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SPECTRA OF FINITELY GENERATED BOOLEAN FLOWS

JOHN F. KENNISON

Abstract.

A flow on a compact Hausdorff space X is given by a map t : X → X. The general goal
of this paper is to find the “cyclic parts” of such a flow. To do this, we approximate
(X, t) by a flow on a Stone space (that is, a totally disconnected, compact Hausdorff
space). Such a flow can be examined by analyzing the resulting flow on the Boolean
algebra of clopen subsets, using the spectrum defined in our previous paper, The cyclic
spectrum of a Boolean flow TAC 10 392-419.

In this paper, we describe the cyclic spectrum in terms that do not rely on topos theory.
We then compute the cyclic spectrum of any finitely generated Boolean flow. We define
when a sheaf of Boolean flows can be regarded as cyclic and find necessary conditions
for representing a Boolean flow using the global sections of such a sheaf. In the final
section, we define and explore a related spectrum based on minimal subflows of Stone
spaces.

1. Introduction

This paper continues the research started in [Kennison, 2002]. The underlying issues we
hope to address are illustrated by considering “flows in compact Hausdorff spaces” or maps
t : X → X where X is such a space. Each x ∈ X has an orbit {x, t(x), t2(x), . . . , tn(x), . . .}
and we want to know when it is reasonable to say that this orbit is “close to being cyclic”.
We also want to break X down into its “close-to-cyclic” components. To do this, we
approximate X by a Stone space, which has an associated Boolean algebra to which we
can apply the cyclic spectrum defined in [Kennison, 2002]. In section 4, we examine ways
of computing the cyclic spectrum and give a complete description of it for Boolean flows
that arise from symbolic dynamics. Section 5 discusses necessary conditions for cyclic
representations. Section 6 considers the “simple spectrum” which is richer than the cyclic
spectrum.

We have tried to present this material in a way that is understandable to experts in
dynamical systems who are not specialists in category theory. (We do assume some basic
category theory, as found in [Johnstone, 1982, pages 15–23]. For further details, [Mac
Lane, 1971] is a good reference.) In section 3, we define the cyclic spectrum construction
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without using topos theory. In that section, we review the basic notion of a sheaf over
a locale. For details, see the book on Stone spaces, [Johnstone, 1982], which provides a
readable treatment of the ideas and techniques used in this paper.

As discussed in section 2, the use of symbolic dynamics allows us to restrict our
attention to flows t : X → X where X is a Stone space, which means it is totally
disconnected in addition to being compact and Hausdorff. But if X is a Stone space, then
X is determined by the Boolean algebra, Clop(X), of its clopen subsets (where “clopen”
subsets are both closed and open). By the Stone Representation Theorem, Clop is
contravariantly functorial and sets up an equivalence between the category of Stone spaces
and the dual of the category of Boolean algebras.

It follows that t : X → X gives rise to a Boolean homomorphism τ : B → B where
B = Clop(X) and τ = Clop(t) = t−1. Mapping a flow from one category to another is
significant because the notion of a cyclic flow depends on the ambient category. We recall
the following definition from [Kennison, 2002]. In doing so, we adopt the useful term
iterator from [Wojtowicz, 2004] and otherwise use the notational conventions adopted in
[Kennison, 2002]. So if f and g are morphisms from an object X to an object Y , then
Equ(f, g) is their equalizer (if it exists). If {Aα} is a family of subobjects of X, then∨{Aα} is their supremum (if it exists) in the partially ordered set of subobjects of X.

1.1. Definition. The pair (X, t) is a flow in a category C if X is an object of C and
t : X → X is a morphism, called the iterator. If (X, t) and (Y, s) are flows in C, then a
flow homomorphism is a map h : X → Y for which sh = ht. We let Flow(C) denote
the resulting category of flows in C.

We say that (X, t) ∈ Flow(C) is cyclic if
∨

Equ(IdX , tn) exists and is X (the largest
subobject of X).

In listing some examples from [Kennison, 2002], it is convenient to say that if S is a
set (possibly with some topological or algebraic structure) and if t : S → S, then s ∈ S is
periodic if there exists n ∈ N with tn(s) = s.

• A flow (S, t) in Sets is cyclic if and only if every element of S is periodic.

• A flow (X, t) in the category of Stone spaces is cyclic if and only if the periodic
elements of X are dense.

• A flow (B, τ) in the category of Boolean algebras is cyclic if and only if every element
of B is periodic.

• A flow (X, t) in Stone spaces is “Boolean cyclic” (meaning that Clop(X, t) is cyclic in

Boolean algebras) if and only if the group of profinite integers, Ẑ, acts continuously

on X in a manner compatible with t. (There is an embedding N ⊆ Ẑ and an action

α : Ẑ ×X → X is compatible with the action of t if α(n, x) = tn(x) for all x ∈ X

and all n ∈ N. Since N is dense in Ẑ, there is at most one such continuous action
by Ẑ. For details, see [Kennison, 2002]).
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• Let t : S → S be given where S is a set. Then (S, t) is a cyclic flow in the dual of
the category of Sets if and only if t is one-to-one.

We are primarily interested in Boolean flows, or flows (B, τ), in the category of Boolean
algebras. We sometimes say that “B is a Boolean flow”, in which case the iterator (always
denoted by τ) is left implicit. Similarly, the iterator for a Stone space will generally be
denoted by t. For those interested in pursuing topos theory, we recommend [Johnstone,
1977], [Barr & Wells, 1985] and [Mac Lane & Moerdijk, 1992] while [Johnstone, 2002]
is a comprehensive, but readable reference.

2. Symbolic dynamics and flows in Stone spaces

Symbolic dynamics have often been used to show that certain dynamical systems, or flows
in topological spaces, are chaotic, as in [Devaney, 1986] and [Preston, 1983]. We will use
symbolic dynamics to approximate a flow on a compact Hausdorff space by a flow on a
Stone space. An ad hoc process for doing this was used in [Kennison, 2002]; here we are
more systematic. Although we will not use this fact, it has been noted in [Lawvere, 1986]
and exploited in [Wojtowicz, 2004], that symbolic dynamics is based on the functor from
C to Flow(C) that is right adjoint to the obvious functor from Flow(C) to C.

2.1. Definition. Let S be any finite set whose elements will be called “symbols”. Then
SN is the Stone space of all sequences (s1, s2, . . . sn, . . .) of symbols. Let Sym(S) be
the flow consisting of the space SN together with the “shift map” t as iterator, where
t(s1, s2, . . . sn, . . .) = (s2, s3, . . . sn+1, . . .). Then Sym(S) is called the symbolic flow gen-
erated by the symbol set S.

2.2. Definition. [Method of Symbolic Dynamics]
Let (X, t) be a flow in compact Hausdorff spaces. Let X = A1∪A2∪ . . .∪An represent

X as a finite union of closed subsets. (It is not required that the sets {Ai} be disjoint,
but in practice they have as little overlap as possible.) Let S = {1, 2, . . . n}. A sequence
s = (s1, s2, . . . sn, . . .) in Sym(S) is said to be compatible with x ∈ X if tn(x) ∈ Asn for

all n ∈ N. We let X̂ denote the set of all sequences in Sym(S) that are compatible with

at least one x ∈ X. Then X̂ is readily seen to be a closed subflow of Sym(S).

2.3. Remark. It often happens that each s ∈ Sym(S) is compatible with at most one

x ∈ X in which case there is an obvious flow map from X̂ to X.

2.4. Definition. Let (B, τ) be a flow in Boolean algebras. Then a Boolean subalgebra
A ⊆ B is a subflow if τ(a) ∈ A whenever a ∈ A.

We say that (B, τ) is finitely generated as a flow if there is a finite subset G ⊆ B
such that if A is a subflow of B with G ⊆ A then A = B.

2.5. Proposition. Let S be a finite set. Let (X, t) be any closed subflow of Sym(S).
Then (B, τ) = Clop(X, t) is a finitely generated Boolean flow.
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Proof. We first consider the case where X is all of Sym(S). For each n ∈ N, let
πn : Sym(S) → S be the nth projection, which maps the sequence s = (s1, s2, . . . sn, . . .)
to sn. Let G = {π−1

1 (s) | s ∈ S} which is clearly a finite family of clopen subsets of
Sym(S). Note that τn(π−1

1 (s)) = π−1
n (s) so any subflow of B which contains G must also

contain all of the subbasic open sets π−1
n (s). It must also contain the base of all finite

intersections of these sets, and all finite unions of these basic sets. Clearly these finite
unions are precisely the clopens of Sym(S) because a clopen must, by compactness, be a
finite union of basic opens.

