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ON VON NEUMANN VARIETIES

To Aurelio Carboni, on his sixtieth birthday.

F. BORCEUX AND J. ROSICKÝ

Abstract. We generalize to an arbitrary variety the von Neumann axiom for a ring.
We study its implications on the purity of monomorphisms and the flatness of algebras.

Introduction

First, let us fix the context and the notation of this paper and review some notions that
we need (see [2]). Let us mention at once that through the paper “quotient” means always
“regular quotient” (coequalizer of two morphisms) and “projective” means always “regular
projective” (projective with respect to regular quotients). As usual, given a category V
with filtered colimits, an object M ∈ V is finitely presentable when the representable
functor V(M,−) preserves filtered colimits.

• V is a variety, that is, the category of models of a many sorted algebraic theory.
A variety is always a locally finitely presentable, regular and exact category. Its
objects are also referred to as “algebras”.

• P is the full subcategory of finitely presentable projective objects in V . This category
P is Cauchy complete (i.e. every idempotent splits) and is closed in V under finite
coproducts. The dual category of P is the so-called “canonical theory” of V (see
[1]): V is equivalent to the category of finite product preserving functors Pop ����������������

��
������������������ Set,

where Set indicates the category of sets.

• F is the full subcategory of all finitely presentable objects in V . This category F
is closed in V under finite colimits and every object of F is the coequalizer of two
morphisms in P. The category V is also equivalent to the category of finite limit
preserving functors Fop ����������������

��
������������������ Set and every object in V is the colimit of a filtered

diagram in F .
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c© F. Borceux and J. Rosický, 2004. Permission to copy for private use granted.

5



6 F. BORCEUX AND J. ROSICKÝ

• Flat(V) is the full subcategory of flat objects in V , that is, those objects which can
be presented as the colimit of a filtered diagram in P, not just in F (see [14]).

Let us also recall that an object X of V is finitely generated when the representable
functor V(X,−) preserves filtered unions of subobjects; this is equivalent to X being a
regular quotient of some object of F . For the sake of clarity, we reserve

• letters A, B, C, . . . for the objects of P,

• letters K, L, M , . . . for the objects of F ,

• letters P , Q, R, . . . for objects of Flat(V),

• letters . . . , X, Y , Z for arbitrary objects of V .

Finally, a monomorphism s : X ����������������
��

������������������ Y of V is pure when, given a commutative square
h ◦ s = f ◦ g with M,N ∈ F ,

M ����������������
��

������������������

f
N

g

����������������
��

����������������
��

��������������������������������������������������
�������

ϕ

����������������
��

����������������
��

h

X ����������������
��

������������������s Y

there exists a morphism ϕ such that ϕ ◦ f = g. This is equivalent to s being a filtered
colimit of split monomorphisms (monomorphisms with a retraction) (see [2] and [15]).

In the case of the variety V of left modules over a ring R with unit, all categorical
notions recalled above are equivalent to the usual algebraic ones (see [2], [15] and [10]).
In particular, a left R-module Z is flat iff for every monomorphism f : X ����������������

��
������������������

����������������
��

������������������ Y of right
R-modules, the mapping

X ⊗R Z
f ⊗ Z

����������������
��

������������������ Y ⊗R Z

is still injective. A monomorphism f : X ����������������
��

������������������ Y of left R-modules is pure iff for every right
R-module Z, the mapping

Z ⊗R X
Z ⊗ f

����������������
��

������������������ Z ⊗R Y

is still injective.
For a ring R with unit, the following conditions are well-known to be equivalent (see

[16]):

1. ∀r ∈ R ∃s ∈ R r = rsr;

2. every left R-module is flat;

3. every monomorphism of left R-modules is pure;

4. every finitely generated left ideal of R is a direct summand.
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Of course the result could be stated equivalently for right R-modules, since the first
condition is left-right symmetric. Such rings are called von Neumann regular rings. Let
us recall that a category of modules is abelian: in particular it is additive, regular and
even exact; every epimorphism is regular and every monomorphism is regular; retracts
coincide with direct summands.

The main purpose of this paper is to generalize these considerations to the case of an
arbitrary variety, by investigating the force of the von Neumann axiom in P or in F . Of
course the von Neumann axiom makes obvious sense in every category:

∀r : A → B ∃s : B → A r = r ◦ s ◦ r.

We shall prove in particular that the von Neumann axiom in F is equivalent to every object
of V being flat and every monomorphism in V being pure, generalizing so the situation
for modules. On the other hand, the von Neumann axiom in P is equivalent to every
subobject of a flat object being pure and is further equivalent to every finitely generated
subobject of an object in P being a retract. The stronger property that every finitely
generated subobject of an object in F (not just in P) is a retract is in fact equivalent to
every subobject in V being pure.

In the abelian case, the situation recaptures even more flavor of the classical case of
modules. The flatness of every object is now equivalent to the purity of every monomor-
phism and is further equivalent to the von Neumann axiom in P; this forces P = F . As a
consequence, the classical von Neumann axiom on a ring R implies the same axiom in the
whole category of finitely presentable left (or right) R-modules. This was proved by B.
Stenström (see [17], even for Grothendieck categories). Let us recall that abelian varieties
are precisely the categories of additive functors Add[C, Ab] where C is a small additive
category.

Finally, we investigate also conditions under which the category Flat(V) of flat objects
is reflective in V : this is equivalent to the canonical theory Pop having finite limits, not
just finite products. We consider also the case where Flat(V) is merely weakly reflective
in V . We conclude with some examples and counterexamples.

