
Theory and Applications of Categories, Vol. 13, No. 15, 2004, pp. 235–251.

INTERNAL MONOTONE-LIGHT FACTORIZATION FOR
CATEGORIES VIA PREORDERS

Dedicated to Aurelio Carboni on the occasion of his sixtieth birthday

JOÃO J. XAREZ

Abstract. It is shown that, for a finitely-complete category C with coequalizers of
kernel pairs, if every product-regular epi is also stably-regular then there exist the reflec-
tions (R)Grphs(C) → (R)Rel(C), from (reflexive) graphs into (reflexive) relations in
C, and Cat(C) → Preord(C), from categories into preorders in C. Furthermore, such a
sufficient condition ensures as well that these reflections do have stable units. This last
property is equivalent to the existence of a monotone-light factorization system, provided
there are sufficiently many effective descent morphisms with domain in the respective
full subcategory. In this way, we have internalized the monotone-light factorization for
small categories via preordered sets, associated with the reflection Cat → Preord,
which is now just the special case C = Set.

1. Introduction

Monotone-light factorization of morphisms in an abstract category C, with respect to a
full reflective subcategory X , was studied by A. Carboni, G. Janelidze, G.M. Kelly, and
R. Paré in [2].

According to [2], the existence of such factorization requires strong additional con-
ditions on the reflection C → X , which hold in the (Galois theory of the) adjunction
between compact Hausdorff and Stone spaces, needed to make the classical monotone-
light factorization of S. Eilenberg (cf. [4]) and G.T. Whyburn (cf. [9]) a special case of
the categorical one.

In fact, A. Carboni and R. Paré studied in categorical terms the classical monotone-
light factorization, relating this factorization system with the reflection CompHaus →
Stone of compact Hausdorff spaces into Stone spaces. But the connection between ad-
junctions and factorization systems was already known by M. Kelly (from [3]), and sur-
prisingly the (reflective) factorization system associated to CompHaus → Stone did
not coincide with the one of Carboni and Paré. The connection between the two distinct
factorization systems was to be made by the categorical Galois theory of G. Janelidze: the
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right-hand class of the former factorization system (E′, M∗) is the class of all coverings,
while the right-hand class of the latter (E, M) only includes the trivial coverings.

In our Ph.D. thesis we showed that monotone-light factorization also does exist for
C = Cat, the category of all categories, X being the category Preord of preordered sets
(cf. [10]). A crucial observation here is that the reflection Cat → Preord has stable
units in the sense of [2].

What we do in our present work is to internalize this reflection and associated mono-
tone-light factorization system. For a given finitely-complete category C with coequalizers
of kernel pairs, we start with the categories of internal categories Cat(C) and internal pre-
orders Preord(C). Then, we give sufficient conditions for the existence of a full reflection
Cat(C) → Preord(C) with stable units, and for the existence of a monotone-light factor-
ization associated.

Hence, the reflection Cat → Preord turns out to be a special case of our construction,
when C = Set. In the process, we also found that having stable units is necessary for the
existence of a monotone-light factorization, in case a certain very weak condition holds,
as it happens with both Cat and CompHaus (see Corollary 6.2).

Notice that there are few known similar situations where there is a (categorical)
monotone-light factorization. This work provides an helpful frame for the search of new
ones.

In fact, our results are also valid for internal (reflexive) graphs, which may be reflected
onto the internal (reflexive) relations. This corresponds to the reflection (R)Grphs →
(R)Rel for the case C = Set, presented below in Example 6.5.

