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THE WIRTHMÜLLER ISOMORPHISM REVISITED

J.P. MAY

ABSTRACT. We show how the formal Wirthmüller isomorphism theorem proven in [2]
simplifies the proof of the Wirthmüller isomorphism in equivariant stable homotopy the-
ory. Other examples from equivariant stable homotopy theory show that the hypotheses
of the formal Wirthmüller and formal Grothendieck isomorphism theorems in [2] cannot
be weakened.
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We illustrate the force of the formal Wirthmüller isomorphism theorem of [2] by giv-
ing a worked example of an interesting theorem whose proof it simplifies, namely the
Wirthmüller isomorphism theorem in equivariant stable homotopy theory. It relates cat-
egories of G-spectra and H-spectra for H ⊂ G. We also say just a little about the
analogous Adams isomorphism that relates categories of G-spectra and J-spectra for a
quotient group J of G. That context gives an interesting situation where the formal hy-
potheses of the formal Wirthmüller isomorphism theorem hold but the conclusion fails,
showing that the more substantive hypothesis is essential.

In their general form, the Wirthmüller and Adams isomorphisms are due to Gaunce
Lewis and myself [7]. It is a pleasure to thank Lewis for ongoing discussions and his
longstanding quest for simplifications and generalizations of these theorems. The anal-
ogy between these isomorphisms in topology and Verdier duality was first explored by
Po Hu [5], who carried out an idea of Lewis that these isomorphisms could be obtained
using parametrized equivariant spectra. She obtained a significant generalization of the
Wirthmüller isomorphism, but at the price of greatly increased complexity. As in our
proof here, the theory of [2] allows a considerable simplification of her work, and that is
part of our motivation. The theory of [2] should also simplify the proof of the Wirthmüller
isomorphism in A1 stable homotopy theory that Hu proved in [4]. Still another example
recently studied by Hu deals with change of universe. We show that it gives an inter-
esting naturally occurring situation in which all but one of the hypotheses of the formal
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Grothendieck isomorphism of [2] hold, but the conclusion fails because the relevant left
adjoint fails to preserve compact objects.

1. The Wirthmüller isomorphism

Let H be a (closed) subgroup of a compact Lie group G and let f : H −→ G be the
inclusion. Let L be the tangent H-representation at the coset eH ∈ G/H. Thus, if G is
finite or, more generally, if H has finite index in G, then L = 0.

Let D and C be the stable homotopy categories of G-spectra and of H-spectra, as
constructed in [7] or, in more modern form, [8]. The category D depends on a choice of a
“G-universe” V on which to index G-spectra. In this paper, we understand a G-universe
to mean a collection {V } of G-representations V that contains the trivial representation
and is closed under direct sums. The most important example is the complete G-universe
obtained by allowing all representations of G. We think of representations as finite dimen-
sional G-inner product spaces, and we let SV denote the one-point compactification of V .
The point of the choice of G-universe is that, when constructing D , we force suspension
by some representations V to be equivalences D −→ D , and we must choose which rep-
resentations to invert in this sense; that is, the choice of universe determines the Picard
group of D [3, 9].

We insist that G/H embed in a representation V in our G-universe V , which is
otherwise unrestricted. We index H-spectra on the H-universe f ∗V = {f ∗V }, where
f ∗V denotes the G-representation V viewed as an H-representation by pullback along f .
Similarly, a G-spectrum Y gives an H-spectrum f ∗Y by pullback along f . The functor
f ∗ has a left adjoint f! and a right adjoint f∗. The former is usually written as either
G+ ∧H X or G �H X, and the latter is usually written as either FH(G+, X) or FH [G,X).
The Wirthmüller isomorphism reads as follows.

1.1. Theorem. [Wirthmüller isomorphism] There is a natural isomorphism

ω : f∗X −→ f�X, where f�X = f!(X ∧ S−L).

That is, for an H-spectrum X, FH(G+, X) ∼= G+ ∧H (Σ−LX).

Here the suspension H-spectrum Σ∞SL of the H-sphere SL is invertible with inverse
S−L, allowing the definition Σ−LX = X ∧ S−L. Indeed, an embedding of G/H in V ∈ V
induces an inclusion L ⊂ V of H-representations with orthogonal complement W . Since
the suspension H-spectrum of SL ∧ SW ∼= Sf∗V is invertible in C , so is Σ∞SL.