Now suppose that (X, t) is a closed subflow of Sym(S). Then, by duality, Clop(X, t) is
a quotient flow of Clop(Sym(S)) and so Clop(X, t) is finitely generated because a quotient
of a finitely generated algebra is readily seen to be finitely generated.

2.6. Corollary. The spaces of the form Clop(X̂) are finitely generated Boolean flows.

3. Review of the cyclic spectrum

The cyclic spectrum of a Boolean flow can be thought of as a kind of “universal cyclic
quotient flow”. To explain what this means, consider the simpler concept of a “universal
quotient flow” of a Boolean flow B. Of course, B does not have a single flow quotient but
has a whole “spectrum” of quotients, which can all be written in the form B/I where I
varies over the set of “flow ideals” of B (as defined below). The set of these ideals has a
natural topology and the union of the quotients B/I forms a sheaf over the space of flow
ideals. This sheaf has a universal property, given in Theorem 3.17 below, which justifies
calling it the universal quotient flow.

The cyclic spectrum is also a sheaf, but it might be a sheaf over a “locale”, which
generalizes the concept of a sheaf over a topological space. The use of locales is suggested
by topos theory and allows for a richer spectrum. In what follows, we will quickly outline
the theory of sheaves (and sheaves with structure) over locales, construct the cyclic spec-
trum and then state and prove its universal property. For more details about sheaves, see
[Johnstone, 1982, pages 169–180] and for further details, see the references given there.

We note that every Boolean algebra is a ring, with a + b = (a ∧ ¬b) ∨ (b ∧ ¬a) and
ab = a ∧ b. We describe those ideals I ⊆ B for which B/I has a natural flow structure:

3.1. Definition. If (B, τ) is a Boolean flow, then I ⊆ B is a flow ideal if it is an ideal
such that B/I has a flow structure for which the quotient map q : B → B/I is a flow
homomorphism. It readily follows that I ⊆ B is a flow ideal if and only if:

• 0 ∈ I.

• If b ∈ I and c ≤ b then c ∈ I.

• If b, c ∈ I then (b ∨ c) ∈ I.

• If b ∈ I then τ(b) ∈ I.
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The flow ideal I is a cyclic ideal of B if B/I is a cyclic flow, which means that for
every b ∈ B there exists n ∈ N with b = τn(b) (mod I). We say that I is a proper flow
ideal if I is not all of B.

The set of all flow ideals has a natural topology:

3.2. Definition. Let W be the set of all flow ideals of a Boolean flow (B, τ). For each
b ∈ B, let N(b) = {I ∈ W | b ∈ I}. Then N(b) ∩ N(c) = N(b ∨ c) so the family
{N(b) | b ∈ B} forms the base for a topology on W.

3.3. Remark. From now on, we assume that (B, τ) is a Boolean flow and that W is the
space of all flow ideals of B with the above topology.

3.4. Proposition. The space W of all flow ideals of B is compact (but generally not
Hausdorff).

Proof. Let U be an ultrafilter on W . Define IU so that b ∈ IU if and only if N(b) ∈ U .
It is readily checked that IU is a flow ideal of B and U converges to I ∈ W if and only if
I ⊆ IU .

In addition to the topological structure on W , there is a natural sheaf B0 over W .
While here we will show there is a natural local homeomorphism from B0 to W , we will
later give a different, but equivalent, definition of “sheaf” in terms of sections.

3.5. Proposition. (Let W be the space of all flow ideals of a Boolean flow (B, τ).) Let
B0 be the disjoint union

⋃{B/I | I ∈ W}. Define p : B0 → W so that B/I = p−1(I) for

all I ∈ W. For each b ∈ B define a map b̂ : W → B0 so that b̂(I) is the image of b under
the canonical map B → B/I. We give B0 the largest topology for which all of the maps

{b̂ | b ∈ B} are continuous. Then p : B0 → W is a local homeomorphism over W.

Proof. This is a standard type of argument and the proof is a bit tedious but straight-
forward. Note that a basic neighborhood of b̂(I) ∈ B/I is given by b̂[N(c)] for c ∈ B.

Also note that for b, c ∈ B, the maps b̂ and ĉ coincide on the open set N(b + c).

We note that the maps b̂ in the above proof are examples of “sections”. The following
definition is useful:

3.6. Definition. Assume that p : E → X is a local homeomorphism over X. Suppose
U ⊆ X is an open subset. Then a continuous map g : U → E is a section over U if
pg = IdU .

We let O(X) denote the lattice of all open subsets of X and, for each U ∈ O(X) we
let Γ(U) denote the set of sections over U . We note that if U, V ∈ O(X) are given, with
V ⊆ U , there is a restriction map ρU

V : Γ(U) → Γ(V ).
By a global section we mean a section over the largest open set, X itself. So Γ(X),

or sometimes, Γ(E), denotes the set of all global sections.

The structure of the sets Γ(U) and the restriction maps ρU
V determine the sheaf (to

within isomorphism).
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3.7. Definition. Let O(X) be the lattice of all open subsets of a space X. We will say
that G is a sheaf over X if for each U ∈ O(X), we have a set G(U) and if whenever
V ⊆ U , for U, V ∈ O(X), there is a restriction map ρU

V : G(U) → G(V ) such that the
following conditions are satisfied:

• (Restrictions are functorial) If W ⊆ V ⊆ U then ρV
W ρU

V = ρU
W . Also ρU

U = IdΓ(U).

• (The Patching Property) If U =
⋃{Uα} and if gα ∈ G(Uα) is given for each α

such that each gα and gβ have the same restriction to Uα ∩ Uβ, then there exists a
unique g ∈ G(U) whose restriction to each Uα is gα.

3.8. Proposition. There is, to within isomorphism, a bijection between sheaves over a
space X and local homeomorphisms over X.

Proof. If p : E → X is a local homeomorphism, then we can let G(U) denote the set of
all sections over U and let ρU

V denote the actual restriction of sections over U to sections
over V . It is obvious that this yields a sheaf over X as defined above. Conversely, it is
well-known that every such sheaf arises from an essentially unique local homeomorphism,
for example, see [Johnstone, 1982, page 172].

The concept of a sheaf over X depends only on the lattice O(X) of all open subsets of
X. The definition readily extends to any lattice which has the essential features of O(X),
namely that it is a frame:

3.9. Definition. A frame is a lattice having arbitrary sups (denoted by
∨{uα}), which

satisfies the distributive law that:

v ∧
∨

{uα} =
∨

{v ∧ uα}

It follows that a frame has a largest element, top, denoted by 
, which is the sup over
the whole lattice, and a smallest element, bottom, denoted by ⊥, which is the sup over
the empty subset.

A frame homomorphism from F to G is a map h : F → G which preserves finite
infs and arbitrary sups. In particular, a frame homomorphism preserves ⊥ and 
, which
are the sup and inf over the empty subset.

Clearly, there is a category of frames, whose morphisms are the frame homomor-
phisms. The category of locales is the dual of the category of frames. A locale is spatial
if its corresponding frame is of the form O(X) for a topological space X.

If X is a topological space, then O(X) is a frame. Moreover, if f : X → Y is contin-
uous, then f−1 : O(Y ) → O(X) is a frame homomorphism. If we assume a reasonable
separation axiom, known as “soberness” (or perhaps “sobriety”), see [Johnstone, 1982,
pages 43–44], the space X is completely determined by the locale O(X) and the contin-
uous functions f : X → Y by the frame homomorphisms f−1 : O(Y ) → O(X). For this
reason, we think of locales as generalized (sober) spaces. If X denotes a topological space,
we will let X also denote the locale corresponding to the frame O(X). Nonetheless, we
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adopt the view, given in [Johnstone, 1982], that locales and frames are the same thing
as objects, but differ only when we consider morphisms. If L is a locale, then L is also a
frame and the notation u ∈ L will refer to a member of the frame. (The only exception is
the case of the locale associated with a space X. Because of the difference between saying
u ∈ X and u ∈ O(X) we usually use X when thinking of the space as a locale and O(X)
for the corresponding frame.)

3.10. Definition. If L is a locale, then a presheaf G over L assigns a set G(u) to
each u ∈ L and restriction maps ρu

v : G(u) → G(v) whenever v ≤ u which are functorial
(meaning that ρv

wρu
v = ρu

w whenever w ≤ v ≤ u, and ρu
u = IdG(u) for all u).

A presheaf is a sheaf if it has the patching property (meaning that if u =
∨{uα}

and if gα ∈ G(uα) is given for each α such that each gα and gβ have the same restriction
to uα ∧ uβ, there then exists a unique g ∈ G(u) whose restriction to each uα is gα). Since
⊥ is the sup over the empty subset, the patching property implies that, for a sheaf G, the
set G(⊥) has exactly one element.