2. The reflection Cat(C) → CEqRel(C) and related ones

For any finitely-complete category C, there is the category Cat(C) of categories in C. That
is, the category whose objects C are the diagrams in C of the form

C = C1 ×C0 C1

�

�

�π1

γ

π2

C1

�

�

�d1

i

d0

C0 (2.1)

satisfying the conditions

d0i = 1C0 = d1i, d0π1 = d1π2, d0γ = d0π2, and d1γ = d1π1,

where the square represented by the second equation is a pullback and the composition
operation γ satisfies the associative and unit laws. The obvious morphisms f = (f1, f0) :
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C → D are called internal functors and are displayed in the commutative diagram

B1 ×B0 B1

�

�

�π1

γ

π2

B1

�

�

�d1

i

d0

B0 .

f1 × f1 f1 f0

� ��

C1 ×C0 C1

�

�

�π1

γ

π2

C1

�

�

�d1

i

d0

C0

There is also the adjunction

D � H : C → Cat(C), (1)

whose left adjoint takes C in Cat(C) to D(C) = C0 in C, forgetting all the other structure
of C (see diagram 2.1). The right adjoint takes C0 in C to the object

H(C0) = C0 × C0 × C0

�

�

�π1

γ

π2

C0 × C0

�

�

�d1

i

d0

C0

in Cat(C), wherein:

• the morphisms d0, d1 and i =< 1C0 , 1C0 > are respectively the product projections
and the diagonal map in the product diagram

C0 C0 × C0 C0 ;

C0

�

�
�

�
�

��

1C0

�
�

�
�

��

1C0
i

d0 d1� �

• the morphisms π1 and π2 are the projections in the pullback diagram

C0 × C0

C0 × C0 × C0

C0 ;

C0 × C0

π1

π2

d1

d0 �

�

� �
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• the morphism γ = d0 × d1 is the one in the product diagram

C0 × C0

�

C0

d0

�

� π2

d0
C0 × C0

C0 × C0 × C0

C0 .

C0 × C0

γ

π1

d1

d1 �

�

� �

Hence, the adjunction 1 can be thought as the full reflection

Cat(C) → CEqRel(C), (2)

from categories in C into connected equivalence relations in C, such that its unit is displayed
by

δC = (dC , 1C0) : C → D(C), (3)

for each category C in C, where dC =< d0, d1 > is the morphism pictured in the product
diagram

C0 C0 × C0 C0 .

C1

�

�
�

�
�

��

d1

�
�

�
�

��

d0
dC

� � (2.2)

Moreover, it is easy to check that its reflector D : Cat(C) → CEqRel(C) is a left exact
functor.

Therefore, one knows from [3] and [2] that the factorization system (E, M) associated
with the full reflection 2 is stable. Meaning that, the class E of vertical morphisms
coincides with the class E′ of stably-vertical morphisms in Cat(C); and so also the class
M of trivial coverings coincides with the class M∗ of coverings in Cat(C). In other words,
the reflective factorization system coincides with the monotone-light factorization system
(E′, M∗), where both classes are stable under pullbacks in Cat(C).

The class E = E′ consists of those morphisms f : C → B in Cat(C) such that
D(f) = (f0×f0, f0) is an isomorphism in CEqRel(C), i.e., of those morphisms f = (f1, f0)
in Cat(C) such that f0 : C0 → B0 is an isomorphism in C.

And M = M∗ consists of those morphisms f = (f1, f0) : C → B in Cat(C) such that
the commutative diagram

B

C

D(B)

D(C)

f

δC

D(f)
δB �

�

� �
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is a pullback in Cat(C). Hence, since pullbacks are calculated componentwise in Cat(C),
a morphism f = (f1, f0) in Cat(C) belongs to M = M∗ if and only if the commutative
diagram

B1

C1

B0 × B0

C0 × C0

f1

dC

f0 × f0

dB �

�

� �

is a pullback in C.
The functor D : Cat(C) → CEqRel(C) and the adjunction unit δ : 1Cat(C) → HD

can be thought respectively as an endofunctor on Cat(C) and a natural transformation
from 1Cat(C) to that endofunctor D.