The unit objects in C and D are the sphere spectra SH and SG. Both C and D are
closed symmetric monoidal categories under their smash product and function spectrum
functors ∧ and F . It is immediate from the definitions that f ∗ is strong symmetric
monoidal and commutes with F , as required in the Wirthmüller context discussed in [2,
§§4, 6]. These statements already hold in the underlying categories of spectra and are
inherited in the derived stable categories C and D .
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1.2. Remark. In this context, the projection formula would assert that

Y ∧ FH(G+, X) ∼= FH(G+, f ∗Y ∧ X).

There is no such isomorphism in the category of G-spectra. However, after passage to
the stable category D , there is an isomorphism of this form as a consequence of the
Wirthmüller isomorphism. Note that there is an isomorphism of spectra FH(G+, X)G ∼=
XH , by a comparison of adjunctions.

The isomorphism [2, (6.3)] required in the Wirthmüller context can be written

D(G+ ∧H SH) ∼= G+ ∧H S−L. (1.1)

It is a special case of equivariant Atiyah duality for smooth G-manifolds, which is proven
by standard space level techniques (e.g. [7, III§5]) and is independent of the Wirthmüller
isomorphism. By the tubular neighborhood theorem, we can extend an embedding i :
G/H −→ V to an embedding

ĩ : G ×H W −→ V (1.2)

of the normal bundle G×H W . Atiyah duality asserts that the G-space G/H+ is Spanier-
Whitehead V -dual to the Thom complex G+ ∧H SW of the normal bundle of the embed-
ding. Desuspending by SV in D gives the required isomorphism (1.1).

The category D is triangulated, with distinguished triangles isomorphic to canonical
cofiber sequences of G-spectra. The triangulation is compatible with the closed symmetric
monoidal structure in the sense discussed in [10]. Moreover, D is compactly detected and
is generated by a detecting set of compact objects. Indeed, writing Sn for the n-sphere
G-spectrum, we can choose the detecting objects to be the G-spectra G/J+ ∧ Sn, where
J ranges over the (closed) subgroups of G and n runs over the integers, and D is itself
the localizing subcategory generated by this set of compact objects.

The same statements apply to C , and the functor f ∗ is exact since it commutes with
cofiber sequences on the level of spectra. Moreover, f ∗ takes detecting objects to compact
objects. Indeed, this depends only on the fact that the H-spaces G/J are compact and of
the homotopy types of H-CW complexes, although it is easier to verify using the stronger
fact that the G/J can be decomposed as finite H-CW complexes.

1.3. Remark. Observe that the suspension spectra Σ∞H/K+ in C and Σ∞G/J+ in
D , other than Σ∞G/H+, need not be dualizable if the universe is incomplete. In fact,
Lewis [6, 7.1] has proven that Σ∞G/J+ is dualizable if and only if G/J embeds in a
representation in V . Conceptually, it is compactness rather than dualizability of the
generating objects that is relevant.

1.4. Remark. As a digression, there is an interesting conceptual point to be made
about the choice of generating objects for D . There are (at least) three different, but
Quillen equivalent, model categories of G-spectra with homotopy categories equivalent to
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D . We can take “G-spectra” to mean G-spectra as originally defined [7], SG-modules as
defined in [1], or orthogonal G-spectra as defined in [8], where the cited Quillen equiv-
alences are proven. These three model categories are compactly generated in the model
theoretic sense. In the first two cases, the generators in the model theoretic sense can be
taken to be the generators in the triangulated category sense that we specified above. As
explained in [8], we can alternatively take all G/J+ ∧ SV −V ′

for V, V ′ ∈ V as generators
in the model theoretic sense. However, in the model category of orthogonal G-spectra,
we not only can but must take this larger collection as generators in the model theoretic
sense. Nevertheless, the smaller collection suffices to generate the associated triangu-
lated homotopy category, since that is triangulated equivalent to the homotopy category
obtained from the other two model categories.

By the formal Wirthmüller isomorphism theorem [2, 8.1], to prove Theorem 1.1, it
remains to prove that the map ω : f∗X −→ f�X specified in [2, (6.6)] is an isomorphism
when X is a generating object H/K+∧Sn of C . Since it is obvious that ω commutes with
suspension and desuspension, we need only consider the case n = 0, where the generators
in question are the suspension H-spectra Σ∞H/K+.