1. Closedness properties of F
As recalled in the introduction, the category P is closed in V under finite coproducts, thus
the inclusion P ⊆ V preserves and reflects finite coproducts. Analogously F is closed in
V under finite colimits, thus the inclusion F ⊆ V preserves and reflects finite colimits.
This implies at once

1.1. Proposition. The inclusion F ⊆ V preserves and reflects epimorphisms.

Proof. In an arbitrary category, a morphism f : M ����������������
��

������������������ N is an epimorphism iff its
cokernel pair is (idN , idN). From which the result, since F ⊆ V preserves and reflects
cokernel pairs.
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1.2. Proposition. The inclusion F ⊆ V preserves and reflects monomorphisms.

Proof. In an arbitrary category with a family G of generators, a morphism f : M ����������������
��

������������������ N
is a monomorphism when

∀K ∈ G ∀u, v : K ����������������
��

������������������

����������������
��

������������������ M f ◦ u = f ◦ v ⇒ u = v.

From which the conclusion, since the objects of F constitute a set of generators in V .

Our next result is much more subtle. The inclusion F ⊆ V preserves coequalizers, thus
the fact of being a regular epimorphism. But this inclusion has no “on the nose” reason
to reflect regular epimorphisms: if a morphism f : M ����������������

��
������������������ N of F is the coequalizer of two

morphisms g, h : X ����������������
��

������������������

����������������
��

������������������ M in V , why should it also be the coequalizer of two morphisms
in F? Indeed F is generally not finitely complete, thus the canonical choice of the kernel
pair of f does not help. Nevertheless:

1.3. Theorem. The inclusion F ⊆ V preserves and reflects regular epimorphisms.

Proof. The inclusion preserves coequalizers, thus regular epimorphisms. Conversely,
let f : M ����������������

��
������������������ N be a morphism of F which is a regular epimorphism in V . Thus f is

the coequalizer of two morphisms g, h : X → M in V . We express X as a filtered colimit
(li : Li

����������������
��

������������������ X)i∈I of objects Li ∈ F and form the coequalizers fi = Coker (g ◦ li, h ◦ li) in F .

Li
����������������

��
������������������

li
X ����������������

��
������������������

����������������
��

������������������

g

h
M ����������������

��
������������������
����������������

��
������������������

fi Ni

�
�

�
�������������

�������
������������������

f
����������������

��
����������������

��

ni

N

We obtain a unique factorization ni, for each index i ∈ I. Obviously, every morphism
λi,j : Li

����������������
��

������������������ Lj in the filtered diagram with colimit X yields a corresponding factorization
νi,j : Ni

����������������
��

������������������ Nj between the coequalizers. This turns the coequalizers Ni in a filtered
diagram in F and an obvious diagram chasing shows that colimi∈I Ni = N . Since N ∈ F ,
the identity on N factors through one term of this colimit: thus there is i0 ∈ I and
t : N ����������������

��
������������������ Ni0 such that ni0

◦ t = idN . Since

ni0
◦ t ◦ f = f = ni0

◦ fi0 ,

there is j ≥ i0 such that
νi0,j ◦ t ◦ f = νi0,j ◦ fi0 = fj.

We have then
nj ◦(νi0,j ◦ t) = ni0

◦ t = idN

and
(νi0,j ◦ t) ◦ nj ◦ fj = νi0,j ◦ t ◦ f = fj.
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Hence

(ni0,j ◦ t) ◦ nj = idNj

because fj is an epimorphism. Thus ni0,j ◦ t = n−1
j and f is isomorphic, via nj, to the

coequalizer fj in F .

2. About global purity

This section investigates the conditions under which every monomorphism of V is pure.

2.1. Theorem. The following conditions are equivalent in a variety V:

1. every monomorphism of V is pure;

2. in F , every arrow factors as a regular epimorphism followed by a split monomor-
phism;

3. in V, every finitely generated subobject of a finitely presentable object is a retract.

Proof. In view of Proposition 1.3, there is no ambiguity on the meaning of condition 2.
(1) ⇒ (2). Consider a morphism f : M ����������������

��
������������������ N in F , factor it through its image f = i ◦ p

in the regular category V and consider the following situation:

M ����������������
��

������������������

f
N

p

����������������
��

����������������
��

����������������
��

����������������
��

��������������������������������������������������
�������

ε

I ����������������
��

������������������
����������������

��
������������������

i N

By purity of i, we get ε such that εf = p. This implies εip = εf = p, thus εi = idI

because p is an epimorphism. Thus I is a retract of N ∈ F and by Cauchy completeness
of F (it is finitely cocomplete), we get I ∈ F .

(2) ⇒ (3). Consider a monomorphism m : X ����������������
��

������������������
����������������

��
������������������ M in V , with M ∈ F and X finitely

generated. By assumption on X, there is a regular epimorphism p : A ����������������
��

������������������
����������������

��
������������������ X in V , with

A ∈ P. The morphism f = mp : A ����������������
��

������������������ M of F admits thus the image factorization m ◦ p;
by assumption 2 and the uniqueness of the image factorization, m is a split mono.

(3) ⇒ (1). Consider a monomorphism s in V and a commutative square hf = sg,
with f in F (see diagram 1). Factor f through its image f = i ◦ p in V . Then Z is finitely
generated as a regular quotient of M ∈ F . By assumption 3, i admits a retraction r. By
functoriality of the image construction, there is t such that tp = g and hi = st. Finally

strf = hirf = hirip = hip = hf = sg

from which trf = g since s is a monomorphism. Thus s is pure.
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M ����������������
��

������������������
����������������

��
������������������

p
Z

� �
����������������

��
����������������

��

f

����������������
��

������������������
����������������

��
������������������

i

� �
������������������
������������������

r

N

g

����������������
��

����������������
��

t

����������������
��

����������������
��

����������������
��

����������������
��

h

X X

� �
������������������
������������������

s

����������������
��

������������������
����������������

��
������������������

s
Y

Diagram 1

2.2. Corollary. In a variety where all monomorphisms are pure,

1. all epimorphisms between finitely presentable objects are regular;

2. all monomorphisms between finitely presentable objects are split.