If G is a sheaf (or a presheaf) then G(u) is called the set of sections over u and
G(
) is the set of global sections of G.

Basic definitions for sheaves over locales.

• If G and H are sheaves over L, then a sheaf morphism θ : G → H is given by
functions θu : G(u) → H(u) which commute with restrictions (i.e. ρu

vθu = θvρ
u
v).

So, if L is a locale, there is a category Sh(L) of sheaves over L. (Note that we use
the same notation, ρu

v , for the restrictions in any sheaf.)

• θ : G → H is sheaf monomorphism if, for all u ∈ L, the function θu : G(u) →
H(u) is one-to-one. Similarly, θ is a sheaf epimorphism if, for all u ∈ L, each
h ∈ H(u) can be obtained by patching together sections of the form θuα(gα) where
u =

∨{Uα}.
• If f : L → M is a locale map (i.e. f : M → L is a frame homomorphism) then the

direct image functor, f∗ : Sh(L) → Sh(M), is defined so that f∗(G)(v) = G(f(v)).
The inverse image functor, f ∗ : Sh(M) → Sh(L) is the left adjoint of f∗. (A
concrete definition of f ∗ is sketched below, see 3.12.)

• By a Boolean flow over a locale L we mean a sheaf G ∈ Sh(L) for which each
set G(u) has the structure of a Boolean flow such that the restriction maps are flow
homomorphisms. If G and H are Boolean flows over L, then a sheaf morphism
θ : G → H is a flow morphism over L if each θu : G(u) → H(u) is a flow
homomorphism.

3.11. Example. [The spatial case] If we regard the topological space X as a locale
(corresponding to the frame O(X)) then, as noted above, a sheaf over X is given by a
local homeomorphism p : E → X. In this case, the set Ex = p−1(x) is called the “stalk”
over x ∈ X.
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For sheaves over a spatial locale, given by local homeomorphisms p : E → X and
q : F → X, a sheaf morphism is equivalent to a continuous map θ : E → F for which
qθ = p. Then θ is a sheaf monomorphism if and only if θ is one-to-one, and a sheaf
epimorphism if and only if θ is onto. Moreover p : E → X is a Boolean flow over X if
and only if each stalk Ex has the structure of a Boolean flow such that the Boolean flow
operations are continuous. For details, see [Johnstone, 1982, pages 175–176].

3.12. Remark. A concrete definition of f ∗ for sheaves over locales can be sketched as
follows: Given G ∈ Sh(M) and a frame homomorphism f : M → L, we first define a
presheaf f 0(G) over L so that f 0(G)(u) is the set of all pairs (x, v) with x ∈ G(v) and
u ≤ f(v) with the understanding that (x, v) is equivalent to (x′, v′) if and only if there
exists w ≤ v∧ v′ with u ≤ f(w) such that x, x′ have equal restrictions to G(w). As shown
in [Johnstone, 1982], every presheaf generates a sheaf, and f ∗(G) is the sheaf generated
by f 0(G). It can be shown that f 0(G) is a separated presheaf which means that the
natural maps from f 0(G))(u) to f ∗(G)(u) are one-to-one.

Since there is a natural local homeomorphism B0 → W it follows that B0 can be
regarded as a sheaf over W . Also, B0 is a Boolean flow over W in view of 3.11. We want
to show that B0 is a “universal quotient flow” of B, which suggests that there needs to
be a quotient map of some kind from B to B0. But, so far, B and B0 are in different
categories. This is rectified by the following:

3.13. Definition. The category of Boolean flows over locales is the category of pairs
(G,L) where G is a Boolean flow over L, and with maps (θ, f) : (G,L) → (H,M) where
f : M → L is a locale map (note its direction) and θ : f ∗(G) → H is a flow morphism
over H. The composition of (θ, f) : (G,L) → (H,M) with (ψ, g) : (H,M) → (K,N) is
(ψg∗(θ), fg).

A morphism in this category will be called a localic flow morphism

3.14. Notation. We let 1 denote the locale corresponding to the one-point space. Note
that as a frame, it is just {⊥,
}. If B is a Boolean flow, we can think of B as a Boolean
flow over the one-point space (with B(
) = B and B(⊥) being any one-point set).

If L is a locale, we let γL or just γ if there is no danger of confusion, denote the unique
locale map from L to 1.

3.15. Definition. By a quotient sheaf of a Boolean flow B, we mean a localic flow
morphism (λ, γL) : (B, 1) → (F,L) for which λ is a sheaf epimorphism in Sh(L).

For example, there is a natural localic flow morphism (η, γW) : (B, 1) → (B0,W)
which is most easily defined in terms of the stalks (the stalks of γ∗(B) are copies of B
and the stalk of B0 over I ∈ W is B/I and ηI : B → B/I is the canonical quotient map).

We aim to prove that (η, γW) : (B, 1) → (B0,W) is a universal quotient sheaf of B in
the sense that any other quotient sheaf factors through it in a nice way. First we need:
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3.16. Definition. [The operation ‖g = h‖] If G ∈ Sh(L) is a sheaf over L, and if
g, h ∈ G(u) are given for some u ∈ L, then ‖g = h‖ is defined as the largest v ⊆ u for
which ρu

v(g) = ρu
v(h). Note that:

‖g = h‖ =
∨

{vα | ρu
vα

(g) = ρu
vα

(h)}
We can now prove:

3.17. Theorem. B0 ∈ Sh(W) is the universal flow quotient of (B, τ) in the sense that if
F is a Boolean flow over L, and if λ : γ∗(B) → F is an epimorphism in Sh(L), then there
is a unique localic flow morphism (λ,m) : (B0,W) → (F,L), with λ an isomorphism,
such that the following diagram commutes:

(B, 1)

(F,L)

(λ,γL)

���
��

��
��

��
��

�
(B, 1) (B0,W)

(η,γW ) �� (B0,W)

(F,L)

(λ,m)
���

�
�

�
�

�

Proof. We need to find a locale map from L to W or, equivalently, a frame homomor-
phism m : O(W) → L, such that m∗(B0) is isomorphic to F , where the isomorphism is
compatible with the obvious maps from γ∗

L(B) to m∗(B0) and F . We start by establishing
some notation. It is clear from the definition of γ∗

L that each b ∈ B gives rise to a global
section b of γ∗

L(B). (More formally, b is the image of b under the unit of adjunction which
maps B → (γL)∗γ∗

L(B). Note that (γL)∗γ∗
L(B) is the set of global sections of γ∗

L(B).)
Moreover, these sections generate γ∗

L(B) in the sense that every section of γ∗
L(B) is ob-

tained by patching together various restrictions of global sections of the form b. So sheaf
morphisms on γ∗

L(B) are determined by their action on the sections b (which also follows
from the adjointness). (Note that we could similarly define global sections b of γ∗

W(B) in

which case η would be defined by the condition that it maps b to b̂, see 3.5.)
Regardless of how m : O(W) → F is defined, we will have γL = γWm so m∗γ∗

W = γ∗
L.

We claim that the required flow isomorphism λ, over L, exists if and only if the place
where m∗(η)(b) vanishes coincides with the place where λ(b) vanishes. In other words, λ
exists if and only if

‖m∗(η)(b) = 0‖ = ‖λ(b) = 0‖ (
)

(To keep the notation relatively uncluttered we are using λ(b) as an abbreviation of λ�(b)
and similarly for m∗(η)(b).) It is clear that (
) is necessary for the existence of the flow
isomorphism λ. Sufficiency follows because m∗(η) and λ are sheaf epimorphisms so the
sections of m∗(B0) and F are obtained by restricting and patching sections of the form
b. Applying condition (
) to b − c, we see that the images of b and c in m∗(B0) coincide
when restricted to u ∈ L, if and only if they do so in F . So restrictions of sections can
be patched in m∗(B0) if and only if they can be patched in F , which leads to the desired
isomorphism.
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But, however m is defined, ‖m∗(b) = 0‖ can readily be shown to be m(N(b)), so
to conclude the proof we must show that there exists a unique frame homomorphism
m : O(W) → L for which m(N(b)) = ‖λ(b) = 0‖. Uniqueness follows because the
family {N(b)|b ∈ B} is a base for the topology on W so every U ∈ O(W) can be written
as U =

⋃{N(b) | b ∈ BU} for some subset BU ⊆ B. It follows that m(U) must be∨{{‖λ(b) = 0‖ | b ∈ BU}.
Note that m is well-defined provided

∨{‖λ(b) = 0‖ | b ∈ BU} depends only on U
and not on the choice of BU . But we may as well assume that b ∈ BU and b ≤ c imply
b ∈ BU because closing BU up under such elements c affects neither

⋃{N(b) | b ∈ BU}
nor

∨{‖λ(b) = 0‖ | b ∈ BU}. By a similar argument, we may as well assume that b ∈ BU

if τ(b) ∈ BU or even if b∨ τ(b) ∈ BU . If we close BU under these further operations, then
b∨ τ(b)∨ τ 2(b) = (b∨ τ(b))∨ τ(b∨ τ(b)) ∈ BU so b∨ τ(b) ∈ BU and b ∈ BU . By induction,
it can then be shown that if b ∨ τ(b) ∨ . . . ∨ τ k(b) ∈ BU then b ∈ BU . It follows that if
〈b〉 ∈ U then b ∈ BU where 〈b〉 is the smallest flow ideal of B which contains b. (See
6.1 and the proof of 6.3 for details.) But now we cannot make BU any bigger because
b ∈ BU and U =

⋃{N(b) | b ∈ BU} readily imply that 〈b〉 ∈ U . It follows that m(U) is
well-defined.

