
Theory and Applications of Categories, Vol. 12, No. 4, 2004, pp. 195–224.

BAER INVARIANTS IN SEMI-ABELIAN CATEGORIES II:
HOMOLOGY

T. EVERAERT AND T. VAN DER LINDEN

ABSTRACT. This article treats the problem of deriving the reflector of a semi-abelian
category A onto a Birkhoff subcategory B of A. Basing ourselves on Carrasco, Cegarra
and Grandjeán’s homology theory for crossed modules, we establish a connection be-
tween our theory of Baer invariants with a generalization—to semi-abelian categories—
of Barr and Beck’s cotriple homology theory. This results in a semi-abelian version of
Hopf’s formula and the Stallings-Stammbach sequence from group homology.
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1. Introduction

1.1. A semi-abelian category is a category with binary coproducts which is pointed,
Barr exact and Bourn protomodular. In [18] we show the following.

1.2. Theorem. Let A be a pointed, Barr exact and Bourn protomodular category with
enough projectives. Consider a short exact sequence

0 �� K
� �� �� A

f � �� B �� 0

in A. If V is a Birkhoff subfunctor of A, then an exact sequence

∆V (A)
∆Lf �� ∆V (B) �� K

V1f
�� U(A)

Uf � �� U(B) �� 0 (A)
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exists, which depends naturally on the given short exact sequence.

The aim of this article is to interpret sequence A as a generalization of the Stallings-
Stammbach sequence from integral homology of groups [29], [30]. We do this by proving
the following semi-abelian version of Hopf’s formula [21]:

H2(X,U)G
∼= ∆V (X). (B)

1.3. Let us start by explaining the right hand side of this formula, briefly recalling the
main concepts from [18].

A presentation of an object A in a category A is a regular epimorphism (a coequalizer)
p : A0

�� A. The category of presentations of objects of A—a morphism f = (f0, f) : p
�� q being a commutative square

A0

p
���

f0 �� B0

q
���

A
f

�� B

—is denoted by PrA. pr : PrA �� A denotes the forgetful functor which maps a
presentation to the object presented, sending a morphism of presentations f = (f ′, f) to
f . Two morphisms of presentations f , g : p �� q are called isomorphic, notation f � g ,
if pr f = pr g (or f = g). A functor B : PrA �� A is called a Baer invariant if f � g
implies that Bf = Bg .

If A has sufficiently many projective objects, then any Baer invariant B : PrA �� A
induces a functor A �� A; for instance the functor ∆V : A �� A arises this way.
Denoting Wproj the full subcategory of all projective objects of A (and i : Wproj

��

PrA the canonical inclusion), we call choice of projective presentations in A any graph
morphism c : A �� Wproj such that pr ◦i◦c = 1A. Then, for any choice of projective
presentations c : A �� Wproj in A, B◦i◦c is a functor. Moreover, for any other choice of
projective presentations c′ : A �� Wproj, a natural isomorphism B◦i◦c �� C◦i◦c′ exists.

1.4. For the larger part of our theory of Baer invariants we need the category A to be
semi-abelian. This means that A is pointed, Barr exact and Bourn protomodular with
binary coproducts [25]. The reason we work in this context is that it is natural for the
classical theorems of homological algebra—as the Snake Lemma, the 3 × 3 Lemma and
Noether’s Isomorphism Theorems—to hold: see, e.g. Bourn [10] or Borceux and Bourn
[5] for a new approach to these results, on which our paper [18] strongly depends.

A category A is regular [2] when it has finite limits and coequalizers of kernel pairs
(i.e. the two projections k0, k1 : R[f ] �� A of the pullback of an arrow f : A �� B
along itself), and when a pullback of a regular epimorphism along any morphism is again
a regular epimorphism. In this case, every regular epimorphism is the coequalizer of its
kernel pair, and every morphism f : A �� B has an image factorization f = Im f ◦p,
unique up to isomorphism, where p : A �� I[f ] is regular epi and the image Im f : I[f ]
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�� B of f is mono. Taking images is functorial. Moreover, in a regular category, regular
epimorphism are stable under composition, and if a composition f ◦g is regular epi, then
so is f . A regular category in which every equivalence relation is a kernel pair is called
Barr exact.

A pointed category with pullbacks A is Bourn protomodular [7] as soon as the Split
Short Five-Lemma holds. This means that for any commutative diagram

0 �� K ′ � �� k
′

��

u

��

A′
f ′ ��

v

��

B′
s′

��

w

��
0 �� K

� ��
k

�� A
f ��

B
s

��

such that f and f ′ are split epimorphisms (with resp. splittings s and s′) and such that
k = Ker f and k′ = Ker f ′, u and w being isomorphisms implies that v is an isomorphism.

A sequence

K
k �� A

f �� B (C)

in a pointed category is called short exact if k = Ker f and f = Coker k. We denote this
situation

0 �� K
� �� k �� A

f � �� B �� 0.

In a pointed, regular and protomodular category the exactness of sequence C is equivalent
to demanding that k = Ker f and f is a regular epimorphism. Thus, a pointed, regular
and protomodular category has all cokernels of kernels. A sequence of morphisms

. . . �� Ai+1
fi+1 �� Ai

fi �� Ai−1
�� . . .

in pointed, regular and protomodular category is called exact if, for any i, Im fi+1 = Ker fi.

1.5. Let A be a semi-abelian category. A normal subfunctor V of 1A (i.e. a kernel
V �� 1A) is called Birkhoff subfunctor of A if V preserves regular epimorphisms. Recall
from Janelidze and Kelly [24] that a Birkhoff subcategory of A is a reflective subcategory
B of A which is full and closed in A under subobjects and quotient objects. In [18], we
show that Birkhoff subfunctors correspond bijectively to the Birkhoff subcategories of A:
assuming that, for any A ∈ A, the sequence

0 �� V (A) � ��µA �� A
ηA � �� U(A) �� 0

is exact, V is a Birkhoff subfunctor if and only if U reflects A onto a Birkhoff subcategory.
A Birkhoff subcategory of a semi-abelian category is semi-abelian.

Any Birkhoff subfunctor V of A induces a functor V1 : PrA �� A, constructed as
follows. Let p : A0

�� A be a presentation in A and (R[p], k0, k1) its kernel pair. Apply-
ing V , next taking the coequalizer of V k0 and V k1 and then the kernel of Coeq(V k0, V k1),
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one gets V1p.

V (R[p])

V k0
��
V k1

��
0 �� V1p

� �� �� V (A0)
Coeq (V k0,V k1)

� �� Coeq[V k0, V k1] �� 0

Given a Birkhoff subfunctor V of A and a presentation p : A0
�� A, ∆V is the functor

induced by the Baer invariant PrA �� A which maps p to

K[p] ∩ V (A0)

V1p
.

Consider the category Gp of groups and its Birkhoff subcategory Ab = GpAb of abelian
groups. The associated Birkhoff subfunctor V sends G to [G,G], the commutator sub-
group of G. It is indeed well known that the abelianization of a group G, i.e. the reflection
of G along the inclusion Ab �� Gp, is just G/[G,G]. For groups R � F , [R,F ] denotes
the subgroup of F generated by the elements rfr−1f−1, with r ∈ R and f ∈ F . If p
denotes the quotient F �� F/R, then V1p = [R,F ]. Now let

0 �� R
� �� �� F

p � �� G �� 0

be a presentation of a group G by a “group of generators” F and a “group of relations”
R, i.e. a short exact sequence with F a free (or, equivalently, projective) group. Then it
follows that

∆V (G) =
R ∩ [F, F ]

[R,F ]
.

1.6. Hopf’s formula [21] is the isomorphism

H2(G,Z) ∼= R ∩ [F, F ]

[R,F ]
; (D)

here, H2(G,Z) is the second integral homology group of G. It is clear that the left hand
side of the formula B should, in a way, generalize this homology group.

That such a generalization is possible comes as no surprise, as Carrasco, Cegarra and
Grandjeán (in their article [16]) already prove a generalized Hopf formula in the category
CM of crossed modules. Furthermore, they obtain a five term exact sequence which
generalizes the Stallings-Stammbach sequence [29], [30]. Their five term exact sequence
becomes a particular case of ours; see Corollary 6.10.