Proof. Let f : M ����������������
��

������������������ N be a morphism in F , which by Theorem 2.1 factors as f = ip
with p a regular epimorphism and i a split monomorphism. When f is an epimorphism,
i is an epimorphism as well and thus an isomorphism; so f is isomorphic to the regular
epimorphism p. When f is a monomorphism, p is a monomorphism as well and thus an
isomorphism; thus f is isomorphic to the split mono i.

Since a pure monomorphism is necessarily regular, it makes sense to consider the more
general case where only regular monomorphisms are requested to be pure. For this we
need the following lemma, which is part of the “folklore”:

2.3. Lemma. Let C be a well-powered and complete category. When the composite
of two regular monomorphisms is again a regular monomorphism, every morphism of C
factors as an epimorphism followed by a regular monomorphism. Such a factorization is
unique up to isomorphism and is functorial.

Proof. Given a morphism f : X ����������������
��

������������������ Y , one factors it as f = i ◦ p through the inter-
section i : I ����������������

��
������������������

����������������
��

������������������ Y of all regular subobjects of Y through which f factors. This is still a
regular subobject, as intersection of regular subobjects. The corresponding factorization
p : X ����������������

��
������������������ I of f , yielding f = ip, is necessarily an epimorphism. Indeed up = vp implies

that p factors through the equalizer k : K ����������������
��

������������������
����������������

��
������������������ I of (u, v). But then f factors through the

regular monomorphism i ◦ k, thus I ⊆ K and k is an isomorphism. This implies u = v.
The rest is routine.

2.4. Theorem. The following conditions are equivalent in a variety V:

1. in V, every regular monomorphism is pure;

2. in F , every arrow factors as an epimorphism followed by a split monomorphism.
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Proof. In view of Proposition 1.1, there is no ambiguity on the meaning of condition 2.
(1) ⇒ (2). The composite of two pure monomorphisms is pure. So the assumption

forces the validity in V of the conditions of Lemma 2.3. Now simply repeat the proof
of the corresponding assertion in theorem 2.1, with this time p an epimorphism and i a
regular monomorphism.

(2) ⇒ (1). Again it suffices to adapt the argument concerning Diagram 1 in Theo-
rem 2.1: s is now a regular monomorphism and i ◦ p is the factorization of f given at once
by condition 2, with r a retraction of i. If s = Ker (u, v), then uhip = usg = vsg = vhip,
thus uhi = vhi because p is an epimorphism. This implies the existence of a factorization
t through Ker (u, v), yielding st = hi. As a consequence, stp = hip = hf = sg, thus
tp = g because s is a monomorphism. As in Theorem 2.1, tr is the expected morphism.

To investigate a first implication between purity and flatness properties, let us recall
another notion (see [3]):

2.5. Definition. In a variety V, a regular epimorphism p : X ����������������
��

������������������
����������������

��
������������������ Y is a pure quotient

when every arrow f : M ����������������
��

������������������ Y with M finitely presentable admits a factorization through
p:

M��������������������������������������������������
�������

g

����������������
��

����������������
��

f

X ����������������
��

������������������
����������������

��
������������������p Y

In a variety V , the pure quotient maps are exactly the filtered colimits of split epi-
morphisms. Notice that no confusion can occur with the notion of pure monomorphism,
since a morphism which is both a monomorphism and a regular epimorphism is neces-
sarily an isomorphism; therefore, it is trivially both a pure monomorphism and a pure
epimorphism.

2.6. Theorem. In a variety V, the following conditions are equivalent:

1. every algebra is flat;

2. every finitely presentable object is projective (P = F);

3. every regular epimorphism in F splits;

4. every regular epimorphism in V is pure.

Proof. (1) ⇒ (2). Every M ∈ F is flat by assumption, thus a filtered colimit
M = colim Bi with Bi ∈ P. By finite presentability of M , the identity on M factors
through some Bi, thus M ∈ P because M is a retract of this Bi ∈ P.

(2) ⇒ (3) is trivial and condition (4) is just rephrasing condition (2).
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(3) ⇒ (2). Every M ∈ F can be written as a regular quotient p : A ����������������
��

������������������
����������������

��
������������������ M , with

A ∈ P. Then p splits by assumption and M ∈ P because it is a retract of A ∈ P.

(2) ⇒ (1) is obvious, since then every algebra is the colimit of a filtered diagram in
F = P .

Remark. The fact that every regular epimorphism in V is a filtered colimit of regular
epimorphisms in V between objects in F is in [8] (lemma 12). But the claim is stronger
there and, in fact, the authors have forgotten to prove our Theorem 1.3.

When the variety V is pointed (i.e. admits a zero object), there is an even stronger
notion of monomorphism: the normal monomorphisms. A monomorphism is normal
when it is the kernel of some arrow, that is, the equalizer of an arrow and the zero arrow.
The semi-abelian categories constitute a situation where normal subobjects have good
properties (see [12] and [7]).

2.7. Lemma. Let V be a semi-abelian variety in which every normal monomorphism
is pure. Then every regular epimorphism is a pure quotient.

Proof. In a semi-abelian category, every regular epimorphism is the cokernel of its
kernel (see [7]). This kernel is a pure monomorphism by assumption. But in a semi-
abelian variety, every cokernel of a pure normal subobject is a pure quotient (see [3]).

