]R which is K̃-finite).

Because almost all the [x]R are K̃j-finite, almost all the elements in the image of f(R)
are below some fixed j : U(ñumΩX ). Let L be the subobject of elements of U(ñumΩX ) that

are less than or equal to j. L is K̃-finite, so by considering the morphisms ΩL (Ph)∗
//P ∗X,

we see that the quotient (LX)∗ of LX under the finite difference relation is a K̃-finite
partial order with a top element. We need to show that the inverse image of each element
of (LX)∗ under f is K̃-finite. We do this using the generalised form of induction in

Lemma 4.20, where Φ(x) is the assertion that Pf({x}) is K̃-finite.
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We note that if R′ is a refinement of R and f(R′) = f(R), then R′ and R differ
finitely, because [x]′R ⊆ [x]R and if f(R′)(x) = f(R)(x) then [x]′R = [x]R by Lemma 4.19.
Φ therefore holds for the top element of L because any R and R′ are both refinements of
R ∧R′.

Now suppose that Φ(h′) holds for every h′ ∈ �(h). Let

V = [(∃R : K∗
finX)(f(R) ∈ �(h))]

In Shc(V )(E), there are no relations R with f(R) ∈ �(h), so given R1 and R2 with f(R1) >
h and f(R2) > h, f(R1 ∧ R2) > h, so f(R1 ∧ R2) = h, and therefore, R1 and R2 differ
finitely in Shc(V )(E). On the other hand, in E/V , any R′ with f(R′) = h is a refinement

of one of the relations R with f(R) ∈ �(h), so there are only K̃-finitely many possible

values for R′ × V by Lemma 4.23 (it is K̃-finite in E , not just in E/V , as the object

�(x) is K̃-finite in E). Therefore the preimage of h under f has K̃-finite product with V ,

and K̃-finite associated c(V )-sheaf, so some K̃-finite quotient of it is K̃-finite, and it is

therefore K̃-finite.
Therefore, by induction, all the preimages are K̃-finite, and thus, K∗

finX is K̃-finite,
and hence X is K∗∗-finite.

4.25. Lemma. Any weakly amorphous subobject of a numeral is K̃-finite.

Proof. Let (n, 0, s) be a numeral, and let X be an S-weakly amorphous subobject of n,
where S is a numeral (S, 0, t) with top element >. Let X ′ be the downset generated by X.

As the downset generated by a single element is K̃-finite, X ′ is an S-weakly amorphous
union of K̃-finite objects, so it is S-weakly amorphous.

If S satisfies tm(0) = > for some standard natural number m, then we can partition
n into the numerals contained in the prenumerals (n, si(0), sm) for i = 0, 1, . . . ,m − 1.

This gives a morphism m
f

//Pn such that for any i, j : m, either i = j or f(i) ∩ f(j)

is K̃-finite. We now form a morphism S
g

//Pn by g(i) =
⋃
{f(j)|tj(0) = i}. For any

i1, i2 : S, either g(i1) ∩ g(i2) is K̃-finite, or there are j1, j2 : m with tj1(0) = i1, t
j2(0) = i2

and j1 = j2, in which case i1 = i2. Therefore, as X ′ is S-weakly amorphous, there is an
i : S for which g(i) ∩X ′ is K̃ − finite. This means that one of the numerals contained

in the prenumerals (n, si(0), sm) ∩ X ′ is K̃-finite. However, if the numeral contained in

(n, si(0), sm) ∩X ′ is K̃-finite, then so are the numerals contained in (n, si+1(0), sm) ∩X ′

and (n, si−1(0), sm) ∩ X ′. Therefore X ′ is a K̃-finite union of K̃-finite objects, so it is

K̃-finite, and therefore, so is X.

Now we are ready to prove Theorem 4.17.

1. The fact that a K∗∗-finite object is bounded pseudo-amorphous and usually finite was
shown in the sketch proof, Lemma 4.25 and Theorem 4.22.