Since the right hand side of B is defined relative to a Birkhoff subcategory B of a semi-
abelian category A, so must be the left-hand side. We restrict ourselves to the following
situation: A is a semi-abelian category, monadic over Set; U : A �� B is a reflector
onto a Birkhoff subcategory B of A; G is the comonad on A, defined by the adjunction
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Set ⇀ A. In this situation, the formula B holds, for p : GX �� X the standard “G-free”
projective presentation of an object X.

Carrasco, Cegarra and Grandjeán define their homology of crossed modules by de-
riving the functor ab : CM �� CMAb, which sends a crossed module (T,G, ∂) to its
abelianization (T,G, ∂)ab—an object of the abelian category CMAb. More precisely, using
the monadicity of the forgetful functor U : CM �� Set, they obtain a comonad G on CM.
This, for any crossed module (T,G, ∂), yields a canonical simplicial object G(T,G, ∂) in
CM. The n-th homology object (an abelian crossed module) of a crossed module (T,G, ∂)
is then defined as Hn−1CG(T,G, ∂)ab, the (n−1)-th homology object of the unnormalized
chain complex associated with the simplicial object G(T,G, ∂)ab. This is an application
of Barr and Beck’s cotriple homology theory [1], which gives a way of deriving any functor
U : A �� B from an arbitrary category A equipped with a comonad G to an abelian
category B.

To prove our Hopf formula, we use methods similar to those of Carrasco, Cegarra and
Grandjeán—in fact, our proof of Theorem 6.9 is a modification of their [16, Theorem 12].
Therefore, a semi-abelian notion of homology must be introduced. This is done in Section
6. In Sections 2 through 5 the necessary theory is developed.

1.7. Since chain complexes are crucial in any homology theory, in Section 2, we consider
them in a semi-abelian context. More precisely, in categories that are pointed, regular and
protomodular. A morphism in such a category is proper [10] when its image is a kernel.
We call a chain complex proper whenever all its differentials are. As in the abelian case,
the n-th homology object of a proper chain complex C with differentials dn is said to be
HnC = Cok[Cn+1

�� K[dn]]. We prove that this equals the dual KnC = K[Cok[dn+1]
�� Cn−1]. Moreover, any short exact sequence of proper chain complexes gives rise to a

long exact sequence of homology objects.
In Section 3 we extend the homology theory of Section 2 to simplicial objects. There-

fore, we consider the Moore functor N : SA �� ChA. Suppose that A is a pointed
category with pullbacks. Let us write ∂i for the face operators of a simplicial object A in
A. The normalized chain complex N(A) of A is the chain complex with N0A = A0,

NnA =
n−1⋂
i=0

K[∂i : An �� An−1]

and differentials dn = ∂n◦
⋂
i Ker ∂i : NnA �� Nn−1A, for n ≥ 1, and An = 0, for n < 0.

When A is pointed, exact and protomodular, we prove that the Moore functor maps
simplicial objects to proper chain complexes. This allows us to define the n-th homology
object of A as HnA = HnN(A). Furthermore, we show that, if ε : A �� A−1 is a
contractible augmented simplicial object, then H0A = A−1 and, for n ≥ 1, HnA = 0.

Recall from [15] and [14] that a finitely complete category is called Mal’cev, if every
reflexive relation is an equivalence relation. A regular category is Mal’cev if and only if the
composition of equivalence relations is commutative. A finitely complete protomodular
category is always Mal’cev [8].
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The validity of our generalized Hopf formula depends strongly on the fact that the
Moore functor N : SA �� ChA is exact. This essentially amounts to the fact that, in a
regular Mal’cev category, any regular epimorphism of simplicial objects is a Kan fibration.
We prove this in Section 4, generalizing Carboni, Kelly and Pedicchio’s result [14] that in
a regular Mal’cev category, every simplicial object is Kan. The exactness of N is shown
in Section 5. We get that any short exact sequence of simplicial objects induces a long
exact sequence of homology objects. In Section 5 we moreover prove Dominique Bourn’s
conjecture that, for n ≥ 1, the homology HnA of a simplicial object A in a semi-abelian
category A is an abelian object of A.

Finally, in Section 6, we generalize Barr and Beck’s notion of cotriple homology [1] to
the situation where B is a pointed, regular and protomodular category. Their definition
is modified to the following. Let A be a category, G a comonad on A and U : A �� B
a functor. The n-th homology object Hn(X,U)G of X with coefficients in U relative
to the cotriple G is the object Hn−1NU(GX), the (n − 1)-th homology object of the
normalized chain complex associated with the simplicial object U(GX) of B. We show
that H1(X,U)G = U(X), give a proof of formula B and obtain a version of the Stallings-
Stammbach sequence.

1.8. For the basic theory of semi-abelian categories we refer to the Borceux’s survey
[3] and Borceux and Bourn’s book [5]. For general category theory we used Borceux [4]
and Mac Lane [27]. Weibel’s book [31] provides an excellent introduction to homological
algebra. For the theory of model categories the reader is referred to Quillen [28] and
Hovey [22].

Acknowledgements. Thanks to Marino Gran for starting this work, by pointing us to
the subject of Baer invariants in semi-abelian categories; to George Janelidze and Rudger
Kieboom for fruitful discussion and infinite support; to Francis Borceux and Dominique
Bourn for kindly making available a preprint of their book [5]; to Dominique Bourn for
suggesting us Theorem 5.5; to the referee for helpful comments and suggestions.

2. Chain complexes

2.1. Notation. Given a morphism f : A �� B in A, (if it exists) its kernel is
denoted by Ker f : K[f ] �� A, its image by Im f : I[f ] �� B and its cokernel by
Coker f : B �� Cok[f ]. In a diagram, the forms A �� �� B , A

� �� �� B and A
� �� B

signify that the arrow is, respectively, a monomorphism, a normal monomorphism and a
regular epimorphism.

Recall that a chain complex C is a collection of morphisms (dn : Cn �� Cn−1)n∈Z

such that dn◦dn+1 = 0, for all n ∈ Z. Although usually considered in an abelian context,
chain complexes of course make sense in any pointed category A. Obtaining a good notion
of homology objects HnC of a chain complex C, however, demands a stronger assumption
on A.
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When A is an abelian category, HnC is K[dn]/I[dn+1] (see, for example, [31]). Since
this is just Cok[Cn+1

�� K[dn]], it seems reasonable to define HnC this way, supposed
that the considered kernels and cokernels exist in A. Yet, one could also suggest the dual
KnC = K[Cok[dn+1] �� Cn−1], since, in the abelian case, this equals HnC. Let A be a
pointed, regular and protomodular category. Recall that a morphism is proper if its image
is a kernel. We call a chain complex C in A proper whenever all its differentials are. We
will prove in Proposition 2.3 that for any proper complex C, the homology objects HnC
and KnC are isomorphic. Furthermore, as the Snake Lemma holds in A—see Bourn [10,
Theorem 14]—we get Proposition 2.4: any short exact sequence of proper chain complexes
induces a long exact sequence of homology objects.

Let ChA be the category of chain complexes in A, morphisms being commutative
ladders, and let PChA be the full subcategory of proper chain complexes. For a complex
C ∈ PChA and n ∈ Z, let HnC be its n-th homology object, and KnC its dual, as defined
above. Note that HnC and KnC exist, as A has all cokernels of kernels. Further remark
that, like A, the category ChA is pointed, regular and protomodular. This is not the case
for PChA, since PChA e.g. need not have kernels. By an exact sequence of proper chain
complexes, we mean an exact sequence in ChA such that the objects are proper chain
complexes.

We need the following

2.2. Lemma. [10, 5] Let A be a pointed, regular and protomodular category. Consider
the following commutative diagram, where k = Ker f , f ′ is regular epi and the left hand
square a pullback:

K ′ k′ ��

u

��

A′ f ′ � ��

v

��

B′

w

��
0 �� K

� ��
k

�� A
f

�� B.

If k′ = Ker f ′, then w is a monomorphism.

2.3. Proposition. Let A be a pointed, regular and protomodular category. For any
n ∈ Z, Hn and Kn are naturally isomorphic functors PChA �� A.

Proof. Consider the commutative diagram of solid arrows

Cn+1

d′n+1 ����
��

��
��

�

dn+1 �� Cn
dn ��

Coker dn+1

� ����������� Cn−1

K[dn]
� ��

Ker dn

���������

Coker d′n+1���

pn

��

Cok[dn+1]
d′′n

		����������

HnC

jn 



(λn)C

�� KnC.
���
Ker d′′n

��
(E)
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Note that all cokernels exist, because dn+1 and d′n+1 are proper. Since HnC is a cokernel
and KnC is a kernel, unique morphisms jn and pn exist that keep the diagram commuta-
tive. A natural transformation λ : Hn

�� Kn is defined by the resulting unique (λn)C .
To prove it an isomorphism, first consider the following diagram with exact rows.