2.8. Theorem. Let V be a semi-abelian variety. If every monomorphism is pure,
every algebra is flat.

Proof. By Lemma 2.7 and Theorem 2.6.

3. The von Neumann axiom

First, let us introduce and study the von Neumann axiom in a very general setting.

3.1. Definition. A morphism f : A ����������������
��

������������������ B in a category C splits when there exists a
morphism g : B ����������������

��
������������������ A such that f ◦ g ◦ f = f .

Of course, when f is a monomorphism or an epimorphism, this definition reduces at
once to the usual definition of a split monomorphism or a split epimorphism.

3.2. Lemma. Let f : A ����������������
��

������������������ B be a morphism in a category C. The following conditions
are equivalent:

1. the morphism f splits;

2. there exists a morphism h : B ����������������
��

������������������ A such that fhf = f and hfh = h.

Proof. Given g as in Definition 3.1, simply put h = gfg.
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3.3. Definition. A category C satisfies the von Neumann axiom when every morphism
of C splits.

3.4. Proposition. In a Cauchy complete category C, the following conditions are
equivalent:

1. C satisfies the von Neumann axiom;

2. every arrow of C factors as a split epimorphism followed by a split monomorphism.

Proof. (1) ⇒ (2). Consider f : A ����������������
��

������������������ B. Choose g : B ����������������
��

������������������ A such that fgf = f . Then
fgfg = fg, thus fg : B ����������������

��
������������������ B is an idempotent. By Cauchy completeness of C, fg splits,

yielding fg = iq where qi = idI . This gives the diagram

A ����������������
��

������������������

������������������
����������������

��
g

f
B

�
�

�
�������������

�������
������������������

�
�

�
��

������������������
������������������

gi
qf

�
�

�
��

������������������ �������������������
�

�
�������������������������������

�������

q
i

I

where (qf)(gi) = q(fg)i = qiqi = idI , while iqf = iqiq = iq = f .
(2) ⇒ (1) Consider f : A ����������������

��
������������������ B and write it as the composite of a split epimorphism

p and a split monomorphism i: f = ip, ps = idI = qi.

A ����������������
��

������������������

������������������
����������������

��
sq

f
B

�
�

�
�������������

�������
������������������

�
�

�
��

������������������
������������������

s
p

�
�

�
��

������������������ �������������������
�

�
�������������������������������

�������

q
i

I

It follows at once that f(sq)f = ipsqip = ip = f .

The relevance of the von Neumann axiom in the study of pure subobjects is emphasized
by the following two theorems. To facilitate the language, we introduce an intermediate
notion.

3.5. Definition. In a variety V, a monomorphism s : X ����������������
��

������������������
����������������

��
������������������ Y is P-pure when given

a commutative square hf = sg with A,B ∈ P,

A ����������������
��

������������������

f
B

g

����������������
��

����������������
��

��������������������������������������������������
�������

ε

����������������
��

����������������
��

h

X ����������������
��

������������������
����������������

��
������������������ s Y

there exists a morphism ε such that εf = g.
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3.6. Theorem. In a variety V, the following conditions are equivalent:

1. the von Neumann axiom in P;

2. every monomorphism of V is P-pure;

3. every subobject of a flat object is pure;

4. every finitely generated subobject of a finitely presentable projective object is a re-
tract.

Proof. (1) ⇒ (2). Given a commutative square as in Definition 3.5, choose ϕ : B ����������������
��

������������������ A
such that fϕf = f . Then sgϕf = hfϕf = hf = sg, thus gϕf = g since s is a
monomorphism. So ε = gϕ is the expected morphism.

(2) ⇒ (3). Consider a monomorphism s : X ����������������
��

������������������
����������������

��
������������������ P in V , with P flat. Consider a

commutative square hf = sg, with M,N ∈ F . Choose a regular epimorphism p : A ����������������
��

������������������
����������������

��
������������������ M ,

with A ∈ P. Write P as a filtered colimit P = colim Bi, with Bi ∈ P. Since N is finitely
presentable, h factors through one of the Bi, yielding h = σit.

A ����������������
��

������������������
����������������

��
������������������

p
M ����������������

��
������������������

f
N ����������������

��
������������������

t Bi

g

����������������
��

����������������
��

����������������
��

����������������
��
h

��������������������������������������������������������������������
������

ϕ
�

�
�

�������������������������������
�������

σi

X ����������������
��

������������������
����������������

��
������������������ s P

By assumption s is P-pure, from which a morphism ϕ such that ϕtfp = gp. Since p is an
epimorphism, this implies ϕtf = g, thus ε = ϕt is the expected morphism.

(3) ⇒ (4). Consider a finitely generated subobject s : X ����������������
��

������������������
����������������

��
������������������ B with B ∈ P; in

particular, B is flat. By assumption on X, there exists a regular epimorphism p : A ����������������
��

������������������
����������������

��
������������������ X

with A ∈ P. Considering the diagram

A ����������������
��

������������������

sp
B

p

����������������
��

����������������
��

����������������
��

����������������
��

��������������������������������������������������
�������

ε

X ����������������
��

������������������
����������������

��
������������������ s B

the purity of s implies the existence of ε such that εsp = p. Since p is an epimorphism,
εs = idX .

(4) ⇒ (1). Consider a morphism f : A ����������������
��

������������������ B in P and its image factorization s ◦ p in
V , with image object X.
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A ����������������
��

������������������

f
B

�
�

�
�������������

�������
������������������ �����������
�������
������������������

p
�

�
�

��

������������������ ������������������

������������������ ������������������

s

X

Since p is a regular epimorphism, X is finitely generated; thus s is a retract by assumption.
But then X ∈ P, as a retract of B ∈ P. In particular X is projective and p splits. One
concludes by Proposition 3.4.