In this way, the fact that CEqRel(C) is a reflective full subcategory of Cat(C) is
expressed equivalently by stating that the pair (D, δ) is an idempotent pointed endofunctor
of Cat(C), in the sense of [7], i.e., (D, δ) is well-pointed (Dδ = δD, see [5]) and δD is an
iso. The same reasoning is also valid for the simpler cases of graphs in C and reflexive
graphs in C, when diagram 2.1 is reduced respectively to

C = C1

�

�d1

d0

C0

and

C = C1

�

�

�d1

i

d0

C0 ,

with d0i = 1C0 = d1i.
For these two simpler cases we have therefore the full reflections

D � H : C → Grphs(C) (4)

and
D � H : C → RGrphs(C), (5)

from the functor categories of graphs and reflexive graphs in C, respectively.
In the next, we shall show that, for the last two reflections 4 and 5, the natural

transformation δ : 1 → D can be factorized as

δ = µη : 1 → I → D,

with (I, η) a well-pointed endofunctor, i.e., Iη = ηI.
The same happens to be true for the reflection 1 under a certain sufficient condition,

which implies (for all the three reflections) that (I, η) is idempotent and gives rise to
monotone-light factorization systems.
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3. The well-pointed endofunctors (I, η) of (R)Grphs(C) and Cat(C)

Throughout the rest of the paper C denotes a finitely-complete category with coequalizers
of kernel pairs.

We shall also use the notation (R)Grphs(C) when stating results that are valid both
for the category Grphs(C) of graphs in C and for the category RGraphs(C) of reflexive
graphs in C. The translation from one realm to another shall always be trivial.

Let
ker(dC) = (p1, p2)

be the kernel pair of the morphism dC : C1 → C0 × C0 in diagram 2.2.
And let

eC = coker(p1, p2) : C1 → I(C1)

be the coequalizer of p1 and p2, as in the diagram

I(C1)

�
�

�
�

���

�
�

�
�

���

�
�

�
�

���
C0 × C0 ,

dC
mC

C1

�

eC

C1 ×C0×C0 C1
�

�

p2

C1
�

eC

p1

dC
(3.1)

where mC : I(C1) → C0 × C0 is the unique morphism such that dC = mCeC .
We shall call product-regular epi of the graph C in C such a morphism eC : C1 → I(C1)

in C.
We will denote by I(d0) and I(d1) the components of mC =< I(d0), I(d1) > in the

product diagram

C0 C0 × C0 C0 .

I(C1)

�

�
�

�
�

��

I(d1)
�

�
�

�
��

I(d0)
mC

� �

Next Lemma 3.1 is just an easy consequence of the fact that any kernel pair (p1, p2) is
always the kernel pair of its coequalizer e = coker(p1, p2). It helps to prove the following
Proposition 3.2, which introduces a certain endofunctor I on the category of (reflexive)
graphs in C (and such that it may induce a reflection into the full subcategory of (reflexive)
relations in C, as we shall see in next section 4).

3.1. Lemma. If mCeCf = mCeCg, with mC and eC the morphisms in diagram 3.1,
then eCf = eCg, for any morphisms f and g in C.
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3.2. Proposition. There is a well-pointed endofunctor (I, η) of (R)Grphs(C),
in the sense of [7] (i.e., a functor I : (R)Grphs(C) → (R)Grphs(C) and a natural
transformation η : 1(R)Grphs(C) → I with ηI = Iη), such that:

(a) the functor I : (R)Grphs(C) → (R)Grphs(C) takes a general morphism of (reflex-
ive) graphs f = (f1, f0) : C → B to I(f) = (I(f1), f0) : I(C) → I(B);

(b)

I(C) = I(C1)

�

�

�I(d1)
eCi

I(d0)

C0 and I(B) = I(B1)

�

�

�I(d1)
eBi

I(d0)

B0

are obtained through the process described above;

(c) the morphism I(f1) in C is the one uniquely determined in the diagram

C1 ×C0×C0 C1 �

�
p1

p2

C1

�
B1

f1

�

�eC

eB
I(B1)

I(C1)

I(f1)
�

�

�mC

mB
B0 × B0 ;

C0 × C0

f0 × f0

�
(3.2)

(d) the natural transformation η : 1(R)Grphs(C) → I is displayed by

ηC = (eC , 1C0) : C → I(C),

for each (reflexive) graph

C = C1

�

�

�d1

i

d0

C0

in C.

