
Theory and Applications of Categories, Vol. 11, No. 20, 2003, pp. 438–449.

THE STRONG AMALGAMATION PROPERTY AND (EFFECTIVE)
CODESCENT MORPHISMS

DALI ZANGURASHVILI

ABSTRACT. Codescent morphisms are described in regular categories which
satisfy the so-called strong amalgamation property. Among varieties of univer-
sal algebras possessing this property are, as is known, categories of groups, not
necessarily associative rings, M -sets (for a monoid M), Lie algebras (over a
field), quasi-groups, commutative quasi-groups, Steiner quasi-groups, medial quasi-
groups, semilattices, lattices, weakly associative lattices, Boolean algebras, Heyting
algebras. It is shown that every codescent morphism of groups is effective.

1. Introduction

Throughout the paper, we use “(effective) codescent morphism” to mean “(effective)
codescent morphism with respect to the basic fibration”. Namely, let C be a category
with pushouts and let p : B −→ E be its morphism. There is an adjunction

B/C
p∗

�� E/Cp!
��

between coslice categories with the left adjoint p∗ pushing out along p and the right
adjoint p! composing with p from right. The induced comonad on E/C gives rise to the
Eilenberg-Moore category of coalgebras (we denote it by Codes(p)) equipped with the
comparision functor

Φp : B/C −→ Codes (p).

Recall that objects of Codes(p) (called codescent data with respect to p) are triples
(C, γ, ξ), with C ∈ Ob C and γ, ξ being morphisms E −→ C and C −→ C �B E,
respectively, such that the following equalities hold (see Figs.1 and 2):

ξ γ = π2, (1.1)

(1C , γ)ξ = 1C , (1.2)

(π1 �B 1E)ξ = (ξ �B 1E)ξ, (1.3)
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while the functor Φp sends each f : B −→ D to
(
D �B E, π′

2, π
′
1 �B 1E

)
,

where π′
1 and π′

2 are pushouts of p and f , respectively, along each other.
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Fig. 1 Fig. 2

p is called a codescent (effective codescent) morphism if Φp is full and faithful (an equiv-
alence of categories), i.e. if p∗ is precomonadic (comonadic).

It is well-known that if C is finitely cocomplete, then codescent morphisms are precisely
couniversal regular monomorphisms, i.e. morphisms whose pushouts along any morphisms
are regular monomorphisms [JT].

One of the goals of descent theory is to characterize (effective) codescent morphisms
in particular varieties of universal algebras. There are several results obtained along this
line. For instance, this problem has been completely solved for commutative rings with
units (Joyal-Tierney (unpublished), [M]).

In this paper we describe codescent morphisms in those varieties of algebras (more gen-
erally, regular categories) which satisfy the strong amalgamation property and investigate
the problem of the effectiveness of codescent morphisms in the case of groups.

Recall that the strong amalgamation property means that for any pushout square

m ��

α

��
α′
��m′
��

with monomorphisms m,α, the morphisms m′, α′ are also monomorphisms and, moreover,
we have

Im m′ ∩ Im α′ = Im m′α.

Among the varieties of universal algebras possessing this property are, as is known, cat-
egories of groups, not necessarily associative rings, M -sets (for a monoid M), Lie alge-
bras (over a field), quasi-groups, commutative quasi-groups, Steiner quasi-groups, medial
quasi-groups, semilattices, lattices, weakly associative lattices, Boolean algebras, Heyting
algebras. We show that a monomorphism p : B �� �� E of a variety of this kind is code-
scent if and only if
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For any congruence R on B and its closure R′ in E one has

R′ ∩ (B × B) = R.

This in particular implies that every (regular) monomorphism of M -sets, semilattices,
Boolean algebras and Heyting algebras is codescent. Note that the latter result related
to the case of Boolean algebras was obtained earlier by Makkai (an unpublished work).

The main result of this paper asserts that

Every codescent morphism of groups is effective.

The author gratefully acknowledges useful discussions with George Janelidze on the
subject of this paper.

