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VERTICALLY ITERATED CLASSICAL ENRICHMENT

STEFAN FORCEY

Abstract. Lyubashenko has described enriched 2-categories as categories enriched
over V-Cat, the 2-category of categories enriched over a symmetric monoidal V. This
construction is the strict analogue for V-functors in V-Cat of Brian Day’s probicategories
for V-modules in V-Mod. Here I generalize the strict version to enriched n-categories
for k-fold monoidal V. The latter is defined as by Balteanu, Fiedorowicz, Schwänzl and
Vogt but with the addition of making visible the coherent associators αi. The symmetric
case can easily be recovered. This paper proposes a recursive definition of V-n-categories
and their morphisms. We show that for V k-fold monoidal the structure of a (k−n)-fold
monoidal strict (n + 1)-category is possessed by V-n-Cat. This article is a completion
of the work begun in [Forcey, 2003], and the initial sections duplicate the beginning of
that paper.

1. Introduction

There is an ongoing massive effort by many researchers to link category theory and ge-
ometry, just a part of the broad undertaking known as categorification as described by
Baez and Dolan in [Baez and Dolan, 1998]. This effort has as a partial goal that of under-
standing the categories and functors that correspond to loop spaces and their associated
topological functors. Progress towards this goal has been advanced greatly by the recent
work of Balteanu, Fiedorowicz, Schwänzl, and Vogt in [Balteanu et.al, 2003] where they
show a direct correspondence between k-fold monoidal categories and k-fold loop spaces
through the categorical nerve.

As I pursued part of a plan to relate the enrichment functor to topology, I noticed
that the concept of higher dimensional enrichment would be important in its relationship
to double, triple and further iterations of delooping. The concept of enrichment over a
monoidal category is well known, and enriching over the category of categories enriched
over a monoidal category is defined, for the case of symmetric categories, in the paper on
A∞-categories by Lyubashenko, [Lyubashenko, 2003]. In the case of V closed, symmetric,
and cocomplete these are equivalent to the probicategories described in a preprint of
Day. The latter are many-object versions of special cases of the promonoidal categories
Day defines in [Day, 1970]. It seems that it is a good idea to generalize Lyubashenko’s
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definition first to the case of an iterated monoidal base category and then to define V-
(n + 1)-categories as categories enriched over V-n-Cat, the (k − n)-fold monoidal strict
(n + 1)-category of V-n-categories where k > n ∈ N. Of course the facts implicit in this
last statement must be verified.

The adjective “vertical” in the title is meant to distinguish this sort of iteration from
another possibility: that of restricting attention to the monoids in V-Cat. These are
monoidal V-categories, or one-object V-2-categories. Also these can be viewed as en-
riched categories with monoidal underlying categories, and enrichment over a monoidal
V-category turns out to be enrichment over that underlying category. Iteration of the
enrichment in that sense will be arbitrarily referred to as horizontal. For now we consider
the “perpendicular” direction.

At each stage of successive enrichments, the number of monoidal products should
decrease and the categorical dimension should increase, both by one. This is motivated
by topology. When we consider the loop space of a topological space, we see that paths
(or 1-cells) in the original are now points (or objects) in the derived space. There is
also now automatically a product structure on the points in the derived space, where
multiplication is given by concatenation of loops. Delooping is the inverse functor here,
and thus involves shifting objects to the status of 1-cells and decreasing the number of
ways to multiply.

The concept of a k-fold monoidal strict n-category is easy enough to define as a tensor
object in a category of (k − 1)-fold monoidal n-categories with cartesian product. Thus
the products and accompanying associator and interchange transformations are strict n-
functors and n-natural transformations respectively. That this sort of structure ((k− n)-
fold monoidal strict n + 1 category) is possessed by V-n-Cat for V k-fold monoidal is
shown for n = 1 and all k in my paper [Forcey, 2004]. The case n = 2 is shown in [Forcey,
2003] This paper completes the equation by presenting a full inductive proof covering all
n, k.

In general the decrease is engineered by a shift in index-we define new products V-n-
Cat×V-n-Cat �� V-n-Cat by using cartesian products of object sets and letting hom-
objects of the ith product of enriched n-categories be the (i+1)th product of hom-objects
of the component categories. Symbolically,

(A⊗(n)
i B)((A,B), (A′, B′)) = A(A,A′) ⊗(n−1)

i+1 B(B,B′).

The superscript (n) is not necessary since the product is defined by context, but I insert
it to make clear at what level of enrichment the product is occurring. Defining the
necessary natural transformations for this new product as “based upon” the old ones, and
the checking of the axioms that define their structure is briefly mentioned later on in this
paper and more fully described in [Forcey, 2004] for certain cases.

The definition of a category enriched over V-n-Cat is simply stated by describing
the process as enriching over V-n-Cat with the first of the k − n ordered products. In
section 2 we quickly review the necessary preliminary definitions just as in [Forcey, 2003].
In section 3 we define V-n-categories and V-n-functors, and in section 4 we discuss the
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change of base of enrichment in the k-fold monoidal context and the forgetful functors
thus derived. In section 5 we apply these results to prove a general theorem about the
categorical dimension of V-n-Cat and describe the specific higher morphisms that exist.

2. Review of Definitions

In this section I briefly review the definitions of a category enriched over a monoidal
category V , a category enriched over an iterated monoidal category, and an enriched 2-
category. I begin with the basic definitions of enrichment, included due to how often they
are referred to and followed as models in the rest of the paper. This first set of definitions
can be found with more detail in [Kelly, 1982] and [Eilenberg and Kelly, 1965].

2.1. Definition. For our purposes a monoidal category is a category V together with
a functor ⊗ : V × V �� V and an object I such that

1. ⊗ is associative up to the coherent natural transformations α. The coherence axiom
is given by the commuting pentagon

((U ⊗ V ) ⊗W ) ⊗X
αUV W⊗1X��

α(U⊗V )WX
��
��
��
�

�����
��
��

(U ⊗ (V ⊗W )) ⊗X

αU(V ⊗W )X

��
��

��
�

���
��

��
��

(U ⊗ V ) ⊗ (W ⊗X)

αUV (W⊗X)
���

���
���

�

����
���

���
��

U ⊗ ((V ⊗W ) ⊗X)

1U⊗αV WX
���

���
���

�

�����
���

���
�

U ⊗ (V ⊗ (W ⊗X))

2. I is a strict 2-sided unit for ⊗.

2.2. Definition. A (small) V -Category A is a set |A| of objects, a hom-object
A(A,B) ∈ |V| for each pair of objects of A, a family of composition morphisms MABC :
A(B,C)⊗A(A,B) �� A(A,C) for each triple of objects, and an identity element jA : I

�� A(A,A) for each object. The composition morphisms are subject to the associativity
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axiom which states that the following pentagon commutes