3.7. Theorem. In a variety V, the following conditions are equivalent:

1. the von Neumann axiom in F ;

2. every object of V is flat and every monomorphism of V is pure.

In those conditions, every finitely presentable algebra is projective (F = P).

Proof. (1) ⇒ (2). By Theorem 3.6, it suffices to prove that every object is flat. For
this it suffices to prove that P = F , that is, every finitely presentable object is projective
(see Theorem 2.6). A finitely presentable object M ∈ F is a regular quotient p : A ����������������

��
������������������
����������������

��
������������������ M

of an object A ∈ P. By the von Neumann axiom in F , choose s : M ����������������
��

������������������ A such that
psp = p. Since p is an epimorphism, ps = idM . Thus M is projective, as a retract of the
projective object A.

(2) ⇒ (1). Again by Theorem 2.6, every object of V is flat precisely when P = F .
Thus condition 2, together with Theorem 3.6, implies the von Neumann axiom in P = F .

3.8. Lemma. Let C be a category with finite coproducts and a zero object. The following
conditions are equivalent:

1. C satisfies the von Neumann axiom;

2. for each object C ∈ C, the monoids Hom(C,C) satisfy the von Neumann axiom.

Proof. Necessity is evident. Assume now that all monoids Hom(C,C), C ∈ C, satisfy
the von Neumann axiom and consider a morphism f : C ����������������

��
������������������ D in C. Take

C 
 D
(idC , 0)

����������������
��

������������������ C
f

����������������
��

������������������ D iD ����������������
��

������������������ C 
 D.

By the von Neumann axiom in Hom(C
D,C
D) there is r : C
D ����������������
��

������������������ C
D such that
(
iD ◦ f ◦(idC , 0)

)
◦ r ◦

(
iD ◦ f ◦(idC , 0)

)
= iD ◦ f ◦(idC , 0).

Composing on the left with (0, idD) and on the right with iC yields

f ◦
(
(idC , 0) ◦ r ◦ iD

)
◦ f = f.

Therefore the category C satisfies the von Neumann axiom.
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4. The abelian case

Finally, we specialize our results on purity in the special context of abelian varieties, to
arrive finally at a situation analogous to that of modules on a von Neumann regular ring.

Let us recall that in an abelian variety V , every split subobject is a direct summand.
In particular, the cokernel of a split monomorphism is a split epimorphism (the other leg
of the direct sum). By duality, the kernel of a split epimorphism is a split monomorphism.
Moreover, every monomorphism is the kernel of its cokernel, and dually.

4.1. Proposition. Consider a short exact sequence

0 ����������������
��

������������������ A k ����������������
��

������������������
����������������

��
������������������ B

q
����������������

��
������������������
����������������

��
������������������ C ����������������

��
������������������ 0

in an abelian variety V. The following conditions are equivalent:

1. k is a pure monomorphism;

2. q is a pure epimorphism.

Proof. Pure subobjects are the filtered colimits of split monomorphisms (see propo-
sition 2.30 in [2]). Pure quotients are the filtered colimits of split epimorphisms (see
proposition 4 in[3]). But in an abelian variety, cokernels of split monomorphisms are split
epimorphisms, and dually. Moreover, filtered colimits commute with both kernels and
cokernels. This implies at once the result.

In the abelian case, which contains the case of modules on a ring (and reduces to it in
the one-sorted case), we get thus the “classical” situation well-known for von Neumann
rings:

4.2. Theorem. [Stenström] Let V be an abelian variety. The following conditions are
equivalent:

1. the von Neumann axiom in P;

2. every monomorphism is pure;

3. every epimorphism is pure;

4. every algebra is flat;

5. every finitely presentable algebra is projective (F = P);

6. every finitely generated subobject of a finitely presentable object is a direct summand;

7. for every P ∈ P, Hom(P, P ) is a von Neumann ring.

In particular, F satisfies the von Neumann axiom.

Proof. (1) ⇔ (6) is attested by Theorem 3.6. (2) ⇔ (3) follows at once from
Proposition 4.1, since every monomorphism is the kernel of its cokernel, and dually. (3) ⇔
(4) ⇔ (5) hold by Theorem 2.6. (2) ⇔ (6) holds by Theorem 2.1. (1) ⇔ (7) by Lemma 3.8.
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It is well-known that a ring R is a von Neumann ring precisely when the corresponding
variety V of R-modules satisfies one of the conditions 2 to 6 in Theorem 4.2 (see [17]).
In that case the corresponding category P = F satisfies thus the von Neumann axiom,
but certainly not the whole variety V of R-modules. Going back to the comments follow-
ing Definition 3.1, observe that this would in particular imply that all monomorphisms
are split and all epimorphisms are split: this is not the case in general; compare with
condition 6 in Theorem 4.2.

5. On the flat reflection

Our next theorem is the flat reflection theorem. Let us make a strong point that P is
closed in F and V under finite coproducts, but not necessarily under coequalizers, even
when these turn out to exist.

5.1. Theorem. In a variety V, the following conditions are equivalent:

1. P is finitely cocomplete;

2. P is reflective in F ;

3. Flat(V) is reflective in V;

4. Flat(V) is closed under limits in V.

Proof. (1) ⇒ (2). Consider M ∈ F and write it as a coequalizer p = Coker (u, v) in V
of two morphisms u, v ∈ P.