4.26. Lemma. For any object X and any subterminal U , K∗(X × U)× U ∼= K∗X × U .
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Proof. The objects Q(X × U) × U and QX × U are isomorphic via the morphisms
(xR(X×U)×Uy, π2) and (xRX×Uy, π2). These isomorphisms send the quotient Rab for

a and b elements of X̃ × U ×U to the quotient Ra′b′ where a′ and b′ are the corresponding
elements of X̃×U , and vice versa. Therefore, they preserve the relation on QX×U used in
constructing K∗X×U , and therefore, restrict to an isomorphism between K∗(X×U)×U
and K∗X × U .

2. A bounded pseudo-amorphous usually finite object is K∗∗-finite.

Proof. Let X be a bounded pseudo-amorphous usually finite object. Consider the col-
lection F of subterminal objects U such that X ×U is K∗∗-finite. It is clearly downwards
closed. It is also closed under RX , since if X ×U is K∗∗-finite, then K∗X ×U is K̃-finite,
so if in Shc(U)(E), X × V is K∗∗-finite, then K∗X × V is K̃-finite in E . Also, by Theo-

rem 4.24, this collection contains all U such that Ω×U is K̃-finite. Indeed, if it contains
U and in Shc(U)(E), Ω × V is K̃-finite, then it will also contain V , as X × V will be
K∗∗-finite in Shc(U)(E). Therefore, since X is usually finite, F will contain 1, and thus X
will be K∗∗-finite.

5. Related notions

There are a number of obvious variations on the notion of a copower object – what about
the object of all retracts of X, or the object of all subquotients of X? In this section, we
briefly look at these ideas, and show that the former is a weaker notion, in that it does
not allow us to construct power objects. However, this means that we may be able to use
it in constructions in categories which are not topoi. The latter is as strong a notion as
a power object, so perhaps an approach to topos theory based on per objects is possible.
The theory of these objects still needs to be developped.

5.1. Definition. In a cartesian category C, a potency object for an object A is an object
BA equipped with a retract BA×A � //CA // //BA×A over BA, such that for any other

retract X ×A � //Y // //X ×A over X, there is an unique morphism X
dY e

//BA, such

that the retract is a pullback of BA×A � //CA // //BA×A along X×A
dY e×1

// BA×A.

5.2. Proposition. Any cartesian closed category with all finite limits has potency objects.

Proof. Given X, BX is the object of idempotent endomorphisms of X, i.e. the ob-
ject {f : XX |ff = f}. The retract CX is the image of (π1, ev|BX), where π1 is
the projection from BX × X to BX, and ev is the evaluation morphism XX //X.
This image exists because it is the equalizer of (π1, ev|BX) and 1BX×X . Given a retract
A×X � //B // //A×X, the morphism A //BX is the factorization of the exponential
transpose of the composite with π2.
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5.3. Proposition. Any regular category with potency objects, such that subobjects of 1
form a Heyting semilattice, is cartesian closed.

Proof. Let k denote the generic endomorphism of B(X × Y )×X × Y . The exponential
XY can be obtained from the object of graphs. A graph is an idempotent endomorphism
of X ×Y that factors through π2, and whose composite with π2 is π2, so XY is contained
in

B′(X × Y ) = {f : B(X × Y )|(∃g : (X × Y )Y )(f = gπ2)}

The idea here is that B′(X × Y ) is the object of retracts of X × Y contained in Y . It
therefore admits a cover to BY sending a retract of X × Y to its factorization through
π2. The exponential XY will then be the pullback of d1

e
Y along this cover, i.e. the retracts

whose image is isomorphic to Y .
To form B′(X × Y ), we note that if σ(X) 6 σ(Y ) then π2 is the coequalizer of

X × Y × Y
π12 //

π13

// X × Y

Therefore, f will factor through π2 if f has equal composites with π12 and π13. We can
test this by composing these composites with the monomorphism 1X × ∆Y , where ∆Y

is the diagonal map Y //
∆Y //Y × Y . This gives a retract of X × Y × Y . Therefore, we

construct the morphisms B(X×Y )
h2 //B(X×Y ×Y ) and B(X×Y )

h3 //B(X×Y ×Y )
corresponding to the idempotent endomorphisms ∆Y kπ123 and ∆Y kπ124 respectively. Now
B′(X × Y ) will be the product E × (σ(X) ⇒ σ(Y )), where E is the equalizer of h2 and

h3. We now construct XY as the pullback P of d1
e
y along B′(X × Y )

dge � //B(Y ), where g
is the factorization of the endomorphism of B′(X × Y ) ×X × Y through π13 composed
with π13 on the other side.