(A(C,D) ⊗A(B,C)) ⊗A(A,B) A(C,D) ⊗ (A(B,C) ⊗A(A,B))α ��(A(C,D) ⊗A(B,C)) ⊗A(A,B)

A(B,D) ⊗A(A,B)

M⊗1

����
��
��
��
��
�

A(C,D) ⊗ (A(B,C) ⊗A(A,B))

A(C,D) ⊗A(A,C)

1⊗M

���
��

��
��

��
��

A(B,D) ⊗A(A,B)

A(A,D))

M

����
���

���
���

���
���

���
��

A(C,D) ⊗A(A,C)

A(A,D))

M

		���
���

���
���

���
���

���
�

and to the unit axioms which state that both the triangles in the following diagram commute

I ⊗A(A,B)
=



���
����

����
����

��

jB⊗1

��

A(A,B) ⊗ I

1⊗jA

��

=
������

����
����

����
�

A(A,B)

A(B,B) ⊗A(A,B)

MABB



�����������������
A(A,B) ⊗A(A,A)

MAAB

�������������������

In general a V-category is directly analogous to an (ordinary) category enriched over
Set. If V = Set then these diagrams are the usual category axioms.

2.3. Definition. For V-categories A and B, a V-functor T : A �� B is a function
T : |A| �� |B| and a family of morphisms TAB : A(A,B) �� B(TA, TB) in V indexed
by pairs A,B ∈ |A|. The usual rules for a functor that state T (f ◦ g) = Tf ◦ Tg and
T1A = 1TA become in the enriched setting, respectively, the commuting diagrams

A(B,C) ⊗A(A,B) M ��

T⊗T
��

A(A,C)

T
��

B(TB, TC) ⊗ B(TA, TB) M �� B(TA, TC)

and
A(A,A)

TAA

��

I

jA
��															

jTA ��























B(TA, TA).

V-functors can be composed to form a category called V-Cat. This category is actually
enriched over Cat, the category of (small) categories with cartesian product.
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2.4. Definition. For V-functors T, S : A �� B a V-natural transformation α : T
�� S : A �� B is an |A|-indexed family of morphisms αA : I �� B(TA, SA) satisfy-

ing the V-naturality condition expressed by the commutativity of the following hexagonal
diagram:

I ⊗A(A,B)
αB⊗TAB �� B(TB, SB) ⊗ B(TA, TB)

M



���
����

����
����

�

A(A,B)

=
�������������

=
��
















B(TA, SB)

A(A,B) ⊗ I
SAB⊗αA

�� B(SA, SB) ⊗ B(TA, SA)

M


����������������

For two V-functors T, S to be equal is to say TA = SA for all A and for the V-natural
isomorphism α between them to have components αA = jTA. This latter implies equality
of the hom-object morphisms: TAB = SAB for all pairs of objects. The implication is seen
by combining the second diagram in Definition 2.2 with all the diagrams in Definitions
2.3 and 2.4.

The fact that V-Cat has the structure of a 2-category is demonstrated in [Kelly, 1982].
Now we review the transfer to enriching over a k-fold monoidal category. The latter sort
of category was developed and defined in [Balteanu et.al, 2003]. The authors describe
its structure as arising from its description as a monoid in the category of (k − 1)-fold
monoidal categories. Here is that definition altered only slightly to make visible the
coherent associators as in [Forcey, 2004]. In that paper I describe its structure as arising
from its description as a tensor object in the category of (k− 1)-fold monoidal categories.

2.5. Definition. An n-fold monoidal category is a category V with the following
structure.

1. There are n distinct multiplications

⊗1,⊗2, . . . ,⊗n : V × V �� V
for each of which the associativity pentagon commutes

((U ⊗i V ) ⊗i W ) ⊗i X
αi

UV W ⊗i1X��

αi
(U⊗iV )W X

����
��
��
��
��
��
��

(U ⊗i (V ⊗i W )) ⊗i X

αi
U(V ⊗iW )X

���
��

��
��

��
��

��
�

(U ⊗i V ) ⊗i (W ⊗i X)

αi
UV (W⊗iX)

��


































U ⊗i ((V ⊗i W ) ⊗i X)

1U⊗iα
i
V W X

��			
			

			
			

			
			

			
		

U ⊗i (V ⊗i (W ⊗i X))
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V has an object I which is a strict unit for all the multiplications.

2. For each pair (i, j) such that 1 ≤ i < j ≤ n there is a natural transformation

ηijABCD : (A⊗j B) ⊗i (C ⊗j D) �� (A⊗i C) ⊗j (B ⊗i D).

These natural transformations ηij are subject to the following conditions:

(a) Internal unit condition: ηijABII = ηijIIAB = 1A⊗jB

(b) External unit condition: ηijAIBI = ηijIAIB = 1A⊗iB

(c) Internal associativity condition: The following diagram commutes

((U ⊗j V ) ⊗i (W ⊗j X)) ⊗i (Y ⊗j Z)
ηij

UV W X⊗i1Y ⊗jZ
��

αi

��

(
(U ⊗i W ) ⊗j (V ⊗i X)

) ⊗i (Y ⊗j Z)

ηij
(U⊗iW )(V ⊗iX)Y Z

��
(U ⊗j V ) ⊗i ((W ⊗j X) ⊗i (Y ⊗j Z))

1U⊗jV ⊗iη
ij
W XY Z

��

((U ⊗i W ) ⊗i Y ) ⊗j ((V ⊗i X) ⊗i Z)

αi⊗jαi

��
(U ⊗j V ) ⊗i

(
(W ⊗i Y ) ⊗j (X ⊗i Z)

) ηij
UV (W⊗iY )(X⊗iZ) �� (U ⊗i (W ⊗i Y )) ⊗j (V ⊗i (X ⊗i Z))

(d) External associativity condition: The following diagram commutes

((U ⊗j V ) ⊗j W ) ⊗i ((X ⊗j Y ) ⊗j Z)
ηij
(U⊗jV )W (X⊗jY )Z

��

αj⊗iα
j

��

(
(U ⊗j V ) ⊗i (X ⊗j Y )

) ⊗j (W ⊗i Z)

ηij
UV XY ⊗j1W⊗iZ

��
(U ⊗j (V ⊗j W )) ⊗i (X ⊗j (Y ⊗j Z))

ηij
U(V ⊗jW )X(Y ⊗jZ)

��

((U ⊗i X) ⊗j (V ⊗i Y )) ⊗j (W ⊗i Z)

αj

��
(U ⊗i X) ⊗j

(
(V ⊗j W ) ⊗i (Y ⊗j Z)

) 1U⊗iX⊗jηij
V W Y Z �� (U ⊗i X) ⊗j ((V ⊗i Y ) ⊗j (W ⊗i Z))