We have to show that m is a frame homomorphism. It immediately follows from the
definition of m and its independence from the choice of BU that m preserves arbitrary
sups. As for finite infs, we will first prove that m(
W) = 
L (which shows that m
preserves the inf over the empty subset). But this follows from:

m(
W) = m(N(0)) = ‖λ(0) = 0‖ = 
L

So, to complete the proof, it suffices, since N(b∨c) = N(b)∩N(c), to show that if 〈b〉 ∈ U
and 〈c〉 ∈ V then 〈b ∨ c〉 ∈ U ∩ V . But this follows because all open subsets of W are
upwards-closed (meaning that I ∈ U and I ⊆ J and U open imply J ∈ U .)

3.18. Remark. It follows that, to within isomorphism, the quotient sheaves of B corre-
spond to locale maps into W where each map f : L → W is associated with the quotient
(f ∗(B0), L).

To define the cyclic spectrum, we need to know when a Boolean flow over a locale can
be regarded as cyclic. For a spatial locale, O(X), the obvious definition would be that
the Boolean flow C over X is cyclic if and only if each stalk, Cx, is a cyclic Boolean flow.
However, as often happens, we can find an equivalent definition which does not depend
on stalks.

3.19. Definition. Let G be a Boolean flow over L. Then G is a cyclic Boolean flow if
for every u ∈ L and every g ∈ G(u) we have

u =
∨

{‖g = τn(g)‖ | n ∈ N}.

Given a Boolean flow over a locale, we can find the largest sublocale for which the
“restriction” of the sheaf becomes cyclic. In order to proceed, we need to examine the



444 JOHN F. KENNISON

notion of a sublocale, which corresponds to a frame quotient. Sublocales are best handled
in terms of nuclei.

3.20. Definition. Let L be a frame. By a nucleus on L we mean a function j : L → L
such that for all u, v ∈ L:

1. j(u ∧ v) = j(u) ∧ j(v)

2. u ≤ j(u)

3. j(j(u)) = j(u)

A nucleus is sometimes called a Lawvere-Tierney topology, but this use of the word
“topology” can be confusing. Nuclei are useful because:

3.21. Proposition. There is a bijection between nuclei on a locale L and sublocales of
L.

Proof. This is given in [Johnstone, 1982, page 49]. A sublocale of L is given by
an onto frame homomorphism q : L → F , where it is understood that two onto frame
homomorphisms represent the same sublocale of L when they induce the same congruence
relation on L. (The congruence relation induced by q is the equivalence relation θq for
which uθqv if and only if q(u) = q(v).)

Given such a frame homomorphism q and given u ∈ L we define j(u) as the largest
element of L for which q(u) = q(j(u)). (So j(u) =

∨{vα | q(u) = q(vα)}.) Then j is a
nucleus.

Conversely, given a nucleus j, then we define u ≈ v if and only if j(u) = j(v) and
let F be the set of equivalence classes L/≈. It can readily be shown that F has a frame
structure and is a frame quotient of L.

3.22. Notation. Let j be a nucleus on a locale L, then:

• Lj = {u ∈ L | u = j(u)} denotes the sublocale (or quotient frame) of L which
corresponds to j.

• We let j : Lj → L denote the locale map associated with the inclusion of the
sublocale Lj. (Caution: As a frame homomorphism, j maps L onto Lj. The
inclusion of Lj as a subset of L is generally not a frame homomorphism.)

• Given G ∈ Sh(L), the “restriction” of G to the sublocale Lj is j∗(G).

• For j1 and j2, nuclei on L, the nucleus j1 corresponds to the larger sublocale if
and only if j1(u) ≤ j2(u) for all u ∈ L. (So the smaller nucleus corresponds to the
larger sublocale.)

We can now state:
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3.23. Proposition. Let G be a Boolean flow over the locale L. Then there is a largest
sublocale, Lj of L, such that j∗(G), the restriction of G to Lj, is a cyclic Boolean flow.

Proof. This is a matter of finding the largest sublocale for which certain equations of
the form

∨{uα} = u become true. In this case, we say that {uα} is to be a “cover” of u.
[Johnstone, 1982, pages 57–59] discusses the construction of a sublocale for which given
covering families (or “coverages”) become sups (in the sense that

∨{uα} = u whenever
{uα} covers u.) This construction can then be used to find the sublocale for which
u =

∨{‖g = τn(g)‖ | n ∈ N}, for all u and all g ∈ G(u).

The cyclic spectrum of a Boolean flow is defined as the restriction of the sheaf B0 to
the largest sublocale of O(W) for which this restriction is cyclic.

3.24. Definition. Let (B, τ) be a Boolean flow. Let B0 be the sheaf defined over the space
W of all flow ideals. Let j = jcyc be the nucleus which forces B0 to be cyclic. Let Lcyc

denote the sublocale Wj induced by the nucleus j and let Bcyc = j∗(B0) be the restriction
of B0 to Lcyc.

The cyclic spectrum of B is defined as the sheaf Bcyc over the locale Lcyc.

Recall that 1 denotes the one-point space and any Boolean flow can be thought of as
a Boolean flow in Sh(1).

3.25. Theorem. Let B be a Boolean flow and let Bcyc be its cyclic spectrum over Lcyc.
There is a natural localic flow morphism (η′, γ) : (B, 1) → (Bcyc, Lcyc) which has a univer-
sal property with respect to maps (λ, γ) : (B, 1) → (C,L), where C is a cyclic flow over L

and λ is a sheaf epimorphism: such a map (λ, γ) uniquely factors as (λ̂, h)(η̂′, γ) through

a map (λ̂, h) for which λ̂ is an isomorphism.

(B, 1) (B0,W)
(η,γW ) ��(B, 1)

(C,L)

(λ,γ)

�����������������
(B0,W) (Bcyc, Lcyc)

(i,j) ��(B0,W)

(C,L)

(λ,m)

�
�

���
�

(Bcyc, Lcyc)

(C,L)

(λ̂,h)
���

�
�

�
�

�
�

Proof. The proof is as suggested by the above diagram. Note that (η′, γ) is the composi-
tion (i, j)(η, γW). The locale map m : L → W is determined by Theorem 3.17. We claim
that it suffices to show that m maps into the sublocale Lcyc, or equivalently that the frame
homomorphism m : O(W) → L factors through the frame quotient j : O(W) → Lcyc.
For if m = hj (as frame homomorphisms) then h∗(Bcyc) = h∗(j∗(B0)) = m∗(B0) � C.

So we have to show that whenever j(U) = j(V ) then m(U) = m(V ). It suffices to
show that m(

∨ ‖b + τn(b) = 0‖) = 
 because the frame congruence associated with j is
the smallest for which

∨{‖b + τn(b) = 0‖} (or, equivalently, for which
∨{‖b = τn(b)‖} is

equated with 
). But ‖b = τn(b)‖ = N(b + τn(b)) so, by definition of m, we get:

m(‖b = τn(b)‖) = ‖λ(b + τn(b)) = 0)‖ = ‖λ(b) = τn(λ(b))‖
and

∨{‖λ(b) = τn(λ(b))‖ = 
 as C is cyclic.
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4. Computing the cyclic spectrum

We first examine when a cyclic spectrum is spatial, that is, a sheaf over a topological
space. (In fact it is an open question as to whether this is always the case.) If the
spectrum is spatial, we show that it must be a sheaf over the space Wcyc where:

Wcyc = {I ∈ W | B/I is cyclic}.

and Wcyc has the topology it inherits as a subspace of W .

Our main application is that the cyclic spectrum of a finitely generated Boolean flow
is always spatial, and, for these spaces, we can explicitly compute what the spectrum is.