0 �� K[dn]
� �� ��

pn

��

Cn
dn ��

Coker dn+1

��

Cn−1

0 �� KnC
� ��
Ker d′′n

�� Cok[dn+1]
d′′n

�� Cn−1

1Cn−1 being a monomorphism, the left hand square is a pullback, and pn is a regular
epimorphism.

Considering the image factorizations of d′n+1 and dn+1, there is a morphism i such that
the diagram with exact rows

Cn+1 I[dn+1]
� ��

Cn+1

Cn+1

Cn+1 I[d′n+1]
� �� I[d′n+1]

I[dn+1]I[dn+1] Cn
� �� Ker dn ��

I[d′n+1]

I[dn+1]

i

��

I[d′n+1] K[dn]��
Im d′n+1

�� K[dn]

Cn

���

Im dn+1

��
Cn Cok[dn+1]Coker dn+1

� ��

K[dn]

Cn

K[dn] HnC
Coker d′n+1 � �� HnC

Cok[dn+1]

jn

��
Cok[dn+1] 0��

HnC

Cok[dn+1]

HnC 0�� 0

0

Cn+1 K[dn]

d′n+1

��

Cn+1 Cn
dn+1



commutes. Clearly, it is both a monomorphism and a regular epimorphism, thus an
isomorphism. Because dn+1 is proper, Im dn+1 is a kernel. We get that also Im d′n+1

is a kernel. Now the middle square is a pullback, so Lemma 2.2 implies that jn is a
monomorphism.

Accordingly, since E commutes, (λn)C is both regular epi and mono, hence it is an
isomorphism.

For n ∈ Z, let dn denote the unique map such that the diagram

Cn

Coker dn+1���

dn �� Cn−1

Cok[dn+1]
dn

�� K[dn−1]
���
Ker dn−1

��

commutes. Since dn is proper, so is dn.
The following is a straightforward generalization of the abelian case—see, for instance,

Theorem 1.3.1 in Weibel [31].

2.4. Proposition. Let A be a pointed, regular and protomodular category. Any short
exact sequence of proper chain compexes

0 �� C ′′ � �� �� C ′ � �� C �� 0
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gives rise to a long exact sequence of homology objects

. . . �� Hn+1C
δn+1 �� HnC

′′ �� HnC
′ �� HnC

δn �� Hn−1C
′′ �� . . . (F)

which depends naturally on the given short exact sequence.

Proof. Since the dn and dn are proper, mimicking the abelian proof—using the Snake
Lemma twice—we get an exact sequence

KnC
′′ �� KnC

′ �� KnC �� Hn−1C
′′ �� Hn−1C

′ �� Hn−1C

for every n ∈ Z. By Proposition 2.3 we can paste these together to F. The naturality
follows from the naturality of the Snake Lemma.

Note that Bourn’s version of the Snake Lemma [10, Theorem 14] states only the exis-
tence and the exactness of the sequence. However, it is quite clear from the construction
of the connecting morphism that the sequence is, moreover, natural.

3. Simplicial objects

In this section we extend the homology theory of Section 2 to simplicial objects. We start
by considering the Moore functor N : SA �� ChA, which maps a simplicial object A in
a pointed category with pullbacks A to the normalized chain complex N(A). We prove
that, when A is, moreover, exact and protomodular, N(A) is always proper, and then
define the n-th homology object of A as HnA = HnN(A). Furthermore, we show that, if
ε : A �� A−1 is a contractible augmented simplicial object, then H0A = A−1 and, for
n ≥ 1, HnA = 0.

When working with simplicial objects in a category A, we will use the notations of [31].
The simplicial category ∆ has, as objects, finite ordinals [n] = {0, . . . , n}, for n ∈ N and,
as morphisms, monotone functions. The category SA of simplicial objects and simplicial
maps of A is the functor category Fun(∆op,A). Thus a simplicial object A : ∆op �� A
corresponds to the following data: a sequence of objects (An)n∈N, face operators ∂i : An

�� An−1 and degeneracy operators σi : An �� An+1, for i ∈ [n] and n ∈ N, subject to
the simplicial identities

∂i◦∂j = ∂j−1◦∂i if i < j

σi◦σj = σj+1◦σi if i ≤ j

∂i◦σj =




σj−1◦∂i if i < j

1 if i = j or i = j + 1

σj◦∂i−1 if i > j + 1.

An augmented simplicial object ε : A �� A−1 consists of a simplicial object A and a
map ε : A0

�� A−1 with ε◦∂0 = ε◦∂1. It is contractible if there exist maps fn : An
�� An+1, n ≥ −1, with ε◦f−1 = 1A−1 , ∂0◦f0 = f−1◦ε, ∂n+1◦fn = 1An and ∂i◦fn = fn−1◦∂i,

for 0 ≤ i ≤ n and n ∈ N.
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3.1. Definition. Let A be a simplicial object in a pointed category A with pullbacks.
The normalized, or Moore, chain complex N(A) is the chain complex with N0A = A0,

NnA =
n−1⋂
i=0

K[∂i : An �� An−1]

and differential dn = ∂n◦
⋂
i Ker ∂i : NnA �� Nn−1A, for n ≥ 1, and An = 0, for n < 0.

This gives rise to a functor N : SA �� ChA.

3.2. Remark. Note that, in the above definition, ∂n◦
⋂
i Ker ∂i : NnA �� An−1 may

indeed be considered as an arrow dn : NnA �� Nn−1A: the map clearly factors over⋂
i Ker ∂i : Nn−1A �� An−1.

3.3. Remark. Obviously, for n ≥ 1, the object of n-cycles ZnA = K[dn] of a simplicial
object A of A is equal to

⋂n
i=0K[∂i : An �� An−1].

3.4. Remark. The functor N : SA �� ChA preserves limits. Indeed, limits in SA
and ChA are computed degreewise, and taking kernels and intersections (pulling back), as
occurs in the construction of N , commutes with taking arbitrary limits in A. In Section
5 we shall prove that N , moreover, preserves regular epimorphism, hence is exact.

In a protomodular category A, an intrinsic notion of normal monomorphism exists
(see Bourn [9]). We will, however, not introduce this notion here. It will be sufficient to
note that, if A is moreover exact, the normal monomorphisms are just the kernels. To
prove Theorem 3.6, we need the following

3.5. Lemma. [Non-Effective Trace of the 3 × 3 Lemma [11, Theorem 4.1]] Consider,
in a regular and protomodular category, a commutative square with horizontal regular
epimorphisms

A′

v

��

f ′ � �� B′

w

��
A

f

� �� B.

If w is a monomorphism and v a normal monomorphism, then w is a normal monomor-
phism.

3.6. Theorem. Let A be a pointed, exact and protomodular category and A a simplicial
object in A. Then N(A) is a proper chain complex of A.

Proof. Any differential dn, when viewed as an arrow to An−1, is a composition of a
normal monomorphism (an intersection of kernels), and a regular epimorphism (a split
epimorphism, by the simplicial identities). Hence, the Non-Effective Trace of the 3 × 3
Lemma 3.5 implies that dn : NnA �� An−1 is proper. This clearly remains true when,
following Remark 3.2, we consider dn as an arrow to Nn−1A.



BAER INVARIANTS IN SEMI-ABELIAN CATEGORIES II: HOMOLOGY 205

3.7. Definition. Suppose A is pointed, exact and protomodular. The object HnA =
HnN(A) will be called the n-th homology object of A, and the resulting functor Hn : SA

�� A the n-th homology functor, for n ∈ N.

In order to compute, in Proposition 3.11, the homology of a contractible augmented
simplicial object, we first make the following, purely categorical, observations. We start
by recalling a result due to Dominique Bourn.

3.8. Lemma. [7, Proposition 14] If, in a protomodular category, a square with vertical
regular epimorphisms

A ��

���

B

���
C �� D

is a pullback, it is also a pushout.

A fork is a diagram such as G below where e◦∂0 = e◦∂1.