(e) Finally it is required for each triple (i, j, k) satisfying 1 ≤ i < j < k ≤ n that the
giant hexagonal interchange diagram commutes.
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((A⊗k A
′) ⊗j (B ⊗k B

′)) ⊗i ((C ⊗k C
′) ⊗j (D ⊗k D

′))

η
jk

AA′BB′⊗iη
jk

CC′DD′
���

���
���

�����
���

���
η

ij

(A⊗kA′)(B⊗kB′)(C⊗kC′)(D⊗kD′)

���
���

���

����
���

���
�

((A⊗j B) ⊗k (A′ ⊗j B
′)) ⊗i ((C ⊗j D) ⊗k (C′ ⊗j D

′))

ηik
(A⊗jB)(A′⊗jB′)(C⊗jD)(C′⊗jD′)

��

((A⊗k A
′) ⊗i (C ⊗k C

′)) ⊗j ((B ⊗k B
′) ⊗i (D ⊗k D

′))

ηik
AA′CC′⊗jηik

BB′DD′

��
((A⊗j B) ⊗i (C ⊗j D)) ⊗k ((A′ ⊗j B

′) ⊗i (C′ ⊗j D
′))

η
ij
ABCD

⊗kη
ij

A′B′C′D′

���
���

���

����
���

���
�

((A⊗i C) ⊗k (A′ ⊗i C
′)) ⊗j ((B ⊗i D) ⊗k (B′ ⊗i D

′))

η
jk

(A⊗iC)(A′⊗iC′)(B⊗iD)(B′⊗iD′)
���

���
���

�����
���

���

((A⊗i C) ⊗j (B ⊗i D)) ⊗k ((A′ ⊗i C
′) ⊗j (B′ ⊗i D

′))

The authors of [Balteanu et.al, 2003] remark that a symmetric monoidal category is
n-fold monoidal for all n. This they demonstrate by letting

⊗1 = ⊗2 = . . . = ⊗n = ⊗

and defining (associators added by myself)

ηijABCD = α−1 ◦ (1A ⊗ α) ◦ (1A ⊗ (cBC ⊗ 1D)) ◦ (1A ⊗ α−1) ◦ α

for all i < j. Here cBC : B⊗C �� C⊗B is the symmetry natural transformation. This
provides the hint that enriching over a k-fold monoidal category is precisely a generaliza-
tion of enriching over a symmetric category. In the symmetric case, to define a product
in V-Cat, we need cBC in order to create a middle exchange morphism m. To describe
products in V-Cat for V k-fold monoidal we simply use m = η.

Before treating the general case of enriching over the k-fold monoidal category of
enriched n-categories we examine the definition in the two lowest categorical dimensions.
This will enlighten the following discussion. The careful unfolding of the definitions here
will stand in for any in depth unfolding of the same enriched constructions at higher
levels. Categories enriched over k-fold monoidal V are carefully defined in [Forcey, 2004],
where they are shown to be the objects of a (k − 1)-fold monoidal 2-category. Here we
need only the definitions. Simply put, a category enriched over a k-fold monoidal V is a
category enriched in the usual sense over (V ,⊗1, I, α). The other k− 1 products in V are
used up in the structure of V-Cat. I will always denote the product(s) in V-Cat with a
superscript in parentheses that corresponds to the level of enrichment of the components
of their domain. The product(s) in V should logically then have a superscript (0) but I
have suppressed this for brevity and to agree with my sources. For V k-fold monoidal we
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define the ith product of V-categories A ⊗(1)
i B to have objects ∈ |A| × |B| and to have

hom-objects ∈ |V| given by

(A⊗(1)
i B)((A,B), (A′, B′)) = A(A,A′) ⊗i+1 B(B,B′).

Immediately we see that V-Cat is (k− 1)-fold monoidal by definition. (The full proof
of this is in [Forcey, 2004].) The composition morphisms are

M(A,B)(A′,B′)(A′′,B′′) : (A⊗(1)
i B)((A′, B′), (A′′, B′′))⊗1(A⊗(1)

i B)((A,B), (A′, B′)) �� (A⊗(1)
i B)((A,B), (A′′, B′′))

given by

(A⊗(1)
i B)((A′, B′), (A′′, B′′)) ⊗1 (A⊗(1)

i B)((A,B), (A′, B′))

(A(A′, A′′) ⊗i+1 B(B′, B′′)) ⊗1 (A(A,A′) ⊗i+1 B(B,B′))

η1,i+1

��
(A(A′, A′′) ⊗1 A(A,A′)) ⊗i+1 (B(B′, B′′) ⊗1 B(B,B′))

MAA′A′′⊗2MBB′B′′
��

(A(A,A′′) ⊗i+1 B(B,B′′))

(A⊗(1)
i B)((A,B), (A′′, B′′))

The identity element is given by j(A,B) =

I = I ⊗i+1 I

jA⊗i+1jB
��

A(A,A) ⊗i+1 B(B,B)

(A⊗(1)
i B)((A,B), (A,B))

The unit object in V-1-Cat = V-Cat is the enriched category I(1) = I where |I| = {0}
and I(0, 0) = I. Of course M000 = 1I = j0.

That each product ⊗(1)
i thus defined is a 2-functor V-Cat × V-Cat �� V-Cat is

seen easily. Its action on enriched functors and natural transformations is to form formal
products using ⊗i+1 of their associated morphisms. That the result of this action is a
valid enriched functor or natural transformation always follows from the naturality of η.

Associativity in V-Cat must hold for each ⊗(1)
i . The components of the 2-natural

isomorphism α(1)i

α
(1)i
ABC : (A⊗(1)

i B) ⊗(1)
i C �� A⊗(1)

i (B ⊗(1)
i C)
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are V-functors that send ((A,B),C) to (A,(B,C)) and whose hom-components

α
(1)i
ABC((A,B),C)((A′,B′),C′)

: [(A⊗(1)
i B)⊗(1)

i C](((A,B), C), ((A′, B′), C ′)) �� [A⊗(1)
i (B⊗(1)

i C)]((A, (B,C)), (A′, (B′, C ′)))

are given by

α
(1)i
ABC((A,B),C)((A′,B′),C′)

= αi+1
A(A,A′)B(B,B′)C(C,C′).

Now for the interchange 2-natural transformations η(1)ij for j ≥ i + 1. We define the
component morphisms η

(1)i,j
ABCD that make a 2-natural transformation between 2-functors.

Each component must be an enriched functor. Their action on objects is to send

((A,B), (C,D)) ∈
∣∣∣(A⊗(1)

j B) ⊗(1)
i (C ⊗(1)

j D)
∣∣∣

to

((A,C), (B,D)) ∈
∣∣∣(A⊗(1)

i C) ⊗(1)
j (B ⊗(1)

i D)
∣∣∣ .