2. The Strong Amalgamation Property and Codescent Morphisms

Before we begin our discussion, let us recall some definitions [KMPT].
Let C be a category equipped with some proper factorization system (E, M), i.e., a

factorization system which satisfies the conditions E ⊂ Epi C and M ⊂ Mon C.
C is said to satisfy the amalgamation (transferability; congruence extension) property

if for each span
m ��

α

��
(2.1)

with m,α ∈ M (m ∈ M; m ∈ M and α ∈ E) there exists a commutative square

m
��

α

��
α′
��m′
��

(2.2)

with m′, α′ ∈ M (m′ ∈ M; m′ ∈ M). C is said to satisfy the strong amalgamation
property (the intersection property of amalgamation) if any span (2.1) with m,α ∈ M

(any commutative diagram (2.2) with m,α,m′, α′ ∈ M) admits a pullback

m
��

α

��
α′′
��

m′′
��

(2.3)

with m′′, α′′ ∈ M. In the case of a variety C of universal algebras and M = Mon C,
this definition is equivalent to that of the strong amalgamation property given in the
Introduction, as follows from the arguments given below.

Clearly, C possesses the strong amalgamation property if and only if it satisfies both
the amalgamation and the intersection property of amalgamation. If C admits finite prod-
ucts, then the transferability property is equivalent to the amalgamation and congruence
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extension properties 2. The latter statement remains true if we replace “finite products”
by “pushouts”. In that case all the definitions presented above can be reformulated.
Namely, the amalgamation (transferability; congruence extension) property is equivalent
to the requirement that the class M be stable under pushouts along M-morphisms (any
morphisms; E-morphisms), while the strong amalgamation property is satisfied if and
only if the amalgamation property is fulfilled and pushout (2.2) is also a pullback square
for any m,α ∈ M.

In what follows we make use of the following known result.

2.1. Theorem. Let C admit pushouts. Then the following conditions are equivalent:

(i) C satisfies the intersection property of amalgamation;

(ii) M consists of all regular monomorphisms.

If, in addition, C satisfies the amalgamation property, then each of (i), (ii) is equivalent
to

(iii) every epimorphism lies in E, and hence E = Epi C.

The implication (i)⇒(ii) is obvious. (ii)⇒(i) is proved in [K], [Ri], [T], while the
equivalence (i)⇔(iii) is proved in [Ri].

Most of investigations related to the question whether concrete categories satisfy the
above-discussed properties deal with the case, where

M = all monomorphisms. (2.4)

From now on we shall follow assumption (2.4).

2.2. Proposition. Let C be a regular category with pushouts and let C satisfy the strong
amalgamation property. Then the following conditions are equivalent for a monomorphism
f : B �� �� E :

(i) f is a codescent morphism;

(ii) f is a couniversal regular monomorphism;

(iii) f is a {Regular epis}-couniversal regular monomorphism3;

(iv) f is an {Epis}-couniversal monomorphism;

2We have to apply the transferability property to both “sides” and after that to take the product.
3Similarly to the notion of a couniversal regular monomorphism, for arbitrary morphism classes E and

M one can define a E-couniversal M-morphism as a morphism whose pushout along any E-morphism
lies in M.
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(v) for any kernel pair R
α1 ��
α2

�� B on B and the kernel pair R′
α′

1 ��

α′
2

�� E of the coequalizer

of (fα1, fα2), the square

R �������

(α1,α2)

��

R′

(α′
1,α′

2)

��
B × B ��

f×f
�� E × E

(2.5)

is a pullback.

Each (regular) monomorphism of C is a codescent morphism if and only if C satisfies
additionally the congruence extension (or, equivalently, the transferability property).

If C is (Barr-)exact, then one can replace the first “kernel pair” in (v) by “equivalence
relation”.