A ����������������
��

������������������

����������������
��

������������������

u

v
B ����������������

��
������������������
����������������

��
������������������

p
M

�
�

�
�������������

�������
������������������

q
r

����������������
��

����������������
��

�
�

�
�������������

�������
������������������

f

C � � � � � � � � � � � � � ������������������ ������������������g D

If q = Coker (u, v) in P, qu = qv implies the existence of r ∈ V such that rp = q. Let us
prove that r : M ����������������

��
������������������ C yields the reflection of M in P.

Given f : M ����������������
��

������������������ D with D ∈ P, fpu = fpv implies the existence of a unique g ∈ P
such that gq = fp, because q = Coker (u, v) in P. This implies grp = gq = fp, thus
gr = f since p is an epimorphism in V . If g′ : C ����������������

��
������������������ D is another factorization yielding

g′r = f , then g′q = g′rp = fp = gq, thus g = g′ because q is an epimorphism in P.
(2) ⇒ (3). Flat(V) is the so-called Ind-completion of P, that is, the closure of P in

[Pop, Set] under filtered colimits (see [11] or [2]). Analogously, V is the Ind-completion of
F : the closure of F in [Fop, Set] under filtered colimits. This Ind-completion process is
trivially 2-functorial, that is extends to functors and natural transformations. Since an
adjunction can be presented equationally via its unit, its counit and the two triangular
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identities, the Ind-completion process transforms an adjunction in an adjunction. Thus
writing

r � i : P ����������������
��

������������������

������������������
����������������

��

F
for the adjunction in condition 2, we get an adjunction

Ind(r) � Ind(i) : Flat(V) ����������������
��

������������������

������������������
����������������

��

V .

Of course, Ind(i) is simply the canonical inclusion Flat(V) ↪→ V .
(3) ⇒ (4) holds for every reflective subcategory (see [6]) .
(4) ⇒ (3) is the fact that every accessible functor between locally presentable cate-

gories admits a left adjoint as soon as it preserves limits (see [2], theorem 2.48).
(3) ⇒ (2). Flat(V) is closed in V under filtered colimits, which is known to be equiva-

lent to the reflection V ����������������
��

������������������ Flat(V) preserving finite presentability (see [11] or [2]). Thus
the adjunction in condition 3 restricts to an adjunction between P and F .

(2) ⇒ (1). A reflective subcategory of a finitely cocomplete category is always finitely
cocomplete.

The following refinement of Theorem 5.1 is also of interest:

5.2. Theorem. In variety V, the following conditions are equivalent:

1. P admits coequalizers and these are split epimorphisms;

2. P is split-epireflective in F
(at each object, the unit of the adjunction is a split epimorphism);

3. Flat(V) is regular-epireflective in V
(at each object, the unit of the adjunction is a regular epimorphism);

4. Flat(V) is pure-epireflective in V;
(at each object, the unit of the adjunction is a pure quotient).

Proof. (1) ⇒ (2). By Theorem 5.1 and with the notation of its proof of (1) ⇒ (2),
it remains to show that r is a split epimorphism. By assumption, q admits a section s.
Then rpsq = qsq = q, thus rps = idC since q is an epimorphism in P.

(2) ⇒ (4). As observed in the proof of Theorem 5.1, the unit of the adjunction
Flat(V) ����������������

��
������������������

������������������
����������������

��

V is Ind(η), where η is the unit of the adjunction P ����������������
��

������������������

������������������
����������������

��

F . By assumption,
Ind(η) is thus a filtered colimit of split epimorphisms, that is a pure quotient.

(4) ⇒ (3) is trivial, because every pure quotient is regular.
(3) ⇒ (2). We have observed in the proof of Theorem 5.1 that the adjunction in condi-

tion 3 restricts to an adjunction between P and F . Given M ∈ F , the unit ηM : M ����������������
��

������������������ C
is a regular epimorphism by assumption, thus a split epimorphism since C is projective.

(2) ⇒ (1). P is finitely cocomplete as reflective subcategory of the finitely cocomplete
F . Now consider q = Coker (u, v) in P and compute p = Coker (u, v) in V .
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A ����������������
��

������������������

����������������
��

������������������

u

v
B ����������������

��
������������������
����������������

��
������������������

p
M

�
�

�
�������������

�������
������������������

�
�

�
��

������������������
������������������

t
q

s

����������������
��

����������������
��

������������������
������������������

r

C

This yields a factorization rp = q in V and we have seen in the proof of Theorem 5.1 that
r : M ����������������

��
������������������ C is the flat reflection of M . By assumption, r admits a section s. But since C

is projective, s factors through p as s = pt. This yields qt = rpt = rs = idC , proving that
q is a split epimorphism.

5.3. Examples.

1. Let V be the variety of all left R-modules. Then Flat(V) is reflective iff R is right
coherent and of weak global dimension at most two (see [9], 8.4.29). Let us mention that
Flat(V) is epireflective iff R is right coherent and of weak global dimension at most one
(see again [9], Ex. 5, page 139).
2. Let C be a small category and consider the variety V = SetC

op

. Then P = Fam(C)
is the free completion of C under finite coproducts and Flat(V) = Ind

(
Fam(C)

)
. Hence

Flat(V) is reflective in V iff Fam(C) is finitely cocomplete. This is equivalent to C having
finite connected colimits.

6. On weak reflections

We consider now a weaker situation than in section 5: the case where the category of flat
algebras is only weakly reflective in the category of all algebras (see [2] for an introduction
to weak reflections and weak colimits). Since our arguments hold in a much more general
context and do not seem to have been explicitly observed before, we present them in full
generality. Given a small category F , we write as usual Ind(F) for the closure of F in
[Fop, Set] under filtered colimits, that is, the ℵ0-accessible category of flat functors on F .
We are interested in the case where Ind(F) is weakly locally presentable, that is, admits
products (see theorem 4.11 in [2]).