Proof. We only have to show that:

(i) I(f1) is indeed uniquely determined in the diagram 3.2;

(ii) ηI(C) = I(ηC), for every (reflexive) graph C in C.

(i) As mBeBf1 = (f0 × f0)mCeC , we have that (mBeBf1)p1 = (mBeBf1)p2.

Which implies, by the previous Lemma 3.1, that (eBf1)p1 = (eBf1)p2.
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(ii) First remark that the diagram

C1

�

I(C1)

eC

�

�eC

eI(C)
I(I(C1))

I(C1)

I(eC)
�

is commutative, since it is an instance of the left square in diagram 3.2.

Hence, I(eC) = eI(C) because eC is an epimorphism.

Therefore,

I(ηC) = I(eC , 1C0) = (I(eC), 1C0) = (eI(C), 1C0) = ηI(C),

for every (reflexive) graph C in C.

3.3. Proposition. If, for every product-regular epi eC in C, the obvious morphisms
eC ×C0 eC : C1 ×C0 C1 → I(C1) ×C0 I(C1) and eC ×C0 eC ×C0 eC : C1 ×C0 C1 ×C0 C1 →
I(C1)×C0 I(C1)×C0 I(C1) are all regular epis in C, then there is a well-pointed endofunctor
(I, η) of Cat(C) such that conditions (a), (b), (c) and (d), at the statement of the previous
Proposition 3.2, are valid (when one considers of course only the reflexive graph part of
internal categories in C).

In particular, if we just demand that every product-regular epi eC : C1 → I(C1) is a
stably-regular epi in C (i.e., that any pullback p∗(eC) of it along any morphism p : E →
I(C1) in C is a regular epi), there is also such a well-pointed endofunctor (I, η) of Cat(C).

Proof. We still need to show that:

(1) for every category C in C (see diagram 2.1), there exists a unique morphism I(γ) :
I(C1) ×C0 I(C1) → I(C1) making the square in the following diagram

�

�
p′1

p′2
C1 ×C0 C1

�
C1

γ

�

�eC ×C0 eC

eC
I(C1)

I(C1) ×C0 I(C1)

I(γ)
�

�
C0 × C0

dC

mC

									


commute, where (p′1, p
′
2) = ker(eC ×C0 eC) is the kernel pair of eC ×C0 eC ;
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(2) the diagram

I(C) = I(C1) ×C0 I(C1)

�

�

�I(π1)
I(γ)

I(π2)

I(C1)

�

�

�I(d1)
eCi

I(d0)

C0

is a category in Cat(C), wherein I(π1) and I(π2) denote the obvious pullback pro-
jections.

(1) We observe then: dCγ =< d0, d1 > γ

=< d0γ, d1γ >

=< d0π2, d1π1 > (since C is a category in C)

=< I(d0)eCπ2, I(d1)eCπ1 >

=< I(d0)I(π2)eC ×C0 eC , I(d1)I(π1)eC ×C0 eC >

=< I(d0)I(π2), I(d1)I(π1) > eC ×C0 eC

⇒ dCγp′1 = dCγp′2

⇒ eCγp′1 = eCγp′2 (by Lemma 3.1)

⇒ there exists one and only one morphism I(γ) such that

I(γ)eC ×C0 eC = eCγ,

since eC ×C0 eC is a regular epi by hypothesis.

(2) We have by definition that

I(d0)(eCi) = 1C0 = I(d1)(eCi) and I(d0)I(π1) = I(d1)I(π2).

Then, we observe: mCI(γ)eC ×C0 eC = dCγ

=< d0π2, d1π1 > (since C is a category in C)

=< I(d0)I(π2), I(d1)I(π1) > eC ×C0 eC

⇒ mCI(γ) =< I(d0)I(π2), I(d1)I(π1) >, since by hypothesis eC ×C0 eC is an epi.