The hom-object morphisms are given by

η
(1)i,j
ABCD(ABCD)(A′B′C′D′)

= ηi+1,j+1
A(A,A′)B(B,B′)C(C,C′)D(D,D′).

That the axioms regarding the associators and interchange transformations are all obeyed
is established in [Forcey, 2004].

We now describe categories enriched over V-Cat. These are defined for the symmetric
case in [Lyubashenko, 2003]. Here the definition of V-2-category is generalized for V a
k-fold monoidal category with k ≥ 2. The definition for symmetric monoidal V can be
easily recovered just by letting ⊗1 = ⊗2 = ⊗, α2 = α1 = α and η = m.

2.6. Example. A (small, strict) V-2-category U consists of

1. A set of objects |U |

2. For each pair of objects A,B ∈ |U | a V-category U(A,B).

Of course then U(A,B) consists of a set of objects (which play the role of the 1-cells
in a 2-category) and for each pair f, g ∈ |U(A,B)| an object U(A,B)(f, g) ∈ V
(which plays the role of the hom-set of 2-cells in a 2-category.) Thus the vertical
composition morphisms of these hom2-objects are in V:

Mfgh : U(A,B)(g, h) ⊗1 U(A,B)(f, g) �� U(A,B)(f, h)

Also, the vertical identity for a 1-cell object a ∈ |U(A,B)| is ja : I �� U(A,B)(a, a).
The associativity and the units of vertical composition are then those given by the
respective axioms of enriched categories.



308 STEFAN FORCEY

3. For each triple of objects A,B,C ∈ |U | a V-functor

MABC : U(B,C) ⊗(1)
1 U(A,B) �� U(A,C)

Often I repress the subscripts. We denote M(h, f) as hf .

The family of morphisms indexed by pairs of objects (g, f), (g′, f ′) ∈
∣∣∣U(B,C) ⊗(1)

1 U(A,B)
∣∣∣

furnishes the direct analogue of horizontal composition of 2-cells as can be seen by
observing their domain and range in V:

MABC(g,f)(g′,f ′) : [U(B,C) ⊗(1)
1 U(A,B)]((g, f), (g′, f ′)) �� U(A,C)(gf, g′f ′)

Recall that

[U(B,C) ⊗(1)
1 U(A,B)]((g, f), (g′, f ′)) = U(B,C)(g, g′) ⊗2 U(A,B)(f, f ′).

4. For each object A ∈ |U | a V-functor

JA : I �� U(A,A)

We denote JA(0) as 1A.

5. (Associativity axiom of a strict V-2-category.) We require a commuting pentagon.
Since the morphisms are V-functors this amounts to saying that the functors given by
the two legs of the diagram are equal. For objects we have the equality (fg)h = f(gh).

For the hom-object morphisms we have the following family of commuting diagrams
for associativity, where the first bullet represents

[(U(C,D) ⊗(1)
1 U(B,C)) ⊗(1)

1 U(A,B)](((f, g), h), ((f ′, g′), h′))

and the reader may fill in the others

• α2
��

MBCD(f,g)(f ′,g′)⊗21

����
��
��
��
��
��
�

•
1⊗2MABC(g,h)(g′,h′)

���
��
��
��
��
��
��

•

MABD(fg,h)(f ′g′,h′)

���
��

��
��

��
��

��
��

��
•

MACD(f,gh)(f ′,g′h′)

����
��
��
��
��
��
��
��
�

•
The underlying diagram for this commutativity is

A

h

��

h′

�� B

g

��

g′

�� C

f

��

f ′

�� D
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6. (Unit axioms of a strict V-2-category.) We require commuting triangles. For objects
we have the equality f1A = f = 1Bf. For the unit morphisms we have that the
triangles in the following diagram commute.

[I ⊗(1)
1 U(A,B)]((0, f), (0, g))

=

�����
����

����
���

JB00⊗21

��

[U(A,B) ⊗(1)
1 I]((f, 0), (g, 0))

1⊗2JA00

��

=
		����

����
����

��

U(A,B)(f, g)

[U(B,B) ⊗(1)
1 U(A,B)]((1B , f), (1B , g))

MABB(1B,f)(1B,g)����

�������

[U(A,B) ⊗(1)
1 U(A,A)]((f, 1A), (g, 1A))

MAAB(f,1A)(g,1A)����

�������

The underlying diagrams for this commutativity are

A A

1A

��
A A

1A

��11A
��

A B

f

��
A B

g

�� = A B

f

��
A B

g

�� = B B

1B

��
B B

1B

��11B
��

A B

f

��
A B

g

��

2.7. Theorem. Consequences of V-functoriality of M and J : First the V-functoriality
of M implies that the following (expanded) diagram commutes

(U(B,C)(k,m) ⊗1 U(B,C)(h, k)) ⊗2 (U(A,B)(g, l) ⊗1 U(A,B)(f, g))

Mhkm⊗2Mfgl

  �
��

��
��

��
��

��
��

��
��

(U(B,C)(k,m) ⊗2 U(A,B)(g, l)) ⊗1 (U(B,C)(h, k) ⊗2 U(A,B)(f, g))

MABC(k,g)(m,l)
⊗1MABC(h,f)(k,g)

��

η1,2

�������������������������������
U(B,C)(h,m) ⊗2 U(A,B)(f, l)

MABC(h,f)(m,l)

��
U(A,C)(kg,ml) ⊗1 U(A,C)(hf, kg)

M(hf)(kg)(ml) �� U(A,C)(hf,ml)

The underlying diagram is

A

f

!!g ��

l

""B

h

!!
k ��

m

""C
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Secondly the V-functoriality of M implies that the following (expanded) diagram com-
mutes

U(B,C)(g, g) ⊗2 U(A,B)(f, f)

MABC(g,f)(g,f)

��

I

jg⊗2jf


����������������������

jgf ##����
����

����
����

����
��

U(A,C)(gf, gf)

The underlying diagram here is

A B

f

��
A B

f

��1f
��

B C

g

��
B C

g

��1f
��

= A C

gf

��
A C

gf

��1gf
��

In addition, the V-functoriality of J implies that the following (expanded) diagram
commutes

I(0, 0)

JA00

��

I

j0
�������������������

j1A �����
���

���
���

���
�

U(A,A)(1A, 1A)

Which means that

JA00 : I �� U(A,A)(1A, 1A) = j1A
.

If V is Set with the cartesian product then this definition reduces to that of strict 2-
categories. A variation on this definition is given in [Lyubashenko, 2003], where a 1-unital
non-2-unital V-2-category is defined as in our expanded example above but without the
existence of the unit morphisms jf : I �� U(A,B)(f, f). The example of such an object
discussed by Lyubashenko is the K-2-category KA∞ where K is the category of differential
graded complexes of modules over a field k. The objects of KA∞ are A∞-categories and
the hom-categories have object sets made up of A∞-functors.