Here is the punchline. Suppose that G is finite or, more generally, that H has finite
index in G. Then, as an H-space, H/K+ is a retract of the G-space G/K+. The retraction
sends cosets of G/K+ not in the image of H/K+ to the disjoint basepoint of H/K+. By
[2, 6.2], it follows formally that ω is an isomorphism when X = Σ∞H/K+. This simple
argument already completes the proof of Theorem 1.1 in this case, yielding a far simpler
proof than that of [7].

To prove Theorem 1.1 in general, we apply [2, 6.3], which allows us to work one
generating object at a time. This reduces all of our work to consideration of suspension
spectra and thus of spaces. The argument is essentially the same as part of the argument
in [7, III§§5, 6], but we shall run through the space-level details in §4 in order to have a
readable and self-contained account that corrects some mistakes in [7] and is perhaps less
obscure than the account given there.

2. The Adams isomorphism

Let N be a normal subgroup of a compact Lie group G and let f : G −→ J , J = G/N ,
be the quotient homomorphism. Fix a G-universe V = {V } and index J-spectra on the
N -fixed J-universe V N = {V N}. Regarding J-representations as G-representations via f ,
we obtain a second G-universe f ∗V N = {f ∗V N}, and we insist that f ∗V N be contained in
the original G-universe V . Let D be the stable homotopy category of J-spectra indexed
on V N and let C be the stable homotopy category of G-spectra indexed on f ∗V N .

Regarding J-spectra as G-spectra via f , we obtain a functor f ∗ : D −→ C . Its left
adjoint f! is just the orbit spectrum functor that sends a G-spectrum X indexed on f ∗V N

to X/N . Its right adjoint f∗ is just the fixed point spectrum functor that sends X to XN .
The functor f ∗ is strong symmetric monoidal, the isomorphism [2, (4.6)] holds in the form
(f ∗Y ∧X)/N ∼= Y ∧ (X/N), and f ∗ takes detecting objects to compact objects. Since G-
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spectra in C are indexed on an N -trivial universe, SG/N ∼= SJ and [2, (6.3)] holds in the
trivial form D(SJ) ∼= SG/N . Thus all of the formal hypotheses of the formal Wirthmüller
isomorphism theorem, [2, 8.1], are satisfied. However, the conclusion fails, because ω is
an isomorphism on some but not all generators. Let C /N be the thick subcategory of C
generated by all ΣnΣ∞

G G/H+ such that N ⊂ H.

2.1. Proposition. For X ∈ C /N , the natural map

ω : XN −→ X/N

is an isomorphism of J-spectra.

Proof. The map τ : ID −→ f!C of [2, §6] is here just the isomorphism SJ
∼= SG/N ,

and the map ω of [2, (6.6)] is just the composite of the isomorphism XN ∼= f ∗XN/N and
ε/N : f ∗XN/N −→ X/N . When X = ΣnΣ∞

G G/H+ with N ⊂ H, the latter map is also
an isomorphism, but it is not an isomorphism in general.

The Adams isomorphism is more subtle. Let B be the stable homotopy category of
G-spectra indexed on V . We have the adjoint pair (i∗, i∗) of change of universe functors
i∗ : C −→ B and i∗ : B −→ C induced by the inclusion i : f ∗V N −→ V . We are
most interested in the composite adjunction (i∗f ∗, f∗i∗). Thinking of the case when V is
a complete G-universe, it is usual to regard the composite f∗i∗ : B −→ D as the N -fixed
point spectrum functor from G-spectra indexed on V to J-spectra indexed on V N .

The conjugation action of G on N gives rise to an action of G on the tangent space
A = A(N ; G) of N at e. We call A the adjoint representation of G at N . Of course, A = 0
if N is finite. The Adams isomorphism reads as follows. Let Cf be the full subcategory
of N -free G-spectra in C .

2.2. Theorem. [Adams isomorphism] For X ∈ Cf , there is a natural isomorphism

ω : f∗i∗i∗X −→ f�X, where f�(X) = f!(X ∧ SA).

That is, for an N -free G-spectrum X indexed on f ∗V N , (i∗i∗X)N ∼= ΣAX/N .

It is usual to write this in the equivalent form (i∗Σ−Ai∗X)N ∼= X/N , but the present
form is more convenient for applications and more sensible from the categorical point of
view. This looks enough like the formal Wirthmüller isomorphism to expect a similar
proof. However, I do not have a helpful formal analysis.