So, there is only left to prove that I(γ) satisfies the associative and unit laws.
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The unit law holds for I(γ) if in the following obvious commutative diagrams

C0 ×C0 C1

�
C1 ×C0 C1

i × 1

�

�

�

1 ×C0 eC

eC ×C0 eC

eC

I(C1) ×C0 I(C1)

C0 ×C0 I(C1)

I(i) × 1
�

�
C1

γ I(γ)
�

I(C1)

C1 ×C0 C0

�
C1 ×C0 C1

1 × i

�

�

�

eC ×C0 1

eC ×C0 eC

eC

I(C1) ×C0 I(C1)

I(C1) ×C0 C0

1 × I(i)
�

�
C1

γ I(γ)
�

I(C1)

where I(i) stands for eCi, the arrows 1 ×C0 eC and eC ×C0 1 are regular epis.

But this is indeed so because 1 ×C0 eC and eC ×C0 1 are isomorphic to eC , as it is
easy to check by drawing the respective pullback diagrams.

The associative law holds for I(γ) if, in the obvious commutative diagram

C1 ×C0 C1 ×C0 C1

�
C1 ×C0 C1

γ × 1
�

1 × γ

�
C1

γ

�

�

�

eC ×C0 eC ×C0 eC

eC ×C0 eC

eC

I(C1) ×C0 I(C1)

I(C1) ×C0 I(C1) ×C0 I(C1)

1 × I(γ)
�

I(γ) × 1
�

I(γ)
�

I(C1) ,

where γ(1×γ) = γ(γ×1) because C is a category in C, the morphism eC×C0eC×C0eC

is a regular epi.

At last, it is easy to check that if eC is a stably-regular epi then eC ×C0 eC and
eC ×C0 eC ×C0 eC are also stably-regular epis (one should use the well-known fact
that the class of stably-regular epis is closed under composition).

4. The reflections (R)Grphs(C) → (R)Rel(C) and Cat(C) → Preord(C)

In this section we are going to investigate under which conditions the well-pointed end-
ofunctors of the last section become reflections into the relations and preorders in C,
respectively.



INTERNAL MONOTONE-LIGHT FACTORIZATION FOR CATEGORIES VIA PREORDERS245

4.1. Proposition. Consider the pullback diagram

I(C1) ×C0×C0 I(C1) �

�

I(C1)

I(C1) C0 × C0 ,
mC

mCp′1

p′2

C1

�

�

eC

C1 ×C0×C0 C1
�

�
�

�
��

eC ×C0×C0 eC

�

�

p2

C1
� �

eC

p1

(4.1)

where the morphisms p1, p2, eC and mC are those in diagram 3.1.
Then, the following three conditions are equivalent:

(a) the morphism mC : I(C1) → C0 × C0 is monic in C;

(b) the morphism eC ×C0×C0 eC : C1 ×C0×C0 C1 → I(C1) ×C0×C0 I(C1) is epi in C;

(c) the morphism eC ×C0×C0 eC : C1 ×C0×C0 C1 → I(C1) ×C0×C0 I(C1) is a regular epi
in C.

In particular, if the product-regular epi eC : C1 → I(C1) is a stably-regular epi in C
then the morphism mC : I(C1) → C0 × C0 is monic in C.

Proof. If mC is monic in C then the pullback projections p′1 and p′2 in diagram 4.1
are isos, since they constitute its kernel pair. Therefore, we have that eC ×C0×C0 eC is for
instance isomorphic to eCp2. It follows that eC ×C0×C0 eC is a regular epi in C, since eC is
a regular epi and p2 is a split epi.

On the other way, let us assume that eC ×C0×C0 eC is an epimorphism. By Lemma 3.1
we know that eCp2 = eCp1, so that the pullback projections p′1 and p′2 are identical. It
follows that mC is monic in C.

Finally, we are going to suppose that eC : C1 → I(C1) is a stably-regular epi. Observe
then that eC×C0×C0 eC is the composite of the morphisms 1×C0×C0 eC : I(C1)×C0×C0 C1 →
I(C1) ×C0×C0 I(C1) and eC ×C0×C0 1 : C1 ×C0×C0 C1 → I(C1) ×C0×C0 C1. Each of these
morphisms is a pullback of eC , and therefore stably-regular in case eC is so.