3. Category of V-n-Categories

The definition of a category enriched over V-(n − 1)-Cat is simply stated by describing
the process as enriching over V-(n− 1)-Cat with the first of the k − n ordered products.
In detail this means that:
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3.1. Definition. A (small, strict) V-n-category U consists of

1. A set of objects |U |

2. For each pair of objects A,B ∈ |U | a V-(n− 1)-category U(A,B).

3. For each triple of objects A,B,C ∈ |U | a V-(n− 1)-functor

MABC : U(B,C) ⊗(n−1)
1 U(A,B) �� U(A,C)

4. For each object A ∈ |U | a V-(n− 1)-functor

J A : I(n−1) �� U(A,A)

Henceforth we let the dimensions of domain for and particular instances of M and
J largely be determined by context.

5. Axioms: The V-(n− 1)-functors that play the role of composition and identity obey
commutativity of a pentagonal diagram (associativity axiom) and of two triangular
diagrams (unit axioms). This amounts to saying that the functors given by the two
legs of each diagram are equal.

• α(n)
��

MBCD⊗(n)
1 1

����
��
��
�

•
1⊗(n)

1 MABC

���
��
��
��

•

MABD ���
��

��
��

��
•

MACD����
��
��
��
�

•

I(n) ⊗(n)
1 U(A,B)

=

����
��

��
��

�

J B⊗(n)
1 1

��

U(A,B) ⊗(n)
1 I(n)

1⊗(n)
1 J A

��

=
�����

��
��
��

U(A,B)

•
MABB�����

�����

•
MAAB�����

$$���

The consequences of these axioms are expanded commuting diagrams just as in Ex-
ample 2.6.

This definition requires that there be definitions of the unit I(n) and of V-n-functors in
place. First, from the proof of monoidal structure on V-n-Cat, we can infer a recursively
defined unit V-n-category.



312 STEFAN FORCEY

3.2. Definition. The unit object in V-n-Cat is the V-n-category I(n) with one object
0 and with I(n)(0,0) = I(n−1), where I(n−1) is the unit object in V-(n−1)-Cat. Of course
we let I(0) be I in V . Also M000 = J 0 = 1I (n) .

Now we can define the functors:

3.3. Definition. For two V-n-categories U and W a V-n-functor T : U �� W is
a function on objects |U | �� |W | and a family of V-(n − 1)-functors TUU ′ : U(U,U ′)

�� W(TU, TU ′). These latter obey commutativity of the usual diagrams.

1. For U,U ′, U ′′ ∈ |U |

• MUU′U′′ ��

TU′U′′⊗(n−1)
1 TUU′

��

•
TUU′′
��• M(TU)(TU′)(TU′′)

�� •

2.
•

TUU

��

I(n−1)

J U

���������������

J TU ��  
   

   
   

  

•
Here a V-0-functor is just a morphism in V .

V-n-categories and V-n-functors form a category. Composition of V-n-functors is just
composition of the object functions and composition of the hom-category V-(n − 1)-
functors, with appropriate subscripts. Thus (ST )UU ′(f) = STUTU ′(TUU ′(f)). Then it is
straightforward to verify that the axioms are obeyed, as in

(ST )U ′U ′′(f)(ST )UU ′(g)

= STU ′TU ′′(TU ′U ′′(f))STUTU ′(TUU ′(g))

= STUTU ′′(TU ′U ′′(f)TUU ′(g))

= STUTU ′′(TUU ′′(fg))

= (ST )UU ′′(fg).

That this composition is associative follows from the associativity of composition of the
underlying functions and V-(n − 1)-functors. The 2-sided identity for this composition
1U is made of the identity function (on objects) and identity V-(n− 1)-functor (for hom-
categories.) The 1-cells we have just defined play a special role in the definition of a
general k-cell for k ≥ 2. These higher morphisms will be shown to exist and described in
some detail in section 5.
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4. Induced Functors

Recall that in [Forcey, 2004] we proved inductively that V-n-Cat is indeed a (k − n)-fold
monoidal category. Next we describe a similar result for k-fold monoidal functors. This
type of fact is often labeled a change of base theorem. First the definitions of monoidal
and k-fold monoidal functors, taken from [Forcey, 2004] which in turn heavily utilized
[Balteanu et.al, 2003].

4.1. Definition. A monoidal functor (F, η) : (C, I) �� (D, J) between monoidal
categories consists of a functor F such that F (I) = J together with a natural transforma-
tion

ηAB : F (A) ⊗ F (B) �� F (A⊗B),

which satisfies the following conditions

1. Internal Associativity: The following diagram commutes

(F (A) ⊗ F (B)) ⊗ F (C)
ηAB⊗1F (C) ��

α

��

F (A⊗B) ⊗ F (C)

η(A⊗B)C

��
F (A) ⊗ (F (B) ⊗ F (C))

1F (A)⊗ηBC

��

F ((A⊗B) ⊗ C)

Fα
��

F (A) ⊗ F (B ⊗ C)
ηA(B⊗C) �� F (A⊗ (B ⊗ C))

2. Internal Unit Conditions: ηAI = ηIA = 1F (A).

Given two monoidal functors (F, η) : C �� D and (G, ζ) : D �� E , we define their
composite to be the monoidal functor (GF, ξ) : C �� E , where ξ denotes the composite

GF (A) ⊗GF (B)
ζF (A)F (B) �� G

(
F (A) ⊗ F (B)

) G(ηAB) �� GF (A⊗B).

It is easy to verify that ξ satisfies the internal associativity condition above by subdividing
the necessary commuting diagram into two regions that commute by the axioms for η and
ζ respectively and two that commute due to their naturality.

4.2. Definition. An n-fold monoidal functor (F, λ1, . . . , λn) : C �� D between n-
fold monoidal categories consists of a functor F such that F (I) = J together with natural
transformations

λiAB : F (A) ⊗i F (B) �� F (A⊗i B) i = 1, 2, . . . , n



314 STEFAN FORCEY

satisfying the same associativity and unit conditions as monoidal functors. In addition
the following hexagonal interchange diagram commutes:

(F (A) ⊗j F (B)) ⊗i (F (C) ⊗j F (D))
ηij

F (A)F (B)F (C)F (D) ��

λj
AB⊗iλ

j
CD

��

(F (A) ⊗i F (C)) ⊗j (F (B) ⊗i F (D))

λi
AC⊗jλ

i
BD

��
F (A⊗j B) ⊗i F (C ⊗j D)

λi
(A⊗jB)(C⊗jD)

��

F (A⊗i C) ⊗j F (B ⊗i D)

λj
(A⊗iC)(B⊗iD)

��
F ((A⊗j B) ⊗i (C ⊗j D))

F (ηij
ABCD)

�� F ((A⊗i C) ⊗j (B ⊗i D))

Composition of n-fold monoidal functors is defined as for monoidal functors.
The following generalizes a well known theorem for the symmetric case, found for

instance in [Borceux, 1994].