Proof. Let us first indicate some properties of the considered categories C. The pair
(Regular epis, Monos) is a factorization system on C. Moreover, by Theorem 2.1 each
monomorphism as well as each epimorphism is regular and for any diagram

e

��

β
��

α �� (2.6)

with e being an epimorphism there exists a diagram

β

��
α ��

e
��

e

��

β
��

α ��
(2.7)

such that e is also an epimorphism and eα = αe, eβ = βe 4.

The equivalences (ii)⇔(iii)⇔(iv) obviously follow from the presented properties.
(i)⇔(ii) is the well-known fact proved, for instance, in [JT].

(iv)⇒(v): Let e be a coequalizer of (α1, α2). Then e′, the pushout of e along f , is a

4We first take a pullback e1 of e along α and then the pullback e2 of e along βe1. e′ is given by the
composition e2e1.
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coequalizer of (fα1, fα2). Consider the diagram

A
γ

�����������������������������

β1

		�
��

��
��

��
��

��
��

��

β2

		�
��

��
��

��
��

��
��

��

R
f ′

��������

α1

��

α2

��

R′

α′
1

��
α′

2

��
B �� f ��

e
����

E

e′
����

C
g �������� C ′

(2.8)

with any β1, β2, γ such that fβ1 = α′
1γ and fβ2 = α′

2γ. Then geβ1 = e′fβ1 = e′fβ2 =
geβ2, whence eβ1 = eβ2, since g being the pushout of f along a (regular) epimorphism
is a monomorphism. Since (α1, α2) is a kernel pair of e, we have a unique morphism
δ : A −→ R such that β1 = α1δ and β2 = α2δ. Moreover, α′

1f
′δ = fα1δ = fβ1 = α′

1γ
and, similarly, α′

2f
′δ = α′

2γ, so that f ′δ = γ.

(v)⇒(iv): Let gα = gβ and consider e, α, β from diagram (2.7). Clearly, one has
e′fα = e′fβ, which gives a morphism θ with α = α1θ and β = α2θ. Therefore eα = eβ,
from which it follows that α = β.

For varieties of universal algebras the condition (v) of Proposition 2.2 clearly takes
the form:

For any congruence R on B and its closure R′ in E one has

R′ ∩ (B × B) = R.

2.3. Example. As is known, the varieties of M -sets (for a given monoid M) [KMPT],
groups [S], not necessarily associative rings [Di], Lie algebras (over a given field) [R],
quasi-groups [YK1], commutative quasi-groups [YK], Steiner quasi-groups [KMPT], me-
dial quasi-groups [JK], semilattices [HK], lattices [Y], [G], weakly associative lattices [FG],
Boolean algebras [DY] and Heyting algebras [D] satisfy the strong amalgamation property.
Moreover, the categories of M -sets [KMPT], semillatices [KMPT], [BL], Boolean algebras
[Si] and Heyting algebras [D] possess the congruence extension property as well. In each
case we give the reference (according to [KMPT]) where the corresponding property is
determined for the first time.

3. Effective Codescent Morphisms of Groups

Proposition 2.2 gives rise to
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3.1. Theorem. Let p : B �� �� E be a monomorphism of groups. p is a codescent
morphism if and only if for any normal subgroup N of B and its normal closure N ′ in E
one has

N ′ ∩ B = N.

When B is a normal subgroup of E, this is equivalent to the requirement that any normal
subgroup of B be normal in E as well.

Before giving our main result, let us recall some well-known facts related to free
products of groups with an amalgamated subgroup [Ku]. Let H be a group, and

( H �� ϕi �� Gi )i∈I be a family of groups equipped with monomorphisms ϕi. Further, let G
be a group containing (isomorphic copies of) all Gi, and let

Gi ∩ Gj = H (3.1)

for i 	= j (here we identify every h ∈ H with all ϕi(h)). For any i ∈ I and any right
coset of Gi by H, except for H itself, we choose a representative. We denote the set of
all chosen representatives by A. G is a free product of (Gi)i∈I with the amalgamated
subgroup H if and only if every element of G can be uniquely written as a product

h a1 a2 · · · an, (3.2)

where n ≥ 0, h ∈ H, all aj lie in A and no two aj, aj+1 belong to the same Gi
5. Form