The next theorem follows trivially from the above considerations.

4.2. Theorem. The well-pointed endofunctors given at Proposition 3.2 and Proposition
3.3 induce respectively the reflections (R)Grphs(C) → (R)Rel(C), from the category of
(reflexive) graphs in C to its full subcategory of (reflexive) relations in C, and Cat(C) →
Preord(C), from the category of categories in C to its full subcategory of preorders in C,
if and only if for every product-regular epi eC : C1 → I(C1) in C the associated morphism
eC ×C0×C0 eC in diagram 4.1 is epi in C.

In particular, for the existence of these reflections it is sufficient that all product-regular
epis are stably-regular epis in C.
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5. The stabilization of (R)Grphs(C) → (R)Rel(C) and
Cat(C) → Preord(C)

The following Proposition 5.1 states that if every product-regular is stably-regular then
the reflections (R)Grphs(C) → (R)Rel(C) and Cat(C) → Preord(C) do have stable
units in the sense of [3] and [2].

5.1. Proposition. Every unit morphism ηC = (eC , 1C0) : C → I(C) is stably-
vertical in (R)Grphs(C) or Cat(C) (in the sense of [7]; see section 2), provided that all
product-regular epis eB : B1 → I(B1) are stably-regular in C.

Proof. We have to show that any pullback g∗(ηC) = (g∗
1(eC), g∗

0(1C0)) : P → B of
ηC = (eC , 1C0) : C → I(C), along any morphism g = (g1, g0) : B → I(C), is vertical.

As pullbacks in (R)Grphs(C) and Cat(C) are calculated pointwise, the question
amounts to ask if the morphism I(g∗

1(eC)) in the following diagram

P1

�
B1

g∗
1(eC)

�

�eP

eB
I(B1)

I(P1)

I(g∗
1(eC))

�
�

�mP

mB
B0 × B0

P0 × P0

g∗
0(1C0) × g∗

0(1C0)
�

(5.1)

is invertible in C.
Remark that diagram 5.1 is analogous to diagram 3.2 and that within it:

• g∗
1(eC) stands for the pullback of eC along g1 : B1 → I(C1) in C;

• g∗
0(1C0) is the pullback of the identity morphism 1C0 along g0 in C, and so is an iso

in C as well as g∗
0(1C0) × g∗

0(1C0);

• P1 = B1 ×I(C1) C1 and P0
∼= B0.

We then observe:
the morphisms g∗

1(eC), eB and eP are stably-regular epis in C ⇒
(since the class of stably-regular epis is known to be closed under composition) the

morphisms eBg∗
1(eC) and eP are stably-regular epis in C ⇒

(since eBg∗
1(eC) = I(g∗

1(eC))eP ) the morphisms I(g∗
1(eC))eP and eP are stably-regular

epis in C ⇒
(since the stably-regular epis are known to have the strong right cancellation property)

the morphism I(g∗
1(eC)) is a stably-regular epi.

Furthermore, I(g∗
1(eC)) is also monic in C, since mBI(g∗

1(eC)) ∼= mP and mP : I(P1) →
P0 × P0 is monic in C by Proposition 4.1. Being simultaneously monic and regular epi,
the morphism I(g∗

1(eC)) must be invertible in C.
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The fact that both reflections (R)Grphs(C) → (R)Rel(C) and Cat(C) → Preord(C)
have stable units, is known to induce respectively a reflective factorization system on
(R)Grphs(C) → (R)Rel(C) and Cat(C) → Preord(C) (cf. [2]).

Corollary 5.2 singles out the already stated consequences of product-regular epis being
as well stably-regular.

5.2. Corollary. If all product-regular epis are as well stably-regular epis in C, then
there are reflections (R)Grphs(C) → (R)Rel(C) and Cat(C) → Preord(C), from the
category of (reflexive) graphs to the category of relations in C and from the category of
categories to the category of preorders in C, which do have stable units (in the sense of
[3] and [2]). Therefore these reflections induce reflective factorization systems (E, M) on
(R)Grphs(C) and Cat(C) such that (cf. [2]):

• E is the class of vertical morphisms, in the sense of [7];

• M is the class of trivial coverings, in the sense of categorical Galois theory.

