ОБОБЩЕННЫЕ SV-МОДУЛИ

А. Н. Абызов

Аннотация. Для произвольного квазипроективного правого R-модуля P установлено, что в категории $\sigma(P)$ каждый модуль слабо регулярен тогда и только тогда, когда в категории $\sigma(M/I(M))$ каждый модуль является модулем со свойством подъема, где M — порождающий объект категории $\sigma(P)$. В частности, даются описания колец, над которыми каждый правый модуль слабо регулярен.

Ключевые слова: полуартиново кольцо, слабо регулярный модуль, SV-кольцо, квазипроективный модуль.

Все кольца предполагаются ассоциативными и с единицей, а модули — унитарными. Модуль M называется слабо регулярным, если каждый его подмодуль, который не