4.3. Theorem. Change of Base: Suppose we have an n-fold monoidal functor

(F, λi) : V �� W .

Then there exists an (n− 1)-fold monoidal functor

(F (1), λ(1)i) : V-Cat �� W-Cat.

Proof. Let A and B be V-categories and G : A �� B a V-functor between them.
First we define the action of F (1) on objects by describing the W-category F (1)(A). We
define

∣∣F (1)(A)
∣∣ = |A| and for A,A′ objects in A we let F (1)(A)(A,A′) = F (A(A,A′)).

For a triple of objects A,A′, A′′ in |A| we have the composition morphism M in W for
F (1)(A) given by

F (1)(A)(A′, A′′) ⊗1 F
(1)(A)(A,A′)

F (A(A′, A′′)) ⊗1 F (A(A,A′))

λ1

��
F (A(A′, A′′) ⊗1 A(A,A′))

F (MAA′A′′)
��

F (A(A,A′′))

F (1)(A)(A,A′)

and the unit morphism jA : J �� F (1)(A)(A,A) is just F (jA). The W-functor F (1)(G)
has the same underlying function on objects as does G and we define F (1)(G)AA′ :
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F (1)(A)(A,A′) �� F (1)(B)(GA,GA′) to be simply F (GAA′). In [Borceux, 1994] it is
pointed out that F (1) is a 2-functor. The reader should check that these images of F (1)

obey the axioms of enriched categories and functors.
Next we define

λ
(1)i
AB : F (1)(A) ⊗(1)

i F (1)(B) �� F (1)(A⊗(1)
i B) i = 1, 2, . . . , (n− 1)

to be the identity on objects and to have hom-object morphisms given by

λ
(1)i
AB(AB)(A′B′)

= λ
(i+1)
A(A,A′)B(B,B′)

It is clear that the λ(1)i will inherit the required internal associativity and unit conditions
from λ(i+1). It is a useful exercise for the reader to work out how the hexagonal interchange
diagram and the naturality of λ(i+1) imply the enriched functoriality of λ(1)i.

When attached to a functor, the superscript in parentheses will indicate how many
times this inducing has been applied. In other words, F (n) = F (n−1)(1) = F (1)(n−1). We
now describe the special case of change of base to that of the category of sets; induced
forgetful functors.

4.4. Theorem. Given V an n-fold monoidal category, the functor HomV(I, ) : V ��

Set is n-fold monoidal.

Proof. The n-fold monoidal structure on the (strictly monoidal, symmetric) Set is
given by ⊗1 = ⊗2 = . . . = ⊗n = ×. The natural transformations λiAB : HomV(I, A) ×
HomV(I, B) �� HomV(I, A ⊗i B) are given by λiAB((f, g)) = f ⊗i g. Thus the internal
associativity and unit conditions hold trivially.

The action of HomV(I, ) on morphisms is given by HomV(I, f)(h) = f ◦ h for h ∈
HomV(I, A) and f : A �� B. That last fact in mind, it is easy to see that the hexagonal
interchange diagrams for λi commute due to the naturality of η.

Now a bit of theory that we have been ignoring for simplicity is forced upon us. The
unit of Set is the single element set we denote as {0}, but this is not a strict unit; rather
there are canonical isomorphisms X × {0} �� X; {0} × X �� X that are natural
and obey commuting diagrams as shown in [Borceux, 1994]. Thus the identification of
HomV(I, I) with {0} is not precise-{0} is mapped to 1I and an additional pair of diagrams
is shown to commute. Again the reader is referred to [Borceux, 1994] where this part of
the proof is given.

The next fact is that when we apply Theorem 4.3 to the functor of Theorem 4.4
we get not only the corollary that there is an induced (n − 1)-fold monoidal functor

Hom
(1)
V (I, ) : V-Cat �� Set-Cat = Cat, but also a direct description of that functor in

terms of the unit in the category of enriched categories.

4.5. Theorem. The following two functors are equivalent:

Hom
(1)
V (I, ) = HomV_Cat(I, )

where I is the unit enriched category in V-Cat.
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Proof. ([Kelly, 1982]) The image of A under the induced functor is known as the
underlying category of A, denoted A0. It has objects the same as A and morphisms
A0(A,A

′) = HomV(I,A(A,B)). Composition is given by:

I ⊗ I

f⊗g
��

A(A′, A′′) ⊗A(A,A′)

M
��

A(A,A′′)

and the identity in A0(A,A) is jA. In [Kelly, 1982] it is shown that this functor is repre-
sentable, in fact that the equality of the theorem holds.

Notice that this fact is recursively true for all the unit categories In. In other words,
we can write Hom

(k)
V_n_Cat(I(n), ) = HomV_(n+k)_Cat(I(n+k), ).

The point of view taken by the next section differs subtly from that of [Kelly, 1982]. In
[Kelly, 1982] the definition of the 2-cells of V-Cat is given first, and then the representable
2-functor ()0 = HomV_Cat(I, ) is described. The author then notes that the image of
the enriched natural transformation under the functor in question is an ordinary natural
transformation with the same components as the enriched one. We would like to back up a
bit and define the enriched natural transformations in terms of the image of ()0. In other
words, let the V-natural transformations between V-functors T and S be the ordinary
natural transformations between T0 and S0, with the additional requirement that their
components obey the commuting diagram of Definition 2.4. The latter requirement is
strengthening; enriched natural transformations T �� S are automatically ordinary
ones T0

�� S0 but the converse is not true. This point of view was suggested by the
referee as leading to the proper method of showing the general categorical dimension of
V-n-Cat.

5. Categorical Structure of V-n-Cat

5.1. Theorem. For V k-fold monoidal the category of V-n-categories has the additional
structure of an (n+ 1)-category .

Proof. This fact results from the theorems of the last section applied to the functor ()0 =
HomV_n_Cat(In, ). We have from the latter’s identification with the functor induced by
HomV_(n−1)_Cat(I(n−1), ) by induction that its range is n-Cat. This is due to Theorem 4.3
since n-Cat = (n− 1)-Cat-Cat.

Now the overall (n+ 1)-category structure of V-n-Cat is derived from the well known
(n + 1)-category structure of n-Cat. More precisely, we already have seen that V-n-
categories and V-n-functors form a category. Let the 2-cells between two V-n-functors T
and S be the natural transformations between T0 and S0 and the enriched modifications
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and higher k-cells the ordinary ones that arise on the same principle. The axioms of an
(n+ 1)-category are thus automatically satisfied by these inherited cells.