3.9. Proposition. [(cf. 10, Corollary 6)] In a pointed and protomodular category A,
let

A
∂1 ��

∂0
�� B

e �� C (G)

be a fork and t : B �� A a map with ∂0◦t = ∂1◦t = 1B. Then the following are equivalent:

1. e is a coequalizer of ∂0 and ∂1;

2. the square

A

∂0
��

∂1 �� B

e

��
B e

�� C

is a pushout;

3. e is a cokernel of ∂1◦Ker ∂0.

Proof. The equivalence of 1. and 2. is obvious. In the diagram

K[∂0]

��

� ��Ker ∂0 �� A

∂0
���

∂1 �� B

e

��
0 �� B e

�� C,

the left hand side square is a pushout: indeed, Lemma 3.8 applies, since it is a pullback
along the split, hence regular, epimorphism ∂0. Consequently, the outer rectangle is a
pushout if and only if the right square is, which means that 2. and 3. are equivalent.
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3.10. Corollary. If A is a pointed, exact and protomodular category and A a simplicial
object of A (with face operators ∂0, ∂1 : A1

�� A0), then H0A = Coeq[∂0, ∂1].

A fork is split if there are two more arrows s : C �� B and t : B �� A such that
e◦s = 1C , ∂1◦t = 1B and ∂0◦t = s◦e. Every split fork is a coequalizer diagram.

3.11. Proposition. If ε : A �� A−1 is a contractible augmented simplicial object in a
pointed, exact and protomodular category A, then H0A = A−1 and, for n ≥ 1, HnA = 0.

Proof. The contractibility of ε : A �� A−1 implies that the fork

A1

∂1 ��

∂0
�� A0

ε �� A−1

is split (by the arrows f−1 : A−1
�� A0 and f0 : A0

�� A1). We get that it is a
coequalizer diagram. The first equality now follows from Corollary 3.10.

In order to prove the other equalities, first recall from Remark 3.3 that, for n ≥ 1,

ZnA = K[dn : NnA �� Nn−1A] =
n⋂
i=0

K[∂n : An �� An−1].

We are to show that the image of dn+1 : Nn+1A �� NnA is Ker dn : K[dn] �� NnA.
But, for any i ≤ n, the left hand downward-pointing arrow in the diagram with exact
rows

0 �� K[∂i]
� ��Ker ∂i ��

��

An+1

∂n+1
���

∂i �� An ��

∂n���

0

0 �� K[∂i]
� ��
Ker ∂i

��

��

An ∂i

��

fn

��

An−1

fn−1

��

�� 0

is a split epimorphism, because both its upward and downward pointing squares commute.
It follows that the intersection Nn+1A =

⋂
i≤nK[∂i] ��

⋂
i≤nK[∂i] = K[dn] is a split,

hence a regular, epimorphism, and Im dn+1 = Ker dn.

4. The Kan condition

The results in this section will allow us to prove, in Section 5, two important facts con-
cerning the functors Hn : PChA �� A and N : SA �� PChA: Theorem 5.5 and
Proposition 5.6. We recall the result from Carboni, Kelly and Pedicchio [14] that ev-
ery simplicial object in a regular Mal’cev category is Kan. We add that every regular
epimorphism between simplicial objects of a regular Mal’cev category is a Kan fibration.

Kan complexes and Kan fibrations are very important in the homotopy theory of
simplicial sets (or simplicial objects in a variety over Set). In their article [14], Carboni,
Kelly and Pedicchio extend the notion of Kan complex to an arbitrary category A. When
A is regular, their definition amounts to the one stated in Definition 4.1. (They consider
only horns with n ≥ 2; indeed, any simplicial object fulfils the Kan condition for n = 1.)
In the same spirit, we propose an extension of the notion of Kan fibration to a regular
category A.
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4.1. Definition. Consider a simplicial object K in a regular category A. For n ≥ 1
and k ∈ [n], a family

x = (xi : X �� Kn−1)i∈[n],i�=k

is called an (n, k)-horn of K if it satisfies ∂i◦xj = ∂j−1◦xi, for i < j and i, j �= k.
We say that K is Kan if, for every (n, k)-horn x = (xi : X �� Kn−1) of K, there is

a regular epimorphism p : Y �� X and a map y : Y �� Kn such that ∂i◦y = xi◦p for
i �= k.

A map f : A �� B of simplicial objects is said to be a Kan fibration if, for every
(n, k)-horn x = (xi : X �� An−1) of A and every b : X �� Bn with ∂i◦b = fn−1◦xi for
all i �= k, there is a regular epimorphism p : Y �� X and a map a : Y �� An such
that fn◦a = b◦p and ∂i◦a = xi◦p for all i �= k.

Obviously, a simplicial object K is Kan if and only if the unique map K �� ∗ from
K to a terminal object ∗ of SA is a Kan fibration.

In case A is Set, these notions have an equivalent formulation in which X and Y
are both equal to a terminal object ∗. These equivalent formulations are the classical
definitions of Kan simplicial set and Kan fibration—see, for instance, Weibel [31]. There
is also the following connection between Definition 4.1 and the set-theoretic notions.

4.2. Proposition. Let A be a regular category and Υ : A �� Set a functor which
preserves regular epimorphisms and has a left adjoint Φ : Set �� A. Then

1. for any Kan simplicial object K of A, the simplicial set Υ(K) is Kan;

2. for any Kan fibration f : A �� B of simplicial objects in A, the simplicial map
Υf : Υ(A) �� Υ(B) is a Kan fibration of simplicial sets.

Proof. Let ζ : 1Set
�� Υ◦Φ denote the unit of the adjunction and

ϕX,A : homA(Φ(X), A) ∼= homSet(X,Υ(A))

the canonical isomorphism, natural in X ∈ Setop and A ∈ A. Suppose that f : A �� B
is a Kan fibration; consider an (n, k)-horn x = (xi : X �� Υ(A)n−1)i∈[n],i�=k of Υ(A) and
a map b : X �� Υ(Bn) with Υ∂i◦b = Υfn−1◦xi for all i �= k. We give a proof of 2.

Note that the collection (ϕ−1(xi) : Φ(X) �� An−1)i∈[n],i�=k is an (n, k)-horn of A such
that ∂i◦ϕ−1(b) = fn−1◦ϕ−1(xi): indeed, by the naturality of ϕ−1,

∂i◦ϕ−1(b) = ϕ−1(Υ∂i◦b) = ϕ−1(Υfn−1◦xi) = fn−1◦ϕ−1(xi).

Since f is Kan, we get a regular epimorphism p1 : Y1
�� Φ(X) and a map a1 : Y1

�� An such that fn◦a1 = ϕ−1(b)◦p1 and ∂i◦a1 = ϕ−1(xi)◦p1, for i �= k. Now consider the
pullback square

Y
p ��

z
��

X

ζΦ(X)

��
Υ(Y1) Υp1

� �� ΥΦ(X).
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Because Set is regular, p is a regular epimorphism. Put a = Υa1◦z : Y �� Υ(An); then
p and a are the required maps:

Υfn◦a = Υfn◦Υa1◦z

= Υ(fn◦a1)◦z

= Υ(ϕ−1(b)◦p1)◦z

= Υϕ−1(b)◦Υp1◦z

= Υϕ−1(b)◦ζΦ(X)◦p

= ϕϕ−1(b)◦p

= b◦p

and, similarly, Υ∂i◦a = Υxi◦p, for all i �= k.

We recall some basic definitions and observations from [14]. In a category with finite
limits, a relation R : A �� B from A to B is a subobject (d0, d1) : R �� A × B. If a
map (f, g) : X �� A × B factorizes through (d0, d1), then the map h : X �� R with
(f, g) = (d0, d1)◦h is necessarily unique; we will denote the situation by g(R)f . SR : A

�� C denotes the composition of a relation R : A �� B with a relation S : B �� C.

4.3. Proposition. [14, Proposition 2.1] Let A be a regular category.

1. A map b : X �� B factorizes through the image of a map f : A �� B if and
only if there is a regular epimorphism p : Y �� X and a map a : Y �� A with
b◦p = f ◦a;

2. given relations R : A �� B and S : B �� C and maps a : X �� A and c : X
�� C, c(SR)a if and only if there is a regular epimorphism p : Y �� X and a

map b : Y �� B with b(R)a◦p and c◦p(S)b.