5.3. Examples. If C is a topos (for instance, C = Set), an abelian category (C =
Ab), Barr-exact like C = Grps, or only regular (with finite limits!), then C is in the
conditions of last Corollary 5.2. Therefore, in all these examples, there are reflections
(R)Grphs(C) → (R)Rel(C) and Cat(C) → Preord(C) with stable units: indeed, in all
these cases, regular epimorphisms are also stably-regular.

6. The monotone-light factorization systems for the reflections
(R)Grphs(C) → (R)Rel(C) and Cat(C) → Preord(C)

In this section we shall be interested in sufficient conditions for the existence of monotone-
light factorization systems (E′, M∗) associated with the reflections of last section.

E′ denotes the class of stably-vertical morphisms, and M∗ the class of coverings, either
in (R)Grphs(C) or in Cat(C).

A morphism f = (f1, f0) : C → B belongs to M∗ if and only if there exists an effective
descent morphism (abbr. e.d.m.) p = (p1, p0) : E → B such that the pullback p∗(f) of f
along p is in the class of trivial coverings M.

We start by recalling the main result of [2], and then derive from it a corollary giving
some conditions under which the existence of a monotone-light factorization system can
be identified with the stable units property.

6.1. Theorem. [2] Let A be a finitely-complete category and (E, M) a factorization
system on A. Then, the pair (E′, M∗), obtained by simultaneously stabilizing E and local-
izing M is a factorization system if and only if every morphism α : A → B in A is locally
stable (i.e., there is an e.d.m. p : E → B in A such that, in the (E, M)-factorization
p∗(α) = me, of the pullback p∗(α) : E ×B A → E of α along p, the morphism e belongs to
E′).
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6.2. Corollary. Let A be a finitely-complete category, X a full reflective subcategory
of A, and (E, M) the prefactorization system on A associated to X (cf. [2]).

Consider now the following two hypothesis (1), (2) and the two statements (a), (b):

(1) the unique morphism 1 : 1 → 1 between terminal objects in A is projective with
respect to effective descent morphisms (i.e., for every e.d.m. p : E → 1 there is a
morphism q : 1 → E in A such that 1 = pq);

(2) for each object B in A, there is an object E in X and an e.d.m. p : E → B from E
to B in A;

(a) (E, M) and (E′, M∗) are factorization systems;

(b) the reflection A → X has stable units (in the sense of [3] and [2]).

If (1) holds then (a) implies (b).
If (2) holds then (b) implies (a).
Remark also that:

• under hypotheses (1) and (2) the statements (a) and (b) are equivalent;

• the monotone-light factorization system (E′, M∗) may coincide with the reflective
one (E, M), being therefore crucial to establish whether the class of morphisms E is
stable under pullbacks or not.

Proof. We shall first prove that under hypothesis (1) the statement (a) implies (b).
The reader should refer to the following pullback diagram in A:

A

�
HI(A)

ηA

�

�
f

E × A

π1

��
1

!HI(A)

E

� A

�
� 1 .

p

π2

!A

The unique morphism !A, from any object A to the terminal object 1 in A, can be
factorized through the unit morphism ηA as

!A =!HI(A)ηA : A → HI(A) → 1,

where H and I denote respectively the inclusion and the reflector functor.
We know that ηA is vertical, i.e., it is in E; and that !HI(A) is a trivial covering, i.e., it

is in M, since
!HI(A) = H(!I(A)) : HI(A) → H(1) = 1.
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By the preceding Theorem 6.1, there is an e.d.m. p : E → 1 such that the (E, M)-
factorization of the product projection π1 : E × A → A is stable, i.e., π1 = me with
e a stably-vertical morphism (e ∈ E′). But then, the pullback f ∗(π1) of π1 along the
morphism f : 1 → E such that 1 = pf (f exists by hypothesis (1)), also has a stable
(E, M)-factorization (M and E′ are both pullback stable classes).