We conclude this section with a proposition showing that we can always restrict our
attention to the “monoflow” ideals. (This was noted in [Kennison, 2002] and here we
give a direct proof.)

4.1. Proposition. As discussed above, W and Wcyc are spatial locales, while Lcyc is the
base locale of the cyclic spectrum. Then:

(a) Wcyc ⊆ Lcyc ⊆ W where “⊆” denotes a sublocale (in the obvious way).

(b) Lcyc is a spatial locale if and only if the inclusion Wcyc ⊆ Lcyc is an isomorphism.

(c) If U, V are open subsets of W for which j(U) = j(V ) then U ∩Wcyc = V ∩Wcyc.

(d) Lcyc is spatial if and only if, conversely, U ∩Wcyc = V ∩Wcyc implies j(U) = j(V ).

Proof.

(a) Lcyc is the largest sublocale of W to which the restriction of B0 is cyclic. Since the
restriction of B0 to Wcyc is clearly cyclic, the inclusions follow.

(b) If Lcyc is spatial, then the universal property of Bcyc shows that the points of Lcyc

correspond to cyclic quotients of B, and therefore to the points of Wcyc. This
guarantees that the inclusion Wcyc ⊆ Lcyc is an isomorphism.

(c) The sublocales Wcyc and Lcyc are determined by frame quotients of O(W) hence by
equivalence relations (called frame congruences) on O(W). The subsets U, V are in
the frame congruence for Lcyc exactly when j(U) = j(V ) while they are in the frame
congruence for Wcyc exactly when U ∩ Wcyc = V ∩ Wcyc. The result now follows
easily.

(d) Follows from the above observations.
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4.2. Definition. Let B be a Boolean flow. For each finite subset F ⊆ B, we say
that a flow ideal I of B is F-cyclic if for every f ∈ F there exists n ∈ N such that
f = τn(f) (mod I) (equivalently, that f + τn(f) ∈ I). We let:

Wcyc(F ) = {I ∈ W | I is F -cyclic}
4.3. Lemma. Let j = jcyc and let V ∈ O(W). Then V = j(V ) if and only if for every
U ∈ O(W) we have U ⊆ V whenever there exists a finite F ⊆ B with U ∩Wcyc(F ) ⊆ V .

Proof. Assume that V = j(V ) and that U ∩Wcyc(F ) ⊆ V for some finite F ⊆ B and
some open U ⊆ W. This implies that:

U ∩
⋂
f∈F

[ ⋃
n∈N

N(f + τn(f))

]
⊆ V

because I ∈ Wcyc(F ) if and only if I ∈ ⋂
f∈F

[⋃
n∈N N(f + τn(f))

]
. But the nucleus j

is defined so that each
⋃

n∈N N(f + τn(f)) is equated with the top element, 
, and it
follows that U ⊆ j(V ).

Conversely, assume that for every finite F ⊆ B and every open U ⊆ W, the condition
U ∩Wcyc(F ) ⊆ V implies U ⊆ V . We must prove that V = j(V ). We define J : O(W) →
O(W) so that:

J(W ) =
⋃

{U | (∃ a finite F ⊆ B) such that U ∩Wcyc(F ) ⊆ W}
It is readily shown that J(W ∩ W ′) = J(W ) ∩ J(W ′) and W ⊆ J(W ), but it is not
necessarily the case that J(J(W )) = J(W ). However, we can define Jα for every ordinal
α so that J0 = J , Jα+1 = J(Jα) and Jα(W ) =

⋃{Jβ(W ) | β < α} , for α a limit ordinal.
It is obvious that for some α, Jα = Jα+1. So, letting J ′ = Jα we see that J ′(J ′(W )) =

J ′(W ) and so J ′ is readily shown to be a nucleus. By the previous argument, J ′(W ) ≤
j(W ). But it is easy to show that J ′ equates every

⋃
n∈N N(f+τn(f)) with the top element


. By the definition of j, it follows that j = J ′ and V = j(V ) because V = J ′(V ).

4.4. Remark. Notice that the intersection of the sets {Wcyc(F )} is Wcyc, and the spatial
intersection of the subspaces {Wcyc(F )} is Wcyc. But the localic intersection of the
sublocales {Wcyc(F )} is the sublocale Lcyc. There are examples of families of subspaces of
a space with a non-spatial intersection, but it is not clear if this is the case for the family
{Wcyc(F )}.

We now apply the above results to the case of a finitely generated Boolean flow. First
we need some lemmas.

4.5. Lemma. If the positive integer m is a divisor of n, and if b ∈ B, then N(b+τm(b)) ⊆
N(b + τn(b)).

Proof. Suppose I ∈ N(b + τm(b)) is given. Then b = τm(b) (mod I). But this clearly
implies that b = τn(b) (mod I) which implies that (b+τn(b)) ∈ I and so I ∈ N(b+τn(b)).
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4.6. Lemma. Assume (B, τ) is a Boolean flow which is generated (as a flow) by G ⊆ B.
If there exist n ∈ N such that τn(g) = g for all g ∈ G, then τn is the identity on all of B.

Proof. Let C ⊆ B be the equalizer of τn and IdB. Then C is readily seen to be a subflow
which contains G so C is all of B.

4.7. Proposition. The cyclic spectrum of a finitely generated Boolean flow is always
spatial.

Proof. Let B be a Boolean flow generated by the finite set G = {g1, . . . gk}. We claim
that Wcyc(G) = Wcyc, which completes the proof in view of Lemma 4.3 and Remark 4.4.

If I ∈ Wcyc(G), then for each gi there exists ni such that τni(gi) = gi (mod I). By
4.5, applied to B/I, there exists n ∈ N (for example the product of the ni) such that
τn(gi) = gi (mod I). But B/I is obviously generated by the image of G so, by the above
lemma, B/I is cyclic and so I ∈ Wcyc.

It remains to discuss the topology on Wcyc. First we need:

4.8. Lemma. If the Boolean flow (B, τ) is finitely generated and satisfies τn = IdB for
some n ∈ N, then B is finite.

Proof. Let G = {g1, . . . gk} be a finite set that generates B as a flow. Then it is readily
seen that the finite set {τ i(gj)} (for 1 ≤ i ≤ n and 1 ≤ j ≤ k) generates B as a Boolean
algebra, which implies that B is finite.

4.9. Lemma. Let (B, τ) be a finitely generated Boolean flow, and let I be a cyclic flow
ideal of B. Then I is finitely generated as a flow ideal.

Proof. Let G = {g1, . . . gk} generate B as a flow and let I be a cyclic flow ideal of
B. Then each gi becomes cyclic modulo I so there exists (n1, . . . nk) such that F0 =
{gi + τni(gi)} ⊆ I. Let I0 be the flow ideal generated by F0. Then I0 ⊆ I (as F0 ⊆ I).
Also by previous lemmas, 4.6 and 4.8, we see that I0 is cyclic so B/I0 is cyclic and finite.
Let q0 : B → B/I0 and q : B → B/I be the obvious quotient maps. Since I0 ⊆ I there
exists a flow homomorphism h : B/I0 → B/I for which hq0 = q. Let K be the kernel of
h. Since B/I0 is finite, we see that K is finite. For each x ∈ K choose b(x) ∈ q−1

0 (x),
and let F1 = {b(x) | x ∈ K}. It readily follows that I is generated (as a flow ideal) by
F0 ∪ F1.

4.10. Theorem. Assume (B, τ) is a finitely generated Boolean flow and let Wcyc be as
above. Then U ⊆ Wcyc is open if and only if whenever I ∈ U then ↑ (I) ⊆ U where
↑ (I) = {J ∈ Wcyc | I ⊆ J}. It follows that ↑ (I) is the smallest neighborhood of I in
Wcyc.
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Proof. We let Ncyc(b) denote N(b) ∩ Wcyc. Now, assume that U is open in Wcyc and
that I ∈ U . Then there clearly exists b ∈ B with I ∈ Ncyc(b) ⊆ U . It is obvious that
↑ (I) ⊆ Ncyc(b) so ↑ (I) ⊆ U .

Conversely, assume ↑ (I) ⊆ U . By the above lemma, there is a finite set F which
generates I as a flow ideal. Then

⋂{Ncyc(f) | f ∈ F} is a neighborhood of I, but
J ∈ ⋂{Ncyc(f) | f ∈ F} if and only if F ⊆ J if and only if I ⊆ J so

⋂{Ncyc(f) | f ∈
F} =↑ (I), which shows that U is a neighborhood of I.