Recall from [15] and [14] that a finitely complete category is called Mal’cev, if every
reflexive relation is an equivalence relation. It follows from 2. that in a regular category,
the composition of relations is associative. A regular category is Mal’cev if and only
if the composition of equivalence relations is commutative [14], i.e. when for any two
equivalence relations S and R on an object X the equality SR = RS holds. Every finitely
complete protomodular (hence, a fortiori, every semi-abelian) category is Mal’cev [8]. In
a regular Mal’cev category, the equivalence relations on a given object X constitute a
lattice, the join of two equivalence relations being their composition.

Carboni, Kelly and Pedicchio extend the classical result of Moore that any simplicial
group is Kan: in [14], it is proven that any simplicial object in a regular Mal’cev category
is Kan. This property is even seen to characterize the Mal’cev categories among the
regular ones. We will add that any regular epimorphism between simplicial objects in a
regular Mal’cev category is a Kan fibration.
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4.4. Proposition. [14, Theorem 4.2] Let A be a regular Mal’cev category. Then

1. every simplicial object K of A is Kan;

2. if f : A �� B is a regular epimorphism between simplicial objects of A, then it is
a Kan fibration.

Proof. In our proof of 2. we will repeatedly use Proposition 4.3. For n ≥ 1 and k ∈ [n],
let

x = (xi : X �� An−1)i∈[n],i�=k

be an (n, k)-horn of A and let b : X �� Bn be a map with ∂i◦b = fn−1◦xi, for i ∈ [n]
and i �= k. Because fn is regular epi, there is a regular epimorphism p1 : Y1

�� X and a
map c : Y1

�� An with fn◦c = b◦p1. For i ∈ [n] and i �= k, put ci = ∂i◦c : Y1
�� An−1.

Let R[f ] denote the kernel relation of f . Now

fn−1◦ci = fn−1◦∂i◦c = ∂i◦fn◦c = ∂i◦b◦p1 = fn−1◦xi◦p1,

and, consequently, ci(R[fn−1])xi◦p1. By the simplicial identities, this defines an (n, k)-horn

((ci, xi◦p1) : Y1
�� An−1)i∈[n],i�=k

of R[f ]. This simplicial object being Kan yields a regular epimorphism p2 : Y2
�� Y1

and a (d, e) : Y2
�� R[f ]n such that ∂i◦d = ci◦p2 and ∂i◦e = xi◦p1◦p2, for i ∈ [n] and

i �= k, and fn◦d = fn◦e. Thus, c◦p2(D)d, where D is the equivalence relation
∧
i∈[n],i�=kDi

and Di is the kernel relation of ∂i : An �� An−1. It follows that c◦p2(DR[fn])e. By the
Mal’cev property, DR[fn] is equal to R[fn]D. This, in turn, implies that there exists a
regular epimorphism p3 : Y �� Y2 and a map a : Y �� An such that a(D)e◦p3 and
c◦p2◦p3(R[fn])a. The required maps are now a and p = p1◦p2◦p3 : Y �� X: indeed,
fn◦a = fn◦c◦p2◦p3 = b◦p and ∂i◦a = ∂i◦e◦p3 = xi◦p.

5. Implications of the Kan condition

In this section we consider two important implications of Proposition 4.4. First we show
that for a simplicial object A of A, being Kan implies that HnA is abelian (n ≥ 1). Next
we prove that N : SA �� PChA is an exact functor. This is an implication of the fact
that every regular epimorphism between simplicial objects is a Kan fibration. Finally,
using the exactness of N , we prove that every short exact sequence of simplicial objects
induces a long exact homology sequence (Corollary 5.7). We obtain it as an immediate
consequence of Proposition 2.4.

Let A be a Kan simplicial object in a regular category A and n ≥ 1. Recall from
Remark 3.3 the notation ZnA = K[dn] =

⋂n
i=0K[∂i]. We write zn : ZnA �� An for

the inclusion
⋂n
i=0 Ker ∂i. Basing ourselves on Weibel [31], we say that morphisms x : X

�� ZnA and x′ : X ′ �� ZnA are homotopic, and write x ∼ x′, if there is an arrow
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y : Y �� An+1 (called a homotopy from x to x′) and regular epimorphisms p : Y �� X
and p′ : Y �� X ′ such that

∂i◦y =




0, if i < n;

zn◦x◦p, if i = n;

zn◦x′◦p′, if i = n+ 1.

5.1. Proposition. Let A be a Kan simplicial object in a regular category A. For
n ≥ 1, ∼ defines an equivalence relation on the class of arrows x : X �� ZnA in A with
codomain ZnA.

Proof. Due to to fact that A is Kan, the proof of 8.3.1 in Weibel [31] may be copied:
one just considers arrows with codomain An instead of elements of An and reads “0”
instead of “∗”.

In Borceux and Bourn [5] and Borceux [3] a notion of commutator is introduced which
generalizes a definition by Huq [23]. It is based on a construction due to Bourn [6]. Other
notions of commutator exist; we use this one because it allows us to take the commutator
of subobjects which are not necessarily kernels.

5.2. Definition. [6, Proposition 1.9, 3, Definition 6.4] In a semi-abelian category A,
let f : A �� C and g : B �� C be two morphisms with the same codomain. Then the
arrow ψ, obtained by taking the colimit of the diagram of solid arrows

A×B DD C,

A

A×B

(1A,0)

��		
		

		
		

		
		

	
A

D
��

A

C,

f

��























A×B D
ϕ ��A×B

B

��

(0,1B)






















 D C,�� ψ

D

B

�� C,

B

��

g

		
		

		
		

		
		

	
(H)

is a regular epimorphism. The kernel of ψ is denoted [f, g] and called the commutator of
f and g. An object A of A is called abelian if [1A, 1A] = 0.

Note that the above colimit exists, as a semi-abelian category has all finite limits. Re-
call, furthermore, that, in a semi-abelian category, all regular epimorphisms are cokernels,
hence D = C/[f, g].

Proposition 9 of [9] states that an object is abelian if and only if it can be provided
with the structure of an internal abelian group. The full subcategory AAb of all abelian
objects is a Birkhoff subcategory of A [3, Theorem 7.1 and 7.2]. The component at an
object A of A of the unit of the adjunction is given by ψ : A �� D = A/[1A, 1A].
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5.3. Notation. In a regular category A, consider a monomorphism m : A1
�� A and

a regular epimorphism p : A �� B. Taking the image factorization

A1
��

m

��

� �� pA1
��
p(m)

��
A p

� �� B

of p◦m yields a monomorphism p(m) : pA1
�� B called the direct image of m along p.

In our proof of Theorem 5.5 we need the following properties of the commutator [f, g].

5.4. Proposition. In a semi-abelian category A, let f : A �� C and g : B �� C
be two morphisms with the same codomain.

1. If f or g is 0 then [f, g] = 0.

2. For any regular epimorphism p : C �� C ′, p[f, g] = [p◦f, p◦g]. This means that
there exists a regular epimorphism p such that the square

[f, g]
���

��

p � �� [p◦f, p◦g]
���

��
C p

� �� C ′

commutes.

3. If k : A �� C is a kernel, then [k, k] factors over A, and A/[k, k] is an abelian
object of A.

Proof. 1. is obvious. The rest of the proof is based on Huq [23, Proposition 4.1.4].
As in Definition 5.2, let ψ : C �� D and ϕ : A × B �� D, resp. ψ′ : C ′ �� D′ and
ϕ′ : A×B �� D′, denote the couniversal arrows obtained from the construction of [f, g]
and [p◦f, p◦g]. Then

A×B D′D′ C,

A

A×B

(1A,0)

��		
		

		
		

		
		

	
A

D′

ψ′◦p◦f

��

A

C,

f

��























A×B D′ϕ′
��A×B

B

��

(0,1B)






















 D′ C,�� ψ′◦p

D′

B

��

ψ′◦p◦g

C,

B

��

g
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is a cocone on the diagram of solid arrows H. The couniversal property of colimits yields
a unique map d : D �� D′. In the commutative diagram of solid arrows

0 D��

d

��

C
ψ���

p

��

[f, g]

p

��

���Kerψ�� 0��

0 D′�� C ′
ψ′

��� [p◦f, p◦g]���
Kerψ′
�� 0,��

there exits a unique map p : [f, g] �� [p◦f, p◦g] such that the right hand square com-
mutes.

For 2. we must show that if p is a regular epimorphism, then so is p. To do so, we
prove that k = Kerψ′◦Im p is a kernel of ψ′. By the Non-Effective Trace of the 3 × 3
Lemma 3.5, k is a kernel; hence, it is sufficient that ψ′ be a cokernel of k.