(3.2) is called canonical. It is easy to see how an element

a′
1 a′

2 · · · a′
m (3.3)

of G (taken in the uncancellable form) can be reduced to the canonical form. Indeed,
if m = 1 and a′

m ∈ H, then (3.3) is already the desired one. If again m = 1, but
a′

m ∈ Gim\H, then we consider the representation

a′
m = h a′

m (3.4)

with h ∈ H and a′
m ∈ Gim ∩ A; (3.4) is the canonical form for (3.3). Let m > 1 and

a′
2 a′

3 · · · a′
m be already reduced to the required form

a′
2 a′

3 · · · a′
m = h′ a1 a2 · · · an

with aj ∈ Gi′j ∩ A. If a′
1 ∈ H, then

(a′
1 h′)a1 a2 · · · an

5In fact, this criterion remains true even without requirement (3.1)—we only have to replace “set of
representatives” by “system of representatives” and then to specify what kind of products (3.2) and the
uniqueness is meant here.
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is clearly the canonical form for (3.3). If a′
1 ∈ Gi1\H, then we consider the representation

a′
1 h′ = h′′a′

1,

where h′′ ∈ H and a′
1 ∈ Gi1 ∩ A. If i1 	= i′1, then

h′′ a′
1a1 a2 · · · an

is the canonical form for (3.3). If i1 = i′1 and a′
1 a1 ∈ H, then

(h′′ a′
1 a1) a2 · · · an

is the required representation for (3.3). If i1 = i′1 and a′
1 a1 	∈ H, then we have

a′
1 a1 = h′′′ a′

1a1

for some h′′′ ∈ H and a′
1a1 ∈ Gi1 ∩ A; the representation

h′′′ a′
1a1 a2 · · · an

is the desired form for (3.3).
Now it is clear that if a′

j1
, a′

j2
, . . . , a′

jk
are precisely those elements in (3.3) which do

not lie in H and if ijr 	= ijr+1 (!) for any 1 ≤ r ≤ k−1, then in the canonical form of (3.3)
we have exactly k factors (except, perhaps, for a coefficient from H) and these factors
belong to Gij1

, Gij2
, . . . , Gijk

, respectively. Indeed, in each step of the reduction we either
pick out an H-coefficient from some a′

j or perform the relevant multiplication. Clearly,
each a′

jr
is changed again by an element from Gijr

\H, while no two ajr , ajr+1 can “cancel”
each other.

3.2. Proposition. For any monomorphism p : B �� �� E the action of Φp on objects
is surjective up to an isomorphism.

Proof. Let (C, γ, ξ) be codescent data with respect to p. The pushout in Fig. 1 is the
concatenation of the following two pushouts:

B

��

�� p �� E

��
γ(B) �� p′ ��

��
i

��

E/(Ker γ ∩ B)′
��
i′
��

C �� π1 �� C �γ(B) E/(Ker γ ∩ B)′

(3.5)

Here (Ker γ∩B)′ is the normal closure of (Ker γ∩B) in E. From (1.2) we conclude that
π1 and thus both p′ and i′ are monomorphisms.
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From (1.1) we have
ξ(γ(E)) = π2(E). (3.6)

On the other hand, by (1.2) ξ is a split monomorphism. Therefore the homomorphism
γ(E) −→ π2(E) ≈ E/(Ker γ ∩ B)′ is an isomorphism and its inverse is the morphism
induced by γ. This in particular implies that (Ker γ ∩ B)′ = Ker γ and thus diagram
(3.5) takes the form

B

��

��
p

�� E

��
γ(B) �� p′ ��

��
i

��

γ(E)
��
i′
��

C �� π1 �� C �γ(B) γ(E)