6.1. Proposition. Let K be an ℵ0-accessible category. The following conditions are
equivalent:

1. K admits products;

2. K is equivalent to Ind(B), for a small weakly finitely cocomplete category B.

Proof. (1) ⇒ (2) follows from theorem 4.11 and the first argument in the proof of
4.13, both in [2]. Choose B in that proof to be the full subcategory of finitely presentable
objects in K: the proof starts with proving that B is weakly finitely cocomplete.

(2) ⇒ (1). The second argument in the proof of 4.13 in [2] is to infer, from the weak
finite cocompleteness of B (and nothing else), that K is sketchable by a limit-epi sketch.
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Then applying II in that same proof, we conclude that K is weakly locally presentable,
thus has products by theorem 4.11 in [2].

Even if not explicitly mentioned in [2], the following result follows easily from argu-
ments contained in that book:

6.2. Theorem. Consider a full subcategory P ⊆ F of a small category F with weak
finite colimits. The following conditions are equivalent:

1. Ind(P) is weakly reflective in Ind(F);

2. Ind(P) is closed in Ind(F) under products;

3. P is weakly reflective in F .

Proof. The Kan extension along the full inclusion P ����������������
��

������������������
����������������

��
������������������ F yields the full inclusion

J : Ind(P) ����������������
��

������������������
����������������

��
������������������ Ind(F). More precisely, if P ∈ Ind(P) is written as a canonical filtered

colimit P = colimi P(−, Ai), then J(P ) = colimi F(−, Ai).
(1) ⇒ (2) follows from theorem 4.8 in [2] and (2) ⇒ (3), from the first part of the

proof of (ii) ⇒ (i) in that same theorem.
(3) ⇒ (2). For each M ∈ F , consider a weak reflection ηM : M ����������������

��
������������������ M∗. Observe first

that Ind(P) is the injectivity class for these morphisms ηM , that is, given X ∈ Ind(F),
X ∈ Ind(P) precisely when every morphism α : M ����������������

��
������������������ X factors through ηM . In fact, this

argument is the last part of the proof of (ii) ⇒ (i) in theorem 4.8 in [2]; one can then
conclude by the implication (i) ⇒ (ii) of the same theorem.

(2) ⇒ (1). By 2.53 in [2], Ind(P) is cone-reflective in Ind(F), thus weakly reflective by
remark 4.5.(2) still in [2].

Theorem 6.2 was recently proved in [13] in a special case of modules over Artin alge-
bras. We particularize now this Theorem 6.2 to the case of a variety:

6.3. Theorem. For a variety V, the following conditions are equivalent:

1. P is weakly finitely cocomplete;

2. P is weakly reflective in F ;

3. Flat(V) is weakly reflective in V;

4. Flat(V) is closed under products in V.

Proof. In the case of a variety, we have

Flat(V) = Ind(P), V = Ind(F)

with F finitely cocomplete. Thus the equivalence of the last three conditions follows at
once from Theorem 6.2. Given a finite diagram in P, a weak reflection in P of its colimit
in F yields a weak colimit in F ; thus (2) implies (1). Conversely every object M ∈ F is
the coequalizer in F of two morphisms in P; a weak coequalizer of these morphisms in P
yields a weak reflection of M in P (proof analogous to that in Theorem 5.1).
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6.4. Examples.

1. Let V be the variety of all left R-modules. Then Flat(V) is weakly reflective iff R is
right coherent (see [9], 3.2.24).
2. Let C be a small category and V = SetC

op

. Then Flat(V) is weakly reflective in V iff
Fam(C) has weak finite colimits. This is equivalent to C having weak finite connected
colimits.

Finally let us mention an amazing result:

6.5. Proposition. If a small category C is finitely complete and weakly finitely
cocomplete, it is necessarily finitely cocomplete.

Proof. The finitely presentable objects of Ind(C) are the retracts of the representables.
Since C is Cauchy complete (it is finitely complete), C is thus equivalent to the category
of finitely presentable objects in Ind(C).

By Proposition 6.1, Ind(C) has products. But since C has finite limits, Ind(C) has finite
limits as well (see [4]). Since it has all products, Ind(C) is complete, thus is locally finitely
presentable. Therefore the full subcategory of finitely presentable objects of Ind(C), which
is equivalent to C, has finite colimits.

6.6. Corollary. For a variety V, the following conditions are equivalent:

1. F is finitely complete;

2. F is weakly finitely complete.

Proof. By Proposition 6.5 applied to the dual of F .

7. Examples and counter-examples

As far as the purity of subobjects is concerned, let us consider the following conditions

1. the von Neumann axiom in P,

2. the von Neumann axiom in F ,

3. every subobject is pure,

4. every algebra is flat,

which are known to be equivalent in the abelian case (Theorem 4.2). We have already
proved, for an arbitrary variety, the implications corresponding to the solid arrows in
diagram 2 as well as various equivalences with one of the properties just listed. We shall
now disprove all the other implications, corresponding to dotted arrows in diagram 2.

The first example which will fit our needs is an obvious one.
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von Neumann axiom in P���������������������������������������������������������
�������
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(4)

Every mono is pure

(5)
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Every algebra is flat
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(12)

von Neumann axiom in F

Diagram 2

7.1. Example. When V is the variety of sets, the following properties hold:

1. P = F is the category of finite sets;

2. every object is flat;

3. a monomorphism s : X ����������������
��

������������������
����������������

��
������������������ Y is pure iff X is non-empty or Y is empty; thus not

every monomorphism is pure;

4. a morphism f : X ����������������
��

������������������ Y admits a morphism g : Y ����������������
��

������������������ X such that fgf = f iff X
is non-empty or Y is empty; thus the P = F does not satisfy the von Neumann
axiom.