A morphism Z //P corresponds to a morphism Z //B′(X × Y ), corresponding
to a retract of Z ×X ×Y , that factors through Z ×Y . composing this factorization with
π1 gives a morphism Z × Y //X. Therefore, P is indeed the exponential XY .

5.4. Proposition. Any cartesian category with disjoint coproducts and potency objects
is cartesian closed.

Proof. Let k denote the generic endomorphism of B(XqY )×(XqY ). The exponential
XY can be obtained from the object of cographs. A cograph is an idempotent endomor-
phism of X q Y that factors through ν1, and whose composite with ν1 is ν1, so XY is
contained in

B′(X q Y ) = {f : B(X q Y )|Imf ⊆ ν1}

Since ν1 is the equalizer of

X q Y
ν12 //

ν13

// X q Y q Y
an endomorphism f of X qY will factor through ν1 if and only if it has equal composites
with ν12 and ν13. If we form the composites ν12f(1 q ∇Y ) and ν13f(1 q ∇Y ), where

Y q Y
∇Y //Y is the codiagonal map, we get two retracts of X q Y q Y which will be
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equal if and only if f factors through ν1. We can therefore construct B′(X q Y ) as the
equalizer of the two morphisms from B(X q Y ) to B(X q Y q Y ) corresponding to the
composites ν12k(1×∇Y ) and ν13k(1×∇Y ).

Factorization through ν1 gives a morphism from B′(X q Y ) to BX, and the pullback

along this of d1
e
X is easily seen to be the exponential XY .

5.5. Remark. Some condition besides cartesianess is required to get cartesian closure,
since in any partial order with a top element, the top element is a potency object.

5.6. Definition. Given an object A in a cartesian category C, a per object for A is an ob-

ject ΨA equipped with a cover ΨA×A q � // 3 through which the projection ΨA×A π1 // ΨA

factors, and a subobject ΦA // // 3 such that for any other cover X × A x � //Y through

which π1 factors, and any subobject Z // //Y , there is an unique morphism X pZy // ΨA
such that in the following diagram:

Z //

��

��

ΦA
��

��

Y //

��

3

��

X // ΨA

both small squares are pullbacks, and the morphism Y // 3 commutes with x and
q(pZy× 1A).

5.7. Remark. The object ΦA is the object of ordered pairs (ψ, x) where ψ is a subquotient
of A and x is an element of ψ, while 3 is the object of ordered pairs (ψ, a), where ψ is
still a subquotient of A, but a is now any element of the quotient of A involved in the
construction of ψ.

5.8. Proposition. A topos has per objects.

Proof. The per object ΨX is just the object of symmetric transitive relations on X,
which is a subobject of P (X ×X).

5.9. Proposition. A cartesian category with per objects is a topos.

Proof. Given an object X in E , let ΨX
ξ

// ΨX correspond to the subobject ∈ of
ΨX × X, which is the pullback of ΦX // // 3 along ΨX × X // 3, viewed as a
subquotient of ΨX ×X whose quotient part is the identity. The image of ξ is then the
power object PX. Given any R // //A×X, ξpRy = pRy, so pRy factors uniquely through
PX, so PX is the power object.



956 TOBY KENNEY

References

[1] F. Borceux. When is Ω a cogenerator in a topos? Cah. Top. Geo. Diff., 16:1–5, 1975.

[2] P. J. Freyd. Numerology in topoi. Th. App. Cat., 16:522–528, 2006.

[3] G. Grätzer and E. T. Schmidt. Characterizations of congruence lattices of abstract
algebras. Acta Sci. Math. (Szeged), 24:34–59, 1963.

[4] P. T. Johnstone. Sketches of an Elephant: a Topos Theory Compendium, volume 1
and 2. Clarendon Press, 2002.
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