We conclude this section with two results that may be helpful in computing the cyclic
spectrum (of any Boolean flow). It is obvious that N(b) ⊆ N(τ(b)) but N(b) = N(τ(b))
modulo the nucleus j = jcyc in the sense that:

4.11. Lemma. Let B be any Boolean flow. Let j = jcyc be the nucleus on O(W) associated
with the sublocale Lcyc. Let V ∈ Lcyc (so j(V ) = V ) and b ∈ B be such that N(b) ⊆ V .
Then N(τn(b)) ⊆ V for all n ∈ N.

Proof. We will prove that N(τ(b)) ⊆ V as the full result then follows by induction. By
4.3, it suffices to show that:

N(τ(b)) ∩Wcyc({b}) ⊆ V

But if I ∈ N(τ(b)) ∩ Wcyc({b}) then τ(b) ∈ I (and therefore τn(b) ∈ I for all n) and
b = τn(b) (mod I) for some n ∈ N so b ∈ I. But then I ∈ N(b) ⊆ V .

We say that a flow ideal I of B is a monoflow ideal if τ(b) ∈ I implies b ∈ I. So
I is a monoflow ideal if and only if the iterator of B/I is one-to-one if and only if the
iterator t of the corresponding flow in Stone spaces is onto. We let Wmono ⊆ W be the
subspace of all monoflow ideals. In [Kennison, 2002], we constructed the cyclic spectrum
starting with Wmono, which was denoted by V in that paper. Since Wmono is sometimes
considerably simpler than W , it is worth showing that Lcyc ⊆ Wmono ⊆ W (which follows
by topos theory essentially because every cyclic flow has a one-to-one iterator). Here we
give a direct proof:

4.12. Proposition. Let B be any Boolean flow and let j = jcyc be the nucleus on O(W)
associated with the sublocale Lcyc. Let V ∈ Lcyc and U ∈ O(W) be given. Then U ∩
Wmono ⊆ V if and only if U ⊆ V .

Proof. Clearly, it suffices to assume U ∩Wmono ⊆ V and I ∈ U and prove I ∈ V . Since
I ∈ U and U is open, there exists b ∈ B with I ∈ N(b) ⊆ U . Let 〈b〉 be the smallest flow
ideal of B containing b and let:

I0 = {c ∈ B | (∃n ∈ N)τn(c) ∈ 〈b〉}
It is readily shown that I0 is a monoflow ideal containing b so I0 ∈ N(b) ∩ Wmono ⊆
U ∩ Wmono ⊆ V . As V is open, there exists a ∈ I0 with I0 ∈ N(a) ⊆ V . By the above
lemma, N(τn(b)) ⊆ V for all n ∈ N. But since a ∈ I0, there exists n ∈ N with τn(a) ∈ 〈b〉.
Since 〈b〉 ⊆ I we see that τn(a) ∈ I so I ∈ N(τn(a)) ⊆ V .
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5. Representation results

Suppose the Boolean flow B can be represented as the flow of all global sections of a
cyclic Boolean flow over a locale. What does this tell us about the given flow B and
the corresponding flow in Stone spaces? What if we only know that B is equivalent to a
subflow of the flow of all global sections of a cyclic Boolean flow over a locale? We present
some necessary conditions.

5.1. Notation. The natural map η′ : γ∗(B) → Bcyc corresponds, by the adjunction
between γ∗ and γ∗, to a map η̂ : B → γ∗(Bcyc). It can be shown that γ∗(Bcyc) is the set
of all global sections of Bcyc, so it is often denoted by Γ(Bcyc).

5.2. Definition. The Boolean flow B is cyclically representable if it is isomorphic
to the flow of all global sections of a cyclic Boolean flow over a locale.

We say that B is cyclically separated if it is isomorphic to a subflow of the flow of
all global sections of a cyclic Boolean flow over a locale.

5.3. Proposition. The Boolean flow B is cyclically separated if and only if η̂ : B →
γ∗(Bcyc), defined in 5.1, is one-to-one.

Proof. If η̂ is one-to-one, then it is immediate that B is cyclically separated as Bcyc is a
cyclic flow over Lcyc. Conversely, if B is flow isomorphic to a subflow of γ∗(C) where C is
a cyclic flow over some locale M , then, by adjointness, the map B → γ∗(C) corresponds
to a map γ∗

M(B) → C. Moreover, it can be shown that the subsheaf of C generated by
the image of γ∗(B) is a cyclic Boolean flow over M . So, by the universal property of Bcyc,
Theorem 3.25, the map from γ∗

M(B) → C factors through η′ : γ∗(B) → Bcyc. Evaluating
this map at the top element, 
, of M , we see that the map B → γ∗(C) factors through
B → γ∗(Bcyc) which shows that the latter map must be one-to-one.

5.4. Remark. The analogous proposition with “cyclically representable” instead of “cycli-
cally separated” does not seem to be true (at least the above argument does not extend
to that case).

5.5. Proposition. A Boolean flow is cyclically separated if the intersection of all of its
cyclic flow ideals is the zero ideal. The converse holds for finitely generated Boolean flows.

Proof. Assume that the intersection of all cyclic flow ideals of B is the zero ideal. Let Bsp
cyc

be the restriction of Bcyc to the subspace Wcyc ⊆ W. Then the obvious map B → Γ(Bsp
cyc)

is one-to-one, which shows that B is cyclically separated.

The converse readily follows from Proposition 5.3, if B is finitely generated, because
then Bcyc = Bsp

cyc.

5.6. Corollary. Let X be a flow in Stone spaces and let B = Clop(X). If for every
non-empty clopen b ⊆ X there is x ∈ b with tn(x) = x, then B is cyclically separated.
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Proof. The orbit of such an element x is a closed, cyclic subflow of X and so, by duality,
it corresponds to a cyclic quotient of B of the form B/I where I is a cyclic flow ideal.
If x ∈ b then b /∈ I so the hypotheses imply that every non-zero member of B is still
non-zero modulo at least one cyclic flow ideal.

5.7. Example. The flow Clop(Sym(S)) is cyclically separated.

Proof. We will show that this follows from the above corollary. Let b be a non-empty
clopen of Sym(S). Recall that sets of the form π−1

i (s) (for i ∈ N and s ∈ S) form a
subbase for the topology of Sym(S). It clearly suffices to assume that b is a basic clopen
of the form b =

⋂
1≤k≤n π−1

ik
(sk). We may as well assume that i1 < i2 < . . . < in. For

convenience, we let m = in. Let y ∈ b be given and let x be the periodic sequence for which
x agrees with y in all coordinates from 1 to m. That is, define x so that πj(x) = πi(y)
where 1 ≤ i ≤ m and j = i (mod m). Then tm(x) = x and x ∈ b so the result follows.

5.8. Notation. Recall that 〈b〉 denotes the smallest flow ideal of B containing the element
b ∈ B.

5.9. Definition. The Boolean flow B is weakly separated if
⋂{〈b+ τn(b)〉} = {0} for

all b ∈ B.

5.10. Proposition. A cyclically separated Boolean flow is weakly separated.

Proof. Suppose C is a cyclic flow over a locale L with top element 
. Then C(
) is the
Boolean flow of all global sections of C. Let B ⊆ C(
) be a subflow and let b, c ∈ B be
given. Suppose c ∈ ⋂{〈b + τn(b)〉} where 〈b + τn(b)〉 is the flow ideal of B generated by
b + τn(b). We have to prove that c = 0.

Let Kn be the kernel of ρT
‖b=τn(b)‖ which maps sections over 
 to sections over ‖b =

τn(b)‖. Then Kn clearly contains b + τn(B) so 〈b + τn(b)〉 ⊆ Kn. But, since C is cyclic,
we see that

∨ ‖b = τn(b)‖ = 
 and since the global section c becomes 0 when restricted
to each ‖b = τn(b)‖, it follows by the patching property that c = 0.

5.11. Notation. Recall that Ẑ, the profinite integers, is the limit of all finite quotients
Zn of Z and all group homomorphisms between them which preserve (the image of) 1 ∈ Z.

For n ∈ N we let qn : Z → Zn denote the quotient map and let pn : Ẑ → Zn denote
the projection map associated with the limit. Given ζ ∈ Ẑ and k ∈ N we say that
ζ = k (mod n) if pn(ζ) = qn(k).

If C is a cyclic Boolean flow over a locale L, then for each ζ ∈ Ẑ we define a map
τ ζ : C → C so that for c ∈ C(u), we have τ ζ(c) = τ k(c) when restricted to ‖c = τn(c)‖
and where ζ = k (mod n). Then, as shown in [Kennison, 2002], this defines an action

of Ẑ of C. It follows that Ẑ acts on the set of global sections of C. This suggests the
following definition:

5.12. Definition. Let B be a Boolean flow. Then an action α : Ẑ ×B → B is a
regular action by Ẑ if α(ζ, b) = τ k(b) (mod 〈b + τn(b)〉) whenever there exists n, k such
that ζ = k (mod n).
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5.13. Proposition.