3. Change of universe

Let i : V −→ U be a map of G-universes, say for definiteness an inclusion. We have the
adjoint pair (i∗, i∗) relating the stable homotopy categories C and D of G-spectra indexed
on V and G-spectra indexed on U . The left adjoint i∗ preserves compact objects, hence
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the right adjoint i∗ preserves coproducts [2, 7.4]. Since D is compactly detected, the right
adjoint i∗ has a right adjoint i! by the triangulated adjoint functor theorem [2, 8.3]. It
occurred to Po Hu to study the structure of such functors i!, and the natural question to
ask is whether or not the formal Grothendieck isomorphism theorem [2, 8.4] applies. The
functors (i∗, i∗, i!) here play the roles of the functors (f ∗, f∗, f !) there, and the projection
formula takes the form of a natural isomorphism

Y ∧ i∗X ∼= i∗(i∗Y ∧ X).

This holds when Y is a suspension G-spectrum because the suspension G-spectrum func-
tors on the two universes satisfy i∗Σ∞ ∼= Σ∞ and i∗ commutes with smash products. It
therefore holds in general [2, 7.6].

There is a natural map

φ : i∗Y ∧ i!Z −→ i!(Y ∧ Z)

which is an isomorphism for all dualizable Y [2, 5.4]. We ask whether or not it is an
isomorphism for all Y , and the answer is no. Indeed, the necessary hypothesis that i!
preserves coproducts in [2, 8.4] is satisfied if and only if i∗ takes detecting objects to
compact objects [2, 7.4], and this fails in general. To see this, let U be a complete G-
universe and V = U G be the G-fixed subuniverse {UG}, U ∈ U . The G-fixed point
functor from D to the stable homotopy category of spectra is the composite of i∗ and
the G-fixed point spectrum functor from C to spectra. The latter functor preserves
compact objects by inspection. For example, it commutes with the suspension spectrum
functor and therefore takes suspension spectra of compact G-spaces to suspension spectra
of compact spaces. However, for a based G-space Y , the G-spectrum Σ∞Y indexed on
U has G-fixed point spectrum the wedge over conjugacy classes (H) of the suspension
spectra of the spaces EWH+ ∧WH ΣAd(WH)Y H [7, V.11.1]. Even when Y = S0, this
spectrum is not compact. Therefore i∗Σ∞Y cannot be a compact G-spectrum indexed on
U G.

4. Completion of the proof of the Wirthmüller isomorphism

We must verify the hypotheses of [2, 6.3] for X = Σ∞H/K+. This means that, with
f�X = G+ ∧H (X ∧ S−L), we must construct a map ξ : f ∗f�X −→ X such that certain
diagrams commute. We need some space level constructions from [7] to do this. The
tubular neighborhood (1.2) gives a Pontryagin-Thom G-map t : SV −→ G+ ∧H SW . It
is V -dual to the counit G-map σ : f!f

∗S0 = G/H+ −→ S0 [7, III.5.2]. The following
construction, which is [7, II.5.5], specializes to give the V -dual u : G+ ∧H SW −→ SV to
the unit H-map ζ : S0 −→ f ∗f!S

0 = G/H+. We omit f ∗ from notations, instead stating
the equivariance explicitly.

4.1. Construction. Let H × H act on G by (h1, h2)g = h1gh−1
2 and act on L × H

by (h1, h2)(λ, h) = (h1λ, h1hh−1
2 ). We think of the first factor H as acting from the left,
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the second as acting from the right. Using the exponential map, construct an embedding
j : L −→ G of L as a slice at e such that

j(hλ) = hj(λ)h−1 and j(−λ) = j(λ)−1. (4.1)

Define j̃ : L × H −→ G by j̃(λ, h) = j(λ)h. Then j̃ is an (H × H)-map that embeds
L×H onto an open neighborhood of e. Collapsing the complement to a point, we obtain
an (H × H)-map u : G+ −→ SL ∧ H+. For a based H-space X, we obtain an induced
(left) H-map

u : G+ ∧H X −→ (SL ∧ H+) ∧H X ∼= SL ∧ X.

Setting X = SW and identifying SV with SL ∧ SW , we obtain the promised V -dual
u : G+ ∧H SW −→ SV of ζ : S0 −→ G/H+.