Let z : C ′ �� Z be a map such that z◦k = 0. Then z◦p◦Kerψ = 0, which yields a
map y : D �� Z with y◦ψ = z◦p. We get the following cocone.

A×B ZZ C ′

A

A×B

(1A,0)

��		
		

		
		

		
		

	
A

Z

z◦p◦f

��

A

C ′

p◦f

��























A×B Z
y◦ϕ ��A×B

B

��

(0,1B)






















 Z C ′�� z

Z

B

��

z◦p◦g

C ′

B

��

p◦g
		

		
		

		
		

		
	

Thus we acquire an arrow x : D′ �� Z such that x◦ψ′ = z.

[1A, 1A] is a subobject of [k, k]: take p = k and f = g = 1A in the discussion above.
Hence, using that A/[1A, 1A] is abelian and that AAb is closed under quotients (by defi-
nition of a Birkhoff subcategory), the first statement of 3. implies the second one. This
first statement follows from the fact that

A× A Cok[k]Cok[k] C,

A

A× A

(1A,0)

��		
		

		
		

		
		

	
A

Cok[k]

0

��

A

C,

k

��























A× A Cok[k]
0 ��A× A

A

��

(0,1A)






















 Cok[k] C,�� Coker k

Cok[k]

A

��

0

C,

A

��

k
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is a cocone. Thus a map may be found such that the right hand square in

0 �� [k, k]

i

��

� �� �� C
ψ � �� C

[k,k]

��

�� 0

0 �� A
� ��

k
�� C

Coker k

� �� Cok[k] �� 0

commutes, whence the map i.

The following was suggested to us by Dominique Bourn. A more conceptual proof of
this theorem may be found in his forthcoming paper [12]. It is well-known to hold in case
A is the category Gp of groups.

5.5. Theorem. Let A be a simplicial object in a semi-abelian category A. For all n ≥ 1,
HnA is an abelian object of A.

Proof. Let n ≥ 1. Consider the subobjects kn : Kn = [zn, zn] �� An of An and

sn : Sn = [σn−1◦zn, σn◦zn] �� An+1

of An+1. By the second statement of Proposition 5.4,

∂iSn = [∂i◦σn−1◦zn, ∂i◦σn◦zn],

for 0 ≤ i ≤ n+1. Hence, by the simplicial identities and the first statement of Proposition
5.4, ∂iSn = 0, for i �= n, and ∂nSn = [zn, zn] = Kn. This last equality means that there
exists a regular epimorphism filling the square

Sn���
sn

��

� �� Kn���
kn

��
An+1 ∂n

� �� An.

By the third statement of Proposition 5.4, there is a map ln : Kn
�� ZnA such that

zn◦ln = kn. It follows that ln ∼ 0. Now, by Proposition 4.4, A is Kan; hence, Proposition
5.1 implies that 0 ∼ ln. Thus there exists a morphism x : X �� An+1 and a regular
epimorphism p : X �� Kn such that ∂n+1◦x = zn◦ln◦p, i.e. the outer rectangle in

X
x ��

p

���

q
��

An+1

∂n+1

��
(I)

Nn+1A
� ��

⋂n
i=1 Ker ∂i

����������

d′n+1

��
Kn

� ��
ln

�� ZnA
� ��

zn
�� An
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commutes, and such that, moreover, ∂i◦x = 0, for i �= n + 1. It follows that an arrow q
exists such that, in the diagram above, the triangle commutes. As zn is a monomorphism,
we get the commutativity of the trapezium (I). Now, in the diagram with exact rows

X

(I)q

��

p � �� Kn
� �� ln �� ZnA

� �� ZnA
Kn

r

��

�� 0

Nn+1A
d′n+1

�� ZnA
� �� HnA �� 0,

an arrow r exists such that the right hand square commutes. Indeed, as p is an epi-
morphism, Coker (ln◦p) = Coker ln. This map r is a regular epimorphism. Since, by
Proposition 5.4, ZnA/Kn = ZnA/[zn, zn] is an abelian object, and since a quotient of an
abelian object of A is abelian, so is the object HnA.

Recall from Remark 3.4 that N preserves kernels. If the category A is regular Mal’cev,
Proposition 4.4 implies that N preserves regular epimorphisms. If, moreover, A is proto-
modular, all regular epimorphisms are cokernels, and we obtain

5.6. Proposition. If A is a pointed, regular and protomodular category, then the
functor N : SA �� PChA is exact.

Proof. We prove that N preserves regular epimorphisms. Therefore, let f : A �� B
be a regular epimorphism between simplicial objects of A. Then N0f = f0 is regular epi,
as well as Nnf = 0 : 0 �� 0, for n < 0. For n ≥ 1, let b : X �� NnB be a map.
We are to show—see Proposition 4.3—that there is a regular epimorphism p : Y �� X
and a map a : Y �� NnA with b◦p = Nnf ◦a. Now (xi = 0 : X �� An−1)i∈[n−1] is an
(n, n)-horn of A with ∂i◦

⋂
i∈[n−1] Ker ∂i◦b = 0 = fn−1◦xi, for i ∈ [n − 1]. By Proposition

4.4, f is a Kan fibration, which implies that there is a regular epimorphism p : Y �� X
and a map a′ : Y �� An such that fn◦a′ =

⋂
i∈[n−1] Ker ∂i◦b◦p and ∂i◦a′ = xi◦p. Then

the unique factorization a : Y �� NnA of a′ over
⋂
i∈[n−1] Ker ∂i : NnA �� An is the

required map.

Proposition 2.4 may now immediately be extended to simplicial objects.

5.7. Corollary. Let A be a pointed, exact and protomodular category. Any short
exact sequence of simplicial objects

0 �� A′′ � �� �� A′ � �� A �� 0

gives rise to a long exact sequence of homology objects

. . . �� Hn+1A
δn+1 �� HnA

′′ �� HnA
′ �� HnA

δn �� Hn−1A
′′ �� . . .

. . . �� H1A δ1
�� H0A

′′ �� H0A
′ � �� H0A δ0

�� 0
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which depends naturally on the given short exact sequence of simplicial objects. If A is
semi-abelian then, except for the lowest three terms H0A

′′, H0A
′ and H0A, all of its terms

are abelian objects of A.

Although we shall not use it, we think it worth mentioning that this result can be
formulated in terms of homological δ-functors. By a (universal) homological δ-functor
between pointed, exact and protomodular categories A and B we mean a collection of
functors (Tn : A �� B)n∈N which preserve binary products, together with a collection of
connecting morphisms (δn)n∈N as in [31, Definition 2.1.1 and 2.1.4].

5.8. Notation. For any simplicial object A in A, let us denote by A− the simplicial
object defined by A−

n = An+1, ∂
−
i = ∂i : An+1

�� An, and σ−
i = σi : An+1

�� An+2, for
i ∈ [n], n ∈ N. This is the simplicial object obtained from A by leaving out A0 and, for
n ∈ N, all ∂n : An �� An−1 and σn : An �� An+1. Observe that ∂ = (∂n+1)n defines a
simplicial morphism from A− to A. Furthermore, remark that the augmented simplicial
object ∂0 : A− �� A0 is contractible—for n ≥ −1, put fn = σn+1 : An+1

�� An+2.

5.9. Proposition. Let A be a pointed, exact and protomodular category. The sequence
of functors (Hn : SA �� A)n∈N, together with the connecting morphisms (δn)n∈N, form
a universal homological δ-functor.

Proof. To prove that a functor Hn : SA �� A preserves binary products, it suffices
that, for proper complexes C and C ′ in A, Hn(C×C ′) = HnC×HnC

′. One shows this by
using that for f and f ′ proper, Coker (f × f ′) = Coker f ×Coker f ′. This follows from the
fact that in any regular category, a product of two regular epimorphisms is regular epi.
The universality is proven by modifying the proof of Theorem 2.4.7 in [31], replacing, for
a simplicial object A, the projective object P by A−.

6. Cotriple homology and Hopf’s formula

The aim of this section is to prove our generalized Hopf formula (Theorem 6.9) and our
version of the Stallings-Stammbach sequence (Corollary 6.10).

We recall from Barr and Beck [1] (or Weibel [31]) the definition of cotriple homology,
and slightly generalize it to categories that are pointed, exact and protomodular. Let A
be an arbitrary category. A comonad G on A will be denoted by

G = (G : A �� A, ε : G �� 1A, δ : G �� G2).