Our second example presents some “duality” with the first one, in the sense that the
corresponding categories of finitely presentable objects are dual of each other (see [5]).

7.2. Example. When V is the variety of boolean algebras, the following properties
hold;

1. P is the dual of the category of non-empty finite sets;

2. F is the dual of the category of finite sets;

3. P satisfies the von Neumann axiom, but F does not;

4. every monomorphism is pure;

5. not every boolean algebra is flat.
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Proof. Let us first review some well-known facts about boolean algebras (see, e.g.,
[5]). The following functors between the categories of finite boolean algebras and finite
sets are contravariant inverse equivalences:

FinBool ����������������
��

������������������

������������������
����������������

��
Set(−, {0, 1})
Bool(−, {0, 1})

FinSet;

this is the “finite part” of the Stone duality.

As a consequence, for each n ∈ N, the free boolean algebra Fn on n generators satisfies

Fn ∼= Set
(
Bool(Fn, {0, 1}), {0, 1}) ∼= Set

(
Set(n, {0, 1}), {0, 1}) ∼= 22n

.

Every finitely presentable boolean algebra is a quotient of a free algebra 22n
, thus is finite.

But by the equivalence above, the finite boolean algebras are exactly the algebras 2n, for
all finite sets n. Since every finite set n can obviously be presented as the equalizer of two
arrows of the form 2k

����������������
��

������������������

����������������
��

������������������ 2l, every finite boolean algebra is in fact finitely presentable.
Since a finite set is injective iff it is non empty, a finite boolean algebra 2n is projective
iff n �= 0. This takes already care of conditions 1 and 2 of the statement.

As observed in example 7.1, the category of non-empty finite sets satisfies the von
Neumann axiom, but the category of finite sets does not. Since this axiom is selfdual,
this proves condition 3.

By Theorem 2.1 and Condition 2 of the present example, the purity of every morphism
is equivalent to the fact that every morphism of finite sets factors as a split epimorphism
followed by a regular monomorphism. But every epimorphism of finite sets is split and
every monomorphism of finite sets is regular.

Finally every boolean algebra in P is a 2n with n �= 0, thus is such that 0 �= 1. Every
filtered colimit of such algebras has the same property. This proves that the terminal
boolean algebra {0 = 1} is not flat.

7.3. Example. Let V be the theory of pointed left M-sets on the monoid

M = {1, α, β}, αα = αβ = α, ββ = βα = β.

The following properties hold:

1. P satisfies the von Neumann axiom, but F does not;

2. not every monomorphism is pure;

3. not every algebra is flat.
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Proof. Let us write e for the base point of an algebra. Every algebra contains thus
the constants e, αe and βe. Given n ∈ N, the free algebra Fn on n-generators x1, . . . , xn

is constituted of the following elements

e αe βe
x1 αx1 βx1
...

...
...

xn αxn βxn

and these elements are all distinct.
Up to renumbering of the generators x1, . . . , xn, a subobject X ⊆ Fn has thus neces-

sarily the form
e αe βe
x1 αx1 βx1
...

...
...

xl αxl βxl

αxl+1 βxl+1
...

...
αxm βxm

for some natural numbers 0 ≤ l ≤ m ≤ n. Such an object is easily seen to be a retract in
V , with retraction r : Fn ����������������

��
������������������ X determined by

r(e) = e;
r(xi) = xi for 1 ≤ i ≤ l;
r(xi) = αxi for l + 1 ≤ i ≤ m;
r(xi) = e for m + 1 ≤ i ≤ n.

Of course one could have chosen equivalently r(xi) = βxi in the third case. It is routine
to check that r is an homomorphism presenting X as a retract of Fn.

We know that P is the Cauchy completion of the category of free algebras on finitely
many generators. Thus every object A ∈ P is a retract of some Fn, that is one of the
subobjects described above. But a subobject s : X ����������������

��
������������������

����������������
��

������������������ A of an object A ∈ P is then also
a subobject of some Fn, thus as we have seen a retract of this Fn with a corresponding
retraction r.

X ����������������
��

������������������
����������������

��
������������������ s A

� �
����������������

��
����������������

��

r

����������������
��

������������������
����������������

��
������������������

i Fn

The equality ris = idX shows that X is a retract of A. By Theorem 4.2, this implies the
von Neumann axiom in P.

Now let us consider the free algebra F1 on one generator x and let us perform its
quotient by the relation αx ≈ βx. This quotient is thus finitely presentable and is simply

Q = {e, αe, βe, x, αx = βx}.
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As subobject of Q, we consider the initial algebra

0 = {e, αe, βe}.

The inclusion 0 ↪→ Q does not admit a retraction, because Q contains an element y =
αx = βx such that αy = βy, while 0 does not. The initial algebra 0 is free on the empty
set, thus finitely generated. So by Theorem 2.1, not every monomorphism is pure in V .

Finally in the description of the objects of P given above, notice that we have always
αe �= βe. Thus the same inequality holds in every filtered colimit of such objects, that
is in every flat algebra. So the terminal algebra 1 = {e = αe = βe} is not flat. By
Theorem 3.7, F does not satisfy the von Neumann axiom.

We are now able to justify the content of diagram 2:

1 By Example 7.3. 7 By Example 7.1.
2 By Theorem 3.6. 8 By Example 7.2.
3 By Example 7.2 or 7.3. 9 By Theorem 3.7.
4 By Example 7.1. 10 By Example 7.2.
5 By Example 7.2 or 7.3. 11 By Theorem 3.7.
6 Obvious. 12 By Example 7.1.
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