If C = γ(E), then (C, γ, ξ) ≈ Φp(B −→ γ(B)).
Suppose now that C 	= γ(E). Without loss of generality it can be assumed that p is

not an isomorphism. Since we intend to work with the free product of the groups G1 = C
and G2 = γ(E) (as well as with the free product of the groups G1 = C, G2 = γ(E)
and G3 being another copy of γ(E)) with the amalgamated subgroup γ(B), we choose a
representative from each right coset (different from γ(B)) of G1 and G2 (in G3 we choose
the same representatives as in G2). Let c ∈ C\γ(E) and let the canonical form of ξ(c) be
written as

ξ(c) = γ(b) a1 a2 · · · an. (3.7)

We show that if ai ∈ G1 for some i, then

ξ(ai) ∈ G1,

whence, by (1.2)
ξ(ai) = ai.

Let the canonical form of ξ(ai) have the form

ξ(ai) = γ(b′)a′
1 a′

2 · · · a′
m.

Clearly, by (1.2) m > 0. Suppose that at least one a′
j lies in G2. From (1.3) we obtain

γ(b) · · ·©ai−1 ai ©ai+1 · · ·

= γ(b) · · · ©ai−1 γ(b′) a′
1 a′

2 · · · a′
m ©ai+1 · · · , (3.8)

where the elements in circles are considered as representatives of G3. The left and right
neighbors of any γ(b′′) (if they exist) in the right part of (3.8) lie in different Gi (1 ≤ i ≤ 3).
Therefore, according to the observation preceding this proposition, the canonical form of
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the right part of (3.8) necessarily contains a representative from G2. On the other hand,
the left part of (3.8) is already canonical and does not contain any representative from
G2, which is a contradiction.

Let C ′ be the smallest subgroup of C containing γ(B) and all elements of G1 which
take part in representation (3.7) for some c ∈ C\γ(E). From (1.2) we obtain

c = γ(b) a′
1a

′
2 · · · a′

n,

where each a′
i coincides either with ai or with γ(ai). Thus C is generated by C ′ and γ(E).

Moreover, as we have just proved

ξ
∣
∣
C′ = π1

∣
∣
C′ .

Therefore, after choosing a set of representatives from the right cosets of C ′ and γ(E)
by γ(B), we conclude that each element of C has precisely one canonical form. Thus
C = C ′ �γ(B) γ(E) and (C, γ, ξ) ≈ Φp(γ′), where γ′ : B −→ C ′ is the homomorphism
induced by γ.

Proposition 3.2 immediately gives rise to

3.3. Theorem. In the category of groups every codescent morphism is effective.

3.4. Remark. It seems natural to ask what classes of effective codescent morphisms
various comonadicity criteria determine in this case. In this connection, we only observe
that for a monomorphism p : B �� �� E , the change-of-cobase functor p∗ preserves (all)
equalizers if and only if the intersection of any right and left cosets of E by B which
are different from B, contains at most one element. The “if” part is easy to verify. For
the “only if” part we consider the equalities tb = b′s and tb1 = b′1s with t, s ∈ E\B,
b, b′, b1, b

′
1 ∈ B and choose a diagram

B




i1



��
��

��
��
i2
��

��
i3

��	
		

		
	

C �� γ �� D
α ��
β

�� K

with monomorphisms i1, i2, i3 such that the bottom part is an equalizer diagram and,
moreover, there exist d, d′ ∈ D\B with b−1α(d) = b−1

1 β(d) and α(d′)b′ = β(d′)b′1. It is
easy to see that for the element x = d′td of D�B E we have (α�B 1E)(x) = (β �B 1E)(x).
Hence x = (γ �B 1E)(y) for some y ∈ C �B E. If we choose representatives of the right
cosets of C by B, then their images under γ can be taken as representatives of (some)
right cosets of D. The canonical form of y necessarily ends in an element c from C. We
have γ(c) = b′′′d for some b′′′ ∈ B and therefore α(d) = β(d) and b = b1, b′ = b′1.

In particular, when B is normal in E, p∗ preserves equalizers if and only if B is trivial.
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