1. A weakly separated Boolean flow admits at most one regular action by Ẑ.

2. A cyclically representable Boolean flow admits a regular action by Ẑ.

3. Let B,C be weakly separated Boolean flows which admit regular actions by Ẑ. Then
any flow homomorphism from B to C preserves the action by Ẑ.

Proof.

1. If α is such a regular action, then α(ζ, b) is determined modulo 〈b + τn(b)〉 for each
n ∈ N and, since B is weakly separated, any two elements agreeing modulo these
ideals must coincide.

2. This follows from [Kennison, 2002]. (Also see the discussion preceding the above

definition). It can readily be verified that the map α : Ẑ ×B → B is compatible

with the group operation on Ẑ by proving the required identities modulo the ideals
〈b + τn(b)〉.

3. This follows because a flow homomorphism h maps 〈b+τn(b)〉 onto 〈h(b)+τn(h(b))〉
and the actions are determined modulo these ideals.

5.14. Notation. If α : Ẑ ×B → B is a regular action on B and if B is weakly separated,
then we denote α(ζ, b) by τ ζ(b). This entails no danger of confusion, in view of:

5.15. Proposition. A regular action on a weakly separated Boolean flow extends the
action of τ in the sense that if k ∈ N ⊆ Ẑ then α(k, b) = τ k(b).

Proof. Again this follows by considering α(k, b) and τ k(b) modulo each of the ideals
〈b + τn(b)〉.

It follows that, for weakly separated Boolean flows which admit regular actions, we can
talk about transfinite iterations, τ ζ of τ , and flow homomorphisms will preserve them. If
B = Clop(X), then these flow homomorphisms τ ζ correspond, by duality, to continuous,

transfinite iterations tζ of t. (While each map tζ is continuous, the action α : Ẑ ×X → X
need not be continuous, which means that X need not be Boolean cyclic.)

5.16. Proposition. A cyclically representable Boolean flow has an iterator τ which is
one-to-one and onto.

Proof. Since −1 ∈ Ẑ, we can define τ−1 which is then an inverse for τ .
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5.17. Example. The Boolean flow Clop(Sym(S)) is not cyclically representable, as τ is
not onto (because the shift map, t : Sym(S) → Sym(S) is not one-to-one).

Suppose X is a flow in Stone spaces such that B = Clop(X) is cyclically separated but
not cyclically representable. Then, by Proposition 5.3, the map B → γ∗(Bcyc) = Γ(Bcyc)

is one-to-one but not onto. If X̂ is the flow in Stone spaces dual to the Boolean flow
Γ(Bcyc), then we have a map X̂ → X which is onto but not one-to-one. So X̂ is a kind of

flow preserving cover of X such that the iterator t̂ of X̂ is one-to-one and onto and the
maps t̂n can naturally be extended to maps t̂ζ for all ζ ∈ Ẑ. One goal of our work is to
describe these spaces X̂.

6. The Simple spectrum

It follows from Theorem 4.10 that, for finitely generated Boolean flows, the space of
maximal cyclic ideals is a discrete subspace of Wcyc. But, as we will see, the space of all
maximal flow ideals need not be discrete, not even in the finitely generated case. These
observations suggest that a more interesting spectrum would use all maximal flow ideals
(not just the cyclic ones). Our first step is to characterize flows of the form B/M , where
M is a maximal flow ideal, in a manner that extends usefully to Boolean flows over locales,
and this is done in Definition 6.5.

6.1. Notation. Let B be a Boolean flow with iterator τ . We let τ 0 denote the identity
map on B. If b ∈ B and k ∈ N, we let:

k-Exp(b) =
∨

0≤i≤k

τ i(b)

Finally, we recall that 〈b〉 denotes the smallest flow ideal of B that contains b.

6.2. Definition. A Boolean flow B is simple if it has precisely two flow ideals (which
must then be B itself and {0} and, moreover, these ideals must be different, so B must be
non-trivial, meaning that it satisfies 0 �= 1).

A flow X in Stone spaces is minimal if it has precisely two closed subflows (which
must be X itself and the empty subset and, moreover, these subflows must be distinct, so
X must be non-empty).

A flow ideal I of B is maximal if it is a maximal element of the set of all proper
flow ideals of B.

6.3. Lemma.

1. The Boolean flow B is simple if and only if B is isomorphic to a flow of the form
Clop(X) where X is a minimal flow in Stone spaces.

2. A flow ideal I ⊆ B is maximal if and only if B/I is simple.
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3. The non-trivial Boolean flow B is simple if and only if for every non-zero b ∈ B
there exists k ∈ N for which k-Exp(b) = 1.

4. If X is a flow in Stone spaces, then X is minimal if and only if for every x ∈ X the
“orbit” {tn(x) | n ≥ 0} is dense in X (recall that t0 = IdX).

Proof.

1. This follows from the duality between Boolean algebras and Stone spaces.

2. Obvious.

3. Since b is non-zero and B is simple, the flow ideal 〈b〉 must be all of B, so we must
have 1 ∈ 〈b〉. But it can readily be shown that:

〈b〉 = {a ∈ B | ∃k ∈ N a ≤ k-Exp(b)}

The result follows from this observation.

4. Obvious.

6.4. Example. Let X be the unit circle with its usual compact, connected topology and
let t : X → X rotate X through λ radians, where λ is an irrational multiple of 2π. Then
it is well-known that every orbit of X is dense so X is a minimal flow in the category
of compact Hausdorff spaces. We can use symbolic dynamics, 2.2, to approximate this
flow by a flow on a Stone space, by, for example, letting A0, A1 be closed semi-circles
of X which overlap at exactly two points. The same type of analysis that shows that
X is minimal also shows that the flow in Stone spaces, given by symbolic dynamics, is
a closed minimal subflow of Sym{0, 1}. Alternatively, we could prove this by using the
characterization of such minimal flows given below, in 6.14.

6.5. Definition. Let E be a Boolean flow over the locale L. Then E is a simple Boolean
flow over L if for every u ∈ L, with u �= ⊥, we have:

• The Boolean algebra E(u) is non-trivial (that is, 0 �= 1 in E(u)).

• For all g ∈ E(u) we have
[‖g = 0‖ ∨ ∨

k∈N{‖k-Exp(g) = 1‖}] = u.

6.6. Remark. It follows from 6.3, that a Boolean flow over a spatial locale is simple if
and only if every stalk is a simple Boolean flow.

6.7. Proposition. Let E be a Boolean flow over a locale L. Then there is a largest
sublocale Lj of L for which the restriction of E to Lj is a simple flow over L.
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Proof. Again this is a matter of defining the largest sublocale, or smallest nucleus, for
which certain equations of the form

∨{uα} = u become true, and this can be accomplished
by requiring that certain families become “coverages” (see [Johnstone, 1982, pages 57–
59]). For example, whenever E(u) is a trivial Boolean algebra (with 0 = 1) then we let u
be covered by the empty family.

Similarly, for all u ∈ L and all g ∈ E(u), we require that the family {‖g = 0‖} ∪
{‖k-Exp(g)‖ | k ∈ N} cover u.

6.8. Definition. Let (B, τ) be a Boolean flow and let B0 be the sheaf over the space of
all flow ideals of B, given in 3.5 . We define the simple spectrum of (B, τ) as Bsim,
the restriction of B0 to the largest sublocale Lsim ⊆ W for which this restriction becomes
simple.

6.9. Theorem. Let (B, τ) be a Boolean flow in Sh(1). Then Bsim is a simple flow over
Lsim. There is a localic flow morphism (η̂, γ) : (B, 1) → (Bsim, Lsim) which has a universal
property with respect to maps (λ, γ) : (B, 1) → (S, L), where S is a simple flow in Sh(L)

and λ is a sheaf epimorphism: such a map, (λ, γ) uniquely factors as (λ̂, h)(η̂, γ) through

a map (λ̂, h) for which λ̂ is an isomorphism.

Proof. The same type of argument as was used for 3.25 applies here.

In what follows, we explore some features of the simple spectrum of Clop(Sym(S)),
where S is a finite set of symbols. Our results, however, are considerably less complete
than the results we obtained for the cyclic spectra of such spaces.

6.10. Notation. From now until the end of this section, we assume that S is a given
finite set whose elements are called “symbols”. Also:

• A string of length n is an n-tuple (s1, . . . , sn) of symbols.

• If x ∈ Sym(S) is a given sequence of symbols and if s is a string of length n, then
s is a substring of x at position p (for p ≥ 0) if si = xp+i for i = 1, . . . , n. We
further say that an initial substring is a substring at position 0.