Finally, remark that the morphism f ∗(π1) is isomorphic to !A : A → 1. Therefore, as
the (E, M)-factorization is unique up to isomorphism, we conclude that ηA is a stably-
vertical morphism.

In order to prove that under hypothesis (2) the statement (b) implies (a), we consider
for any morphism α : A → B in A the pullback diagram

E

E ×B A

B ,

A

π1 α

p

π2

�

�

� �

where p is an e.d.m. such that E is in X (it exists by hypothesis (2)).
The projection π1 in the previous diagram can be factorized through the unit morphism

ηE×BA as
π1 = π′

1ηE×BA : E ×B A → HI(E ×B A) → E.

Hence, as π′
1 belongs to M and ηE×BA is stably-vertical by statement (b), we just

proved that every morphism α : A → B in A is locally stable (cf. Theorem 6.1). Since
the reflection has stable units, it follows that (E, M) is a factorization system (cf. [2]).

Now, we can state, in the next Corollary 6.3, sufficient conditions for the existence of
monotone-light factorization systems on (R)Grphs(C) and Cat(C).

Parentheses will be used to state simultaneously the three cases.

6.3. Corollary. There is a full reflection (R)Grphs(C) → (R)Rel(C) (Cat(C) →
Preord(C)) with stable units, and giving rise to a monotone-light factorization system on
(R)Grphs(C) (Cat(C)), provided the following two conditions hold:

(a) all product-regular epis are stably-regular epis in C;

(b) for each (reflexive) graph (category) B in C there is respectively a (reflexive) relation
(category) E in C and an e.d.m. p = (p1, p0) : E → C in (R)Grphs(C) (Cat(C))
from E to C.

6.4. Remark. The morphism p = (p1, p0) is an e.d.m. in (R)Graphs(C) in case p0

and p1 are effective descent morphisms in C.
For the case of reflexive graphs demanding that p0 and p1 are effective descent mor-

phisms in C amounts to ask the first component p1 of p to be an e.d.m. in C.
In effect, being p1, d′

0 and d0 effective descent morphisms, p0d0 = d′
0p1 is an e.d.m..

Hence, p0 must also be an e.d.m., by the strong right cancellation property for effective
descent morphisms.
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6.5. Example. For C = Set we have that:

• Cat(Set) = Cat, the category of all small categories;

• Preord(Set) = Preord, the category of preordered sets;

• (R)Grphs(Set) = (R)Grphs, the category of (reflexive) graphs;

• (R)Rel(Set) = (R)Rel, the category of (reflexive) relations.

The reflection Cat → Preord was studied in [10]. There, we concluded that it verifies
hypotheses (1) and (2) of Corollary 6.2, and that it has stable units. The monotone-light
factorization system associated was also shown to be non-trivial, i.e., (E′, M∗) �= (E, M).

Being (R)Grphs a topos, its effective descent morphisms coincide with the epi-
morphisms, i.e., with surjections on arrows. Then, it is easy to verify that hypothe-
ses (1) and (2) of Corollary 6.2 hold for the reflection (R)Grphs → (R)Rel. Us-
ing the same techniques of [10] for Cat → Preord, one concludes that the reflection
(R)Graphs → (R)Rel also has stable units, and one easily characterizes the classes E′

and M∗ of morphisms in (R)Graphs with respect to this reflection:

• a morphism α : A → B in (R)Graphs is stably-vertical (α ∈ E′) if and only if it is
bijective on objects (the vertices!) and surjective on arrows;

• a morphism α : A → B in (R)Graphs is a covering (α ∈ M∗) if and only if it is
faithful (on arrows!).

In fact, the reflection (R)Grphs → (R)Rel is in every aspect an extension of the studied
reflection Cat → Preord, and so we shall give no further details.

We want also to mention the counter-example corresponding to the reflection
RGrphs → Preord. Which although admissible (also called semi-left-exact), and satis-
fying hypotheses (1) and (2) of Corollary 6.2, has not stable units, and therefore it does
not have a monotone-light factorization system.
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