For any object X of A, recall that the axioms of comonad state that εGX◦δX = GεX◦δX =
1GX and δGX◦δX = GδX◦δX . Putting

∂i = GiεGn−iX : Gn+1X �� GnX and σi = GiδGn−iX : Gn+1X �� Gn+2X,

for 0 ≤ i ≤ n, makes the sequence (Gn+1X)n∈N a simplicial object GX of A. This induces
a functor A �� SA, which, when confusion is unlikely, will be denoted by G.
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6.1. Definition. Let G be a comonad on a category A. Let B be a pointed, exact and
protomodular category and U : A �� B a functor. We say that the object

Hn(X,U)G = Hn−1NU(GX)

is the n-th homology object of X with coefficients in U relative to the cotriple G. This
defines a functor Hn(·, U)G : A �� B, for any n ∈ N0.

We now make the following assumptions:

1. U is the reflector of a semi-abelian category A onto a Birkhoff subcategory B (which
is itself semi-abelian—see [18]);

2. A is monadic over Set;

3. G = (G : A �� A, ε : G �� 1A, δ : G �� G2) is the resulting comonad on A.

Let Υ : A �� Set and Φ : Set �� A denote the respective right and left adjoint
functors and ε : Φ◦Υ �� 1A and ζ : 1Set

�� Υ◦Φ the counit and unit. Then G = Φ◦Υ, ε
is just the counit and δ is the natural transformation defined by δX = ΦζΥ(X), for X ∈ A.

6.2. Remark. The requirement that A be monadic over Set implies that A is complete,
cocomplete and exact (see e.g. Borceux [4, Theorem II.4.3.5]); hence, if A is, moreover,
pointed and protomodular, it is semi-abelian.

Reciprocally, any variety of algebras over Set is monadic—see e.g. Cohn [17], Borceux
[4] or Mac Lane [27]—and thus semi-abelian varieties form an example of the situation
considered. A characterisation of such varieties of algebras over Set is given by Bourn
and Janelidze in their paper [13]. More generally, in [19], Gran and Rosický characterize
semi-abelian categories, monadic over Set.

6.3. Remark. Note that, by Beck’s Theorem, the monadicity of Υ implies that for any
object X of A, the diagram

G2X
GεX ��
εGX

�� GX
εX �� X (I)

is a coequalizer (see, for instance, the proof of Theorem VI.7.1 in [27], or Lemma II.4.3.3
in [4]).

6.4. Remark. Because the forgetful functor Υ : A �� Set preserves regular epi-
morphisms (again Borceux [4, Theorem II.4.3.5]) and because, in Set, every object is
projective, A is easily seen to have enough projectives. In particular, any GX is pro-
jective. Accordingly, for any object X of A, the map εX : GX �� X is a projective
presentation, the “G-free” presentation of X.

Recalling Corollary 4.7 in [18], we get that ∆V (GX) = 0.

The following characterization of H1(X,U)G is an immediate consequence of Proposi-
tion 3.9.
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6.5. Proposition. For any object X of A, H1(X,U)G
∼= U(X).

Proof. On one hand, H1(X,U)G = H0NU(GX) is a cokernel of UGεX◦KerUεGX . On
the other hand, I is a coequalizer diagram, and U preserves coequalizers. Since, moreover,
the map UδX : UGX �� UG2X is a splitting for both UGεX and UεGX , Proposition
3.9 applies, and U(X) is a cokernel of UGεX◦KerUεGX as well.

In the proof of Theorem 6.9, we will need some basic facts concerning the Quillen
model structure (SSet, fib, cof,we) on the category of simplicial sets and simplicial maps.
For a complete description of this model category and its properties we refer the reader
to Quillen [28] and Hovey [22]. We shall, however, only use the following. fib, cof and
we are classes of morphisms of SSet, respectively called fibrations, cofibrations and weak
equivalences, subject to certain axioms. Any simplicial set X is cofibrant, meaning that
the unique map ∅ �� X from the initial object to X is in cof. Dually, a simplicial set
X is fibrant, meaning that the unique map X �� ∗ from X to the terminal object is in
fib, if and only if it is Kan. More generally, a simplicial map is a fibration precisely when
it is a Kan fibration. Any contractible augmented simplicial set ε : A �� A−1 gives
rise to a weak equivalence ε : A �� A−1. Here A−1 denotes the constant functor ∆op

�� Set mapping every object of ∆op to A−1 and every morphism to 1A−1 . Conversely, if
ε : A �� A−1 is a weak equivalence, then ε : A �� A−1 is contractible. The category
of simplicial objects in the category Set∗ of pointed sets and basepoint-preserving maps
has a model structure, induced by the one on SSet, as follows: a pointed simplicial map
is a fibration, cofibration or weak equivalence if and only if it is in SSet. Finally, we need
the following

6.6. Lemma. [28, Proposition I.3.5] Let (C, fib, cof,we) be a pointed model category. If,
in the diagram

K[p]

γ

��

� ��Ker p �� E

β

��

p �� B

α

��
K[p′] � ��

Ker p′
�� E ′

p′
�� B′

of C, every object is both fibrant and cofibrant, p and p′ are fibrations, and α and β are
weak equivalences, then the induced map γ is a weak equivalence.

Keeping in mind that a functor category Fun(C,A) has the limits and colimits of A,
computed pointwise, the following follows immediately from the definitions.

6.7. Lemma. Let C be a small category, A a semi-abelian category and U : A �� B a
reflector onto a Birkhoff subcategory B of A. Then

1. the functor category Fun(C,A) is semi-abelian;

2. Fun(C,PrA) = PrFun(C,A);

3. Fun(C,B) is a Birkhoff subcategory of Fun(C,A);
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4. the functor Fun(C, U) = U◦(·) : Fun(C,A) �� Fun(C,B) is its reflector;

5. V
Fun(C,B)
1 = Fun

(C, V B
1

)
: Fun(C,PrA) �� Fun(C,A), where V Fun(C,B) and V B are

the Birkhoff subfunctors associated with Fun(C,B) and B, respectively.

These properties hold, in particular, when C is ∆op, i.e. when all functor categories are
categories of simplicial objects and simplicial maps.

6.8. Remark. By the way of obtaining the sequence A from the given short exact
sequence—applying the Snake Lemma, see [18]—we get that the square in

0 �� V1f
� �� �� K���

��

� �� K
V1f

��

��

0

A ηA

� �� U(A)

is commutative.

6.9. Theorem. For any object X of A, H2(X,U)G
∼= ∆V (X).

Proof. By Remark 6.4, the tail of the exact sequence A, induced by the short exact
sequence

0 �� K[εX ] � �� Ker εX �� GX
εX � �� X �� 0,

becomes

0 �� ∆V (X) � �� �� K[εX ]
V1εX

ψ �� UGX.

Keeping in mind Lemma 6.7, note that UGεX : UGGX �� UGX is a presentation in
SA. By Remark 6.4, ∆VGX is zero: it can be computed pointwise and every (GX)n is
projective. Hence, Theorem 1.2 induces the exact sequence

0 �� K[GεX ]
V1GεX

� �� KerUGεX �� UGGX
UGεX � �� UGX �� 0

of simplicial objects in B. Now Corollary 5.7 implies that

0 �� H2(X,U)G

� �� �� H0
K[GεX ]
V1GεX

ϕ �� UGX (J)

is an exact sequence in B. Indeed, recalling the notation from 5.8, as GGX = (GX)−,
εGX : GGX �� GX is a contractible augmented simplicial object. Proposition 3.11
implies that H1UGGX = 0 and H0UGGX = UGX.

Accordingly, ∆V (X) is a kernel of ψ and H2(X,U)G is a kernel of ϕ. We prove that
ψ and ϕ are equal.
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Consider the following diagram, where the κi are the face operators of K[GεX ] and κ
is defined as K(εGX), as pictured in diagram L below.