Now we demonstrate that V-n-Cat has as well a special sub-(n+1)-category structure
that is a restriction of the morphisms occurring between images of the induced forgetful
functors. This structure is the natural extension of the 2-category structure described for
V-Cat in [Kelly, 1982], and therefore when we speak of V-n-Cat hereafter it will be the
following structure to which we refer.

5.2. Definition. A V-n:k-cell α between (k − 1)-cells ψk−1 and φk−1, written

α : ψk−1 �� φk−1 : ψk−2 �� φk−2 : ... : ψ2 �� φ2 : F �� G : U �� W

where F and G are V-n-functors and where the superscripts denote cell dimension, is a
function sending each U ∈ |U | to a V-((n− k) + 1)-functor

αU : I((n−k)+1) �� W(FU,GU)(ψ2
U0, φ2

U0)...(ψk−1
U 0, φk−1

U 0)

in such a way that we have commutativity of the following diagram. Note that the final
(curved) equal sign is implied recursively by the diagram for the (k − 1)-cells.

W(FU ′, GU ′)(ψ2
U′0, φ2

U′0)...(ψk−1
U′ 0, φk−1

U′ 0)

⊗((n−k)+1)
k−1 W(FU, FU ′)(F (x2), F (y2))...(F (xk−1), F (yk−1))

M



���
����

����
����

���

I((n−k)+1) ⊗((n−k)+1)
k−1 U(U,U ′)(x2, y2)...(xk−1, yk−1)

αU′⊗((n−k)+1)
k−1 F

��!!!!!!!!!!!!!!
W(FU,GU ′)(ψ2

U′0F (x2), φ2
U′0F (y2))...(ψk−1

U′ 0F (xk−1), φ
k−1
U′ 0F (yk−1))

U(U,U ′)(x2, y2)...(xk−1, yk−1)

=

%%"""""""""

=
��#

##
##

##
##

U(U,U ′)(x2, y2)...(xk−1, yk−1) ⊗((n−k)+1)
k−1 I((n−k)+1)

G⊗((n−k)+1)
k−1 αU

��




















W(FU,GU ′)(G(x2)ψ2

U0, G(y2)φ2
U0)...(G(xk−1)ψk−1

U 0, G(yk−1)φ
k−1
U 0)

W(GU,GU ′)(G(x2), G(y2))...(G(xk−1), G(yk−1))

⊗((n−k)+1)
k−1 W(FU,GU)(ψ2

U0, φ2
U0)...(ψk−1

U 0, φk−1
U 0)

M



������������������

Thus for a given value of n there are k-cells up to k = n + 1, making V-n-Cat a
potential (n+ 1)-category. We have already described composition of V-n-functors. Now
we describe all other compositions.
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5.3. Definition. Case 1.
Let k = 2 . . . n + 1 and i = 1 . . . k − 1. Given α and β two V-n:k-cells that share a

common V-n:(k-i)-cell γ, we can compose along the latter morphism as follows

(β ◦ α)U =

I((n−k)+1) = I((n−k)+1) ⊗((n−k)+1)
i I((n−k)+1)

βU⊗((n−k)+1)
i αU

��W (FU,GU)(ψ2
U0,φ2

U0)

...(ψk−i−1
U 0,φk−i−1

U 0)(γU0,γ′′U0)(ψk−i+1
U 0,φk−i+1

U 0)...(ψk−1
U 0,φk−1

U 0)

⊗((n−k)+1)
i W (FU,GU)(ψ2

U0,φ2
U0)

...(ψk−i−1
U 0,φk−i−1

U 0)(γ′U0,γU0)(δk−i+1
U 0,ξk−i+1

U 0)...(δk−1
U 0,ξk−1

U 0)

M
��W (FU,GU)(ψ2

U0,φ2
U0)

...(ψk−i−1
U 0,φk−i−1

U 0)(γ′U0,γ′′U0)(ψk−i+1
U 0δk−i+1

U 0,φk−i+1
U 0ξk−i+1

U 0)

...(ψk−1
U 0δk−1

U 0,φk−1
U 0ξk−1

U 0)

For α and β of different dimension and sharing a common cell of dimension lower than
either the composition is accomplished by first raising the dimension of the lower of α
and β to match the other by replacing it with a unit (see next Definition.)

Case 2.
It remains to describe composing along a 0-cell, i.e. along a common V-n-category W.

We describe composing a higher enriched cell with an enriched functor, and then leave the
remaining possibilities to be accomplished by applying the first case to the results of such
whiskering.

Composition with a V-n-functor K : W �� X on the right is given by:

(Kα)U = I(n−k)+1)

αU

��
W(FU,GU)(ψ2

U0, φ2
U0)...(ψk−1

U 0, φk−1
U 0)

KFU,GU

��
X (KFU,KGU)(Kψ2

U0, Kφ2
U0)...(Kψk−1

U 0, Kφk−1
U 0)

Composing with a V-n-functor H : V �� U on the left is given by (αH)V = αHV .
We describe unit k-cells for the above compositions.

5.4. Definition. A unit V-n:k-cell 1ψk−1 from a (k− 1)-cell ψk−1 to itself, sends each
U ∈ |U | to the V-((n− k) + 1)-functor

J ψk−1
U 0 : I((n−k)+1) �� W(FU,GU)(ψ2

U0, φ2
U0)...(ψk−1

U 0, ψk−1
U 0)
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It is straightforward to verify that these fulfill the requirements of Definition 5.2 and
indeed are units with respect to Definition 5.3.

Of course the unit for composition along a common cell of dimension more than 1
less than the composed cells is constructed recursively from units for all the dimensions
between that of the composed cells and that of the common cell.

This last string of definitions is best grasped by looking at examples. The cases for
n = 1 and for n = 2 are treated carefully in [Forcey, 2003], where the following theorem
is proven by brute force for n = 2.

5.5. Theorem. V-n-categories, V-n-functors, and V-n:k-cells for k = 2 . . . n + 1
together have the structure of an (n+ 1)-category.

Proof. Two basic sets of facts need checking before we can take advantage of the
structure shown in Theorem 5.1 First, we need to check that the V-n:k-cells and their
compositions defined above are indeed a subset of the ones which we showed exist be-
tween underlying functors in the previous theorem, and ordinary compositions in n-Cat
respectively. Second, we need to check that the V-n:k-cells are closed under those com-
positions. Both of these truths are in part shown by use of an induction on n. Note that
since the index n is found only in product superscripts and unit categories in Definition 5.2
then if we assume that V-(n− 1)-Cat (with the k-cells of Definition 5.2) is an n-category
we have the implication that V-n-Cat is also an n-category. The k-cells for k = 1, . . . , n
of V-n-Cat are defined in exactly the same way as for V-(n− 1)-Cat, just with the index
n increased. So to complete the inductive step, all that needs to be dealt with are the
top-dimensional cells; the (n+ 1)-cells of V-n-Cat.