We only need the following definition and lemmas for the H-spaces X = H/K+, but
it is simpler notationally to proceed more generally. We write suspension coordinates on
the right, ΣV Y = Y ∧ SV . This is important to remember for control of signs, which
are units in Burnside rings. Recall that, for a G-space Y and an H-space Z, the natural
isomorphism of G-spaces

π̄ : G+ ∧H (Y ∧ Z) −→ Y ∧ (G+ ∧H Z)

is given by the formulas

π̄(g ∧ y ∧ z) = gy ∧ g ∧ z and π̄−1(y ∧ g ∧ z) = g ∧ g−1y ∧ z. (4.2)

4.2. Definition. For a based H-CW complex X, define an H-map

ξ : f ∗f�Σ
∞
H X −→ Σ∞

H X

as follows. Observe that we have natural isomorphisms of H-spectra

ΣV f ∗f�Σ
∞
H X ∼= SV ∧ (G+ ∧H (X ∧ S−L))

π̄−1−−→ G+ ∧H (SV ∧ X ∧ S−L) ∼= Σ∞
H (G+ ∧H (X ∧ SW ))

and

ΣV Σ∞
H X ∼= Σ∞

H (X ∧ SV ).

Let ΣV ξ correspond under these isomorphisms to Σ∞
H u, where

u : G+ ∧H (X ∧ SW ) −→ SL ∧ X ∧ SW ∼= X ∧ SV .

The following observation is taken from [7, II.5.8].
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4.3. Lemma. For a G-space Y and an H-space Z, the H-map

G+ ∧H (Y ∧ Z) ∼= Y ∧ (G+ ∧H Z) id∧u ��Y ∧ SL ∧ Z

is canonically H-homotopic to the H-map

G+ ∧H (Y ∧ Z) u ��SL ∧ Y ∧ Z ∼= Y ∧ SL ∧ Z.

Therefore, for any H-map θ : Y −→ X from a G-space Y to an H-space X, the following
diagram is canonically H-homotopy commutative.

G+ ∧H (Y ∧ Z)

id∧(θ∧id)

��

∼= Y ∧ (G+ ∧H Z)
id∧u �� Y ∧ SL ∧ Z

θ∧id

��
G+ ∧H (X ∧ Z) u

�� SL ∧ X ∧ Z ∼= X ∧ SL ∧ Z

Proof. Both maps send all points of G not in j̃(L × H) to the basepoint. The first
takes j̃(λ, h) ∧ y ∧ z to j(λ)hy ∧ λ ∧ hz and the second takes it to hy ∧ λ ∧ hz. Applying
j to a contracting homotopy of L, we obtain an H-homotopy from j : L −→ G to the
constant map at e, giving the required homotopy. The last statement follows since the
diagram commutes by naturality if its top arrow is replaced by u.

This leads to the following naturality statement. The partial naturality diagram [2,
(6.13)] is the case in which Y = f∗X and θ is the counit of the (f ∗, f∗) adjunction.

4.4. Lemma. Let Y be a G-spectrum and X be a based H-space. For any map θ : Y −→
Σ∞

H X of H-spectra, the following diagram of H-spectra commutes in C .

G+ ∧H (Y ∧ S−L)
ξ ��

id∧(θ∧id)
��

Y

θ

��
G+ ∧H (Σ∞

H X ∧ S−L)
ξ

�� Σ∞
H X

Proof. The upper map ξ in the diagram is defined formally in [2, (6.8)]. It suffices to
prove that the diagram commutes after suspension by V . This has the effect of replacing
S−L by SW on the left and suspending by V on the right. Comparing [2, (6.8)] with
Definition 4.2 and taking Z = SW , the conclusion reduces to application of the spacewise
diagram of the previous lemma to the spaces that comprise the given spectra. Technically,
this is most easily seen using prespectra or orthogonal spectra rather than actual spectra,
but the essential point is just that the homotopy in the previous lemma is sufficiently
natural to commute with the structure maps.
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To complete the proof of Theorem 1.1, it suffices to show that the following special-
ization of the diagram [2, (6.14)] commutes.

Σ∞
H X ∧ S−L ζ ��

ζ

��

f ∗f!(Σ
∞
H X ∧ S−L)

f ∗f!(Σ
∞
H X ∧ S−L)

f∗τ
�� f ∗f!(f

∗f!(Σ
∞
H X ∧ S−L) ∧ S−L)

f∗f!(ξ∧id)

��
(4.3)

Here f!(−) = G+∧H (−), f ∗ is the forgetful functor, ζ is the unit of the (f!, f
∗) adjunction,

and τ is the map defined in [2, (6.5)] with Y = f!(Σ
∞
H X ∧ S−L). We shall see that this

reduces to the following space level observations from [7, II§5].