• Let s be a string of length n. By π−1(s), we mean the clopen subset of Sym(S) of
all x having s as an initial substring. Note that:

π−1(s) = π−1
1 (s1) ∩ . . . ∩ π−1

n (sn).

6.11. Lemma. Sets of the form π−1(s) form a base for the topology on Sym(S).

Proof. Recall that Sym(S) has the product topology so sets of the form π−1
n (sn) form a

subbase. So if x ∈ U ⊆ Sym(S) is given with U open, there exists a finite intersection of
these subbasic sets such that:

x ∈ π−1
n1

(an) ∩ . . . ∩ π−1
nk

(ak) ⊆ U.
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We may as well assume that n1 < n2 < . . . < nk. It is readily seen that if s is the initial
substring of x of length nk, then:

x ∈ π−1(s) ⊆ π−1
n1

(an) ∩ . . . ∩ π−1
nk

(ak) ⊆ U.

and the result follows.

6.12. Definition. Let x ∈ Sym(S) be given and let s be a string. Then:

• We say that s never appears in x if s is not a substring of x at position p for any
p ≥ 0.

• We say that s appears k-frequently in x if for all q ∈ N there exists p with
q ≤ p ≤ (q + k) such that s is a substring of x at position p.

Let A be a closed subflow of Sym(S). Then we say that:

• s is of type 0 with respect to A if s never appears in any member of A.

• s is of type k, for k > 0, with respect to A, if s appears k-frequently in every
member of A.

6.13. Notation. Let X be a flow in Stone spaces and let B = Clop(X) be the corre-
sponding Boolean flow. By the Stone Duality Theorem, flow quotients of B correspond
to closed subflows of X. So each ideal I ⊆ B corresponds to a flow quotient of B which
corresponds to a closed subflow A ⊆ X. We call A the closed subflow corresponding
to the flow ideal I. Similarly, I is the flow ideal corresponding to the closed
subflow A. The relation between I and A is indicated by:

• Given A, then I = {b | b ∩ A = ∅}.
• Given I, then A =

⋂{¬b | b ∈ I}.
6.14. Proposition. Let A be a closed, non-empty subflow of Sym(S). Then A is a
minimal subflow if and only if for every string s there exists k ∈ N ∪ {0} such that s is
of type k with respect to A.

Proof. Let I be the flow ideal corresponding to the closed subflow A. We first assume
that A is minimal, so I is a maximal flow ideal of B = Clop(Sym(S)). Let s be any
string and let b = π−1(s). By Lemma 6.3, either b ∈ I or there exists k such that
k-Exp(b) = 1 (mod I). If b ∈ I, then b ∩ A = ∅ so s can never be an initial substring
of any a ∈ A. Moreover, s cannot be a substring at position p in any a ∈ A for s would
then be an initial substring of tp(a) ∈ A. So s never appears in any member of S, and s
is of type 0 with respect to A. On the other hand, suppose that k-Exp(b) = 1 (mod I).
This means that A ⊆ k-Exp(b) so for every a ∈ A, we see that s is an initial substring of
ti(a) for some i with 0 ≤ i ≤ k. This, in turn, means that s is a substring of any a ∈ A
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at position p where 0 ≤ p ≤ k. If we apply this to tq(a) ∈ A, we readily deduce that s
appears k-frequently in a so s is of type k.

Conversely, assume that each string s is of type k with respect to A for some k ∈
N ∪ {0}. We claim that if x, y ∈ A are given, then y is in the closure of the orbit of
x, which implies that A is minimal. Let π−1(s) be a basic neighborhood of y. Then s
appears as an initial substring of y, so there exists k such that s appears k-frequently in
x. So s is a substring at some position p of x and this implies that tp(x) ∈ π−1(s), the
given neighborhood of y.

6.15. Definition. A type assignment function is a function which assigns a type
ν(s) ∈ N ∪ {0} to each string s. We say that x ∈ Sym(S) satisfies ν if whenever
ν(s) = 0 then s never appears in x and whenever ν(s) = k then s appears k-frequently in
x.

A type assignment function is consistent if it is satisfied by at least one x ∈ Sym(S).

6.16. Lemma. If ν is a consistent type assignment function and if A is the set of all
x ∈ Sym(S) which satisfy ν, then A is a closed minimal subflow.

Proof. It is obvious that if x ∈ Sym(S) satisfies ν, then so does t(x), so A is a subflow.
To show that A is closed, suppose y is in the closure of A. We claim that y satisfies ν.
Let s be a string with ν(s) = 0. Then s cannot appear as a substring of y at any position,
because, if so, the set of all z ∈ Sym(S) having s appear at that position would form a
neighborhood of y which misses A. Similarly, assume that s is a string with ν(s) = k > 0.
If s does not appear k-frequently in y, then there exists a substring r of y of length greater
than k in which s never starts to appear. But then ν(r) = 0 as no member of Sym(S) in
which r appears can have s appear k-frequently. So y has a substring, r, with ν(r) = 0
which, as shown in the previous case, contradicts the fact that y is in the closure of A.

It follows that A is closed minimal subflow in view of the previous lemma.

We next want to show that the maximal cyclic ideals of B = Clop(Sym(S)) are dense
in the family of all proper flow ideals (in the topology on W). We need some lemmas and
notation:

6.17. Lemma. The clopen subsets of Sym(S) are precisely the finite unions of sets of the
form π−1(s) where s is a string. (Note that the empty union is a finite union.)

Proof. We have previously seen sets of the form π−1(s) are a base. So each clopen
b ⊆ Sym(S), being open, is a union of such basic open sets. But, being compact, b is a
finite union of such sets.

6.18. Lemma. Every non-empty closed subflow of any flow on a Stone space contains a
closed minimal subflow.

Proof. Zorn’s Lemma.



458 JOHN F. KENNISON

6.19. Notation. We use the following notation for working with strings:

• We have defined substring of a sequence and can extend this to a substring of a
string in the obvious way. So r = (r1, . . . , rm) is a substring of s = (s1, . . . sk) if
there exists q ≥ 0 such that ri = sq+i for 1 ≤ i ≤ m (which implies that q +m ≤ k).

• If r = (r1, . . . , rm) and s = (s1, . . . sk) are strings, then the concatenation of r and
s, denoted by r ∗ s, is the obvious string

r ∗ s = (r1, . . . , rm, s1, . . . sk)

.

• If s = (s1, . . . sk) is any string, then the infinite concatenation

s∞ = s ∗ s ∗ s ∗ . . .

is the sequence x ∈ Sym(S) which has s as a substring at position p for p =
0, k, 2k, . . . nk . . .. It follows that tk(x) = x.

6.20. Lemma. Let A be a non-empty, closed subflow of Sym(S) and let b be a clopen
subset of Sym(S) such that b∩A = ∅. Then there exists y ∈ Sym(S) and p ∈ N such that
tp(y) = y and the entire orbit of y is disjoint from b.

Proof. We may as well assume that A is a closed minimal subflow of Sym(S). By Lemma
6.17, we may write b as a finite union of sets of the form π−1(s(1)) where s(1), s(2), . . . s(n)
are strings. This means that no member of A contains s(i) as a substring for 1 ≤ i ≤ n.
Let x ∈ A be given and let u be an initial substring of x of a length m which exceeds the
length of each string s(i) used in the representation of b. Find an integer p, exceeding
the length of u such that u reappears as a substring of x at position p (which is clearly
possible as u must be a string of type k for k > 0). Let r be the initial substring of x
of length p. Let r ∗ r be the concatenation of r with itself. By the choice of p, the first
p + m members of r ∗ r is an initial substring of x. It readily follows that none of the
strings s(i) is a substring (at any position) of r ∗ r, nor, therefore, of r∞. Then y = r∞ is
the required member of Sym(S).

6.21. Proposition. Let (B, τ) = Clop(Sym(S)) and let W be the space of flow ideals of
B. Let Wprop be the subspace of proper flow ideals and Wmax-cyc the subspace of maximal
cyclic flow ideals. Then Wmax-cyc is dense in Wprop.

Proof. Let I ∈ Wprop be given and let N(b) be a basic neighborhood of I where b ∈ I is
clopen. We claim that there exists a maximal cyclic ideal J ∈ Wmax-cyc with J ∈ N(b).

Let A be the closed subflow of Sym(S) which corresponds to the ideal I. Then b ∈ I
means that b∩A = ∅. By the above lemma, there exists y ∈ Sym(S) with tp(y) = y such
that b is disjoint from the orbit of y. Since this orbit is minimal and cyclic and finite, it is
a closed subflow which corresponds to a maximal cyclic ideal J . Since b is disjoint from
the orbit of y, we see that b ∈ J and so J ∈ N(b).
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