We need to check then that the said V-n:(n+ 1)-cells are indeed (n+ 1)-cells in n-Cat
between the underlying n-categories U0 and W0 of U and W . (n+ 1)-cells in n-Cat are
collections: for each U ∈ |U0| an n-cell in W0.

Recall that from Theorem 4.5

W0 = Hom
(1)
V_(n−1)_Cat(I(n−1), )(W) = HomV_n_Cat(I(n),W)

Our inductive assumption is that V-(n− 1)-Cat is an n-category. Thus W0(A,B) =
HomV_(n−1)_Cat(I(n−1),W(A,B)) is an (n − 1)-category itself. Repeated use of Theo-
rem 4.5 on this hom-(n − 1)-category yields a complete characterization of W0. From
this point of view objects of W0 are those of W , 1-cells are objects in |W(A,B)| for
A,B ∈ |W |, 2-cells are objects in |W(A,B)(f, g)| and so on until the highest order
cells: n-cells are morphisms in V , elements of HomV(I,W(A,B)(f2, g2) . . . (fn, gn)). So
for k = n+1 the k-cells of Definition 5.2 each are made up of just the right sort of elements
to qualify to be n+1-cells in n-Cat. Furthermore, the composition of these n-cells in W0,
which is the basis of component-wise composition of the ordinary (n+1)-cells in n-Cat, is
just as given in Definition 5.3. We can say so simply because that is how the composition
in the underlying categories comes to be defined in the proof of Theorem 4.3. This in
mind, we note that the condition of the commuting diagram in Definition 5.2 implies the
higher naturality condition satisfied by an n-cell in n-Cat.
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The second part of our induction concerns the closure of the enriched (n + 1)-cells
under their compositions with each other and with smaller dimensional cells. Given
that we have the structure of an (n + 1)-category we can assume that the latter sort
of composition, generally known as whiskering, is described in terms of the former by
composing with appropriate unit (n + 1)-cells. Thus we need only check for closure the
various cases involved in composing two V-n:(n + 1)-cells along common cells of lower
dimension m = k − i = n + 1 − i. There are three cases: n ≥ m ≥ 2, m = 1, and
m = 0. For the first case we have the following diagram which shows that the result of
the composition ν ◦ µ given by Definition 5.3 obeys the axiom given in Definition 5.2.

The first bullet in the following diagram is U(U,U ′)(x2, y2)...(xn, yn). Let

X =

n total sets of parentheses

U
︷ ︸︸ ︷
(U,U ′)(x2,y2)...(xm−1,ym−1)(xm,xm)(1xm ,1xm )...


11

...1xm

,11
...1xm




Other vertices in the diagram include:

A = (I ⊗i I) ⊗n U(U,U ′)(x2, y2)...(xn, yn)

B = (I ⊗i I) ⊗n (U(U,U ′)(x2, y2)...(xn, yn) ⊗i I)

C = (I ⊗i I) ⊗n (U(U,U ′)(x2, y2)...(xn, yn) ⊗i X

D = (I ⊗n U(U,U ′)(x2, y2)...(xn, yn)) ⊗i (I ⊗n X)

E = U(U,U ′)(x2, y2)...(xn, yn) ⊗i I

H = U(U,U ′)(x2, y2)...(xn, yn) ⊗i X

K = U(U,U ′)(x2, y2)...(xn, yn) ⊗n (I ⊗i I)

L = (U(U,U ′)(x2, y2)...(xn, yn) ⊗i I) ⊗n (I ⊗i I)

N = (U(U,U ′)(x2, y2)...(xn, yn) ⊗n I) ⊗i (X ⊗n I)

P = (U(U,U ′)(x2, y2)...(xn, yn) ⊗n X) ⊗i (I ⊗n I).
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The arrows marked with an “=” all occur as copies of I are tensored to the object at
the arrow’s source. Therefore the quadrilateral regions [a],[e],[f],[h],[i] and [j] all commute
trivially. The uppermost and lowermost quadrilaterals commute by the property of com-
posing with units in an enriched n-category. The two triangles commute by the external
unit condition for iterated monoidal categories. Regions [b] and [k] commute by respect
of units by enriched n-functors. Regions [c] and [l] commute by naturality of η. Region
[g] commutes by the axiom of Definition 5.2 for ν and µ. Regions [d] and [m] commute by
the V-n-functoriality of M. Note that the instances of M in these latter regions while
written identically, actually have domains of differing categorical dimension.

The next case is m = 1. The commuting diagram which shows that β ◦ α obeys the
axiom is drawn as follows. The initial bullet represents U(U,U ′)(x2, y2)...(xn, yn). Other
vertices are:

A = (I ⊗n I) ⊗n U(U,U ′)(x2, y2)...(xn, yn)

B = U(U,U ′)(x2, y2)...(xn, yn) ⊗n (I ⊗n I)
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The arrows marked with an “=” all occur as copies of I are tensored to the object at
the arrow’s source. The 3 leftmost regions commute by the naturality of αn. The 2
embedded central “hexagons” commute by the axiom in Definition 5.2 for β and α. The
three pentagons on the right are copies of the pentagon axiom for the composition M.

Finally, the last case we examine is m = 0. To reduce it to the previous case we apply
the principle of whiskering of (n+1)-cells with V-n-functors. Once we have done so there
are two obvious ways of describing the composition of two (n + 1)-cells along a common
V-n-category in terms of composition along a common V-n-functor. The two ways are
equivalent since everything is taking place in the larger (n + 1)-category structure. Now
there are two subcases corresponding to the left and the right-hand whiskering. Closure
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under whiskering onto the right is shown by:
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The preceding diagram’s commutativity relies on the fact that α obeys Definition 5.2 and
on the V-n-functoriality of K.
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Closure under whiskering onto the left is shown by the following commutative diagram:
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��
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The exterior of this diagram commutes simply because α obeys the axiom of Definition 5.2.

There are specific instances of all the above constructions and especially of these last
few commuting diagrams found in [Forcey, 2003].

In conclusion, it should be clear that the enriched n-categories we have constructed
generalize the notion of strict n-category. When a complete definition of weak n-category
is in place there should be an analogous generalization to weak enrichment. Another direc-
tion to go in is that of V-Mod, the category of V-categories with V-modules as morphisms.
V-Mod should also be investigated for the case of V k-fold monoidal. The same is true
of V-Act, the category of categories with a V action. In any case, further study should
attempt to elucidate the relationship of the nerves of the n-categories in question. For
instance, we would like to know the relationship between ΩNerve(V-Cat) and Nerve(V).
This would even be quite interesting in the case of symmetric V where the nerve is an
infinite loop space. It would be nice to know if there are symmetric monoidal categories
whose nerves exhibit periodicity under the vertically iterated enrichment functor.
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