4.5. Lemma. The following composite is H-homotopic to the identity map.

SV t ��G+ ∧H SW u ��SV .

Proof. Composing the embeddings ĩ : G ×H W −→ V and j̃ : L × H −→ G, we
obtain an embedding V = L × W = (L × H) ×H W −→ G ×H V . The composite u ◦ t is
k−1 on k(V ), and it collapses the complement of k(V ) to the basepoint. The embedding
k is isotopic to the identity, and application of the Pontryagin-Thom construction to an
isotopy gives a homotopy id � u ◦ t.

4.6. Lemma. For an H-space X, the following diagram is H-homotopy commutative.
Here σ : SL −→ SL maps λ to −λ.

ΣV X
ΣV ζ ��

ΣV ζ

��

ΣV (G+ ∧H X) ∼= SV ∧ (G+ ∧H X) G+ ∧H (SV ∧ X)π̄−1
��

G+ ∧H ΣW (SL ∧ X)

∼=
��

ΣV (G+ ∧H X)
id∧t

�� (G+ ∧H X) ∧ (G+ ∧H SW )
π̄−1

�� G+ ∧H ΣW (G+ ∧H X)

id∧ΣW (σ∧id)u

��

Proof. The composite around the bottom maps all points with V coordinate not in
ĩ(j(L) × W )) to the basepoint. It maps the point x ∧ ĩ(j(λ), w) to (j(λ, x) ∧ j(λ)(λ,w);
the sign map σ enters due to (4.1) and (4.2). The H-contractibility of L implies that an
H-homotopic map is obtained if we replace f(λ) by the identity element e ∈ G. Thus
the composite around the right is H-homotopic to ζ ∧ u ◦ t, which is H-homotopic to the
identify by Lemma 4.5.



THE WIRTHMÜLLER ISOMORPHISM REVISITED 141

Proof of Theorem 1.1. We must show that the diagram (4.3) commutes. It
suffices to prove this after suspending by V and replacing X by ΣV X. This has the
effect of replacing the H-spectra S−L that appear in the diagram by the H-spaces SW .
Since the functors appearing in the diagram commute with the respective suspension
spectrum functors, this reduces the problem to the space level. Here a slightly finicky
diagram chase, which amounts to a check of signs coming from permutations of suspension
coordinates, shows that the resulting diagram commutes by Lemma 4.6. One point is that
σ∧ id : SL ∧SL −→ SL ∧SL is H-homotopic to the transposition via the homotopy given
by multiplying by the (2 × 2)-matrices with rows (−t, 1 − t) and (1 − t, t) for t ∈ I.
Another is that we must apply Lemma 4.6 with X replaced by X ∧ SW , which has the
effect of introducing a permutation of SL past SW . In more detail, after applying Σ∞

H

and replacing X by X ∧SW , the bottom composite in the diagram of the previous lemma
agrees with

ΣV τ : ΣV (G+ ∧H (ΣV X ∧ S−L)) −→ ΣV (G+ ∧H (G+ ∧H (ΣV X ∧ S−L) ∧ S−L)

under the evident isomorphisms of its domain and target. The interpretation of the right
vertical composite is trickier, because of the specification of

ξ : G+ ∧H (ΣV X ∧ S−L) −→ ΣV X

in Definition 4.2. A diagram chase after suspending by V shows that ξ agrees under the
evident isomorphism of its source with

(σ ∧ id) ◦ u : G+ ∧H (X ∧ SW ) −→ SL ∧ X ∧ SW ∼= ΣV X.

Notice that we have evident isomorphisms

Σ∞
H ΣV (G+ ∧H (X ∧ SW )) ∼= ΣV (G+ ∧H (ΣV X ∧ S−L)) ∼= Σ∞

H G+ ∧H (ΣV X ∧ SW ),

the first of which internally expands SW to SV ∧S−L and the second of which leaves ΣV X
alone but uses π̄ to bring SV inside and contracts S−L ∧ SV to SW . Their composite
enters into the upper right corner of the required diagram chase; the transpositions that
appear cancel out others, resulting in a sign free conclusion. With these indications, the
rest is routine.

4.7. Remark. Effectively, this proof uses the space level arguments of [7, II§5], but
eliminates the need for the spectrum level arguments of [7, II§6]. We warn the reader
that [7, II.5.2] and hence the first diagram of [7, II.6.12] are incorrect. Fortunately, they
are also irrelevant.
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