0 �� V1G
2εX

� �� ��

V1(GεGX ,GεX)

��

V1(εG2X ,εGX)

��

K[G2εX ] � ��

κ1

��
κ0

��

K[G2εX ]
V1G2εX

��

κ1
V1(GεGX,GεX )

��

κ0
V1(ε

G2X
,εGX )

��

0

0 �� V1GεX
� �� ��

V1(εGX ,εX)
���

K[GεX ]
p � ��

(I)κ

��

K[GεX ]
V1GεX

��

κ
V1(εGX,εX )

��

0

0 �� V1εX
� �� �� K[εX ] q

� �� K[εX ]
V1εX

�� 0

(K)

We claim that, if the middle fork in K is a coequalizer diagram, then ϕ equals ψ. Indeed,
by Remark 6.3 and Proposition 3.9, the square

G2X
GεX � ��

εGX
���

GX

εX
���

GX εX

� �� X

is a pushout; Proposition 5.1 and 5.2 of [18] now imply that V1(εGX , εX) is a regular
epimorphism. We get that (I) is a pushout. Hence, if the middle fork is a coequalizer
diagram, so is the right fork, and then Corollary 3.10 implies that

K[εX ]

V1εX
= H0

K[GεX ]

V1GεX
.

Consequently, using the functoriality of H0, we get that ϕ is the unique morphism such
that the right hand square (III) in the diagram

K[GεX ]

(II)

p � ��
���

KerGεX

��

K[GεX ]
V1GεX

(III)

κ
V1(εGX,εX ) � ��

���
KerUGεX

��

K[εX ]
V1εX

ϕ

��
G2X ηG2X

� �� UG2X UεGX

� �� UGX

commutes. By Remark 6.8, also the square (II) is commutative. Further note—again
using Remark 6.8—that ψ is unique in making

K[εX ]
���

Ker εX
��

q � �� K[εX ]
V1εX

ψ

��
GX ηGX

� �� UGX
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commute. Now

ϕ◦ κ
V1(εGX ,εX)

◦p = UεGX◦ηG2X◦KerGεX

= ηGX◦εGX◦KerGεX

= ηGX◦Ker εX◦κ

= ψ◦q◦κ

= ψ◦ κ
V1(εGX ,εX)

◦p,

where the second equality follows from the naturality of η, and the third one holds by
definition of κ. This proves our claim that ϕ = ψ.

To see that the middle fork in diagram K is indeed a coequalizer diagram, note that
it is defined by the exactness of the rows in the diagram

0 �� K[GεX ] � �� ��

κ

��

GGX
GεX � ��

εGX
���

GX ��

εX
���

0

0 �� K[εX ] � �� �� GX εX

� �� X �� 0.

(L)

(Read it as a diagram in A.) Since A is a pointed category, we get a diagram of pointed
simplicial sets

0 �� ΥK[GεX ] � �� ��

Υκ
��

ΥGGX
ΥGεX ��

ΥεGX

��

ΥGX

ΥεX
��

0 �� ΥK[εX ]
� �� �� ΥGX ΥεX

�� ΥX.

(M)

Indeed, as a right adjoint functor, Υ preserves limits, so Υ(0) is a terminal object ∗ of
Set. Moreover, the rows of Diagram M are exact. Considered as unpointed augmented
simplicial sets, ΥεX : ΥGX �� ΥX and ΥεGX : ΥGGX �� ΥGX are contractible:
e.g. for the first one, a contraction is defined by fn = ζΥGn+1X , where ζ : 1A �� Φ◦Υ is
the unit of the adjunction Set ⇀ A. (This is Proposition 5.3 of Barr and Beck [1].) It
follows that ΥεX and ΥεGX are weak equivalences of SSet and, consequently, also of SSet∗.
Furthermore, Proposition 4.4 and Proposition 4.2 imply that ΥGεX and ΥεX are fibrations
between fibrant objects. Now Lemma 6.6 applies, and Υκ is a weak equivalence. But this
means that Υκ : ΥK[GεX ] �� ΥK[εX ] is a contractible augmented simplicial object,
and then Beck’s Theorem implies (see, again, the proof of Theorem VI.7.1 in Mac Lane
[27] or Lemma II.4.3.3 in Borceux [4]) that the middle fork in K is a coequalizer.

Combining Theorems 1.2 and 6.9 yields the following generalization of the Stallings-
Stammbach sequence.

6.10. Corollary. Let

0 �� K
� �� �� A

f � �� B �� 0
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be a short exact sequence in A. There exists an exact sequence

H2(A,U)G

H2(f,U)G �� H2(B,U)G
�� K
V1f

�� H1(A,U)G

H1(f,U)G � �� H1(B,U)G
�� 0

in B which depends naturally on the given short exact sequence.

6.11. Example. [Crossed modules] Recall that a crossed module (T,G, ∂) is a group
homomorphism ∂ : T �� G together with an action of G on T (mapping a couple
(g, t) ∈ G× T to gt ∈ T ) satisfying

1. ∂(gt) = g∂tg−1, for all g ∈ G, t ∈ T ;

2. ∂ts = tst−1, for all s, t ∈ T .

A morphism of crossed modules (f, φ) : (T,G, ∂) �� (T ′, G′, ∂′) is a pair of group
homomorphisms f : T �� T ′, φ : G �� G′ with

1. ∂′◦f = φ◦∂;

2. f(gt) =φ(g) f(t), for all g ∈ G, t ∈ T .

It is well known that CM is equivalent to a variety of Ω-groups, namely to the variety
of 1-categorical groups (see Loday [26]). Hence, it is semi-abelian [25]. Moreover, under
this equivalence, a crossed module (T,G, ∂) corresponds to the semidirect product G� T
equipped with the two appropriate homomorphisms. G � T and G × T have the same
underlying set; thus the forgetful functor U : CM �� Set sends a crossed module (T,G, ∂)
to the product T ×G of its underlying sets. This determines a comonad G on CM. We get
the cotriple homology of crossed modules described by Carrasco, Cegarra and Grandjeán
in [16] as a particular case of Definition 6.1 by putting U the usual abelianization functor
ab : CM �� CMAb (as defined for Ω-groups, see Higgins [20]).

In [16], Carrasco, Cegarra and Grandjeán give an explicit proof that

[
(T,G, ∂), (T,G, ∂)

]
= V (T,G, ∂)

equals ([T,G], [G,G], ∂). For any crossed module (T,G, ∂), and any two normal subgroups
K � G, S � T , let [K,S] denote the (normal) subgroup of T generated by the elements
(ks)s−1, for k ∈ K, s ∈ S. It may be shown that, for (N,R, ∂) � (Q,F, ∂),

[
(N,R, ∂), (Q,F, ∂)

]
= V1

(
(Q,F, ∂) �� (Q,F,∂)

(N,R,∂)

)

is equal to ([R,Q][F,N ], [R,F ], ∂), but the proof involves somewhat fussy calculations, so
will be omitted.

We recall the definition from [16]. Let (T,G, ∂) be a crossed module and n ≥ 1. The
n-th homology object Hn(T,G, ∂) of (T,G, ∂) is

Hn−1CG(T,G, ∂)ab.
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Here CG(T,G, ∂)ab is the unnormalized chain complex associated with G(T,G, ∂)ab, de-
fined by (CG(T,G, ∂)ab)n = (G(T,G, ∂)ab)n and

dn = ∂ab
0 − ∂ab

1 + . . .+ (−1)n∂ab
n .

G(T,G, ∂)ab denotes the simplicial abelian crossed module ab◦G(T,G, ∂). The ∂ab
i are its

face operators.
CG(T,G, ∂)ab need not be the same as NG(T,G, ∂)ab. However, their homology ob-

jects are equal, since G(T,G, ∂)ab is a simplicial object in the abelian category CMAb (see,
for instance, Weibel [31, Theorem 8.3.8]). Hence Hn(T,G, ∂) = Hn((T,G, ∂), ab)G.

The Hopf formula obtained in [16, Theorem 13 and above] is a particularization of our
Theorem 6.9. In this particular case, the exact sequence of Corollary 6.10 becomes the
exact sequence of [16, Theorem 12 (i)].

6.12. Example. [Groups] It is shown in [16, Theorem 10] that cotriple homology of
crossed modules encompasses classical group homology; hence, so does our theory. If

0 �� R
� �� �� F

� �� G �� 0

is a presentation of a group G by generators and relations, U : Gp �� GpAb = Ab is the
abelianization functor and G the “free group on a set”-monad, the sequence in Corollary
6.10 becomes the Stallings-Stammbach sequence in integral homology of groups [29], [30].
The isomorphism in Theorem 6.9 is nothing but Hopf’s formula [21]

H2(G,U)G
∼= R ∩ [F, F ]

[R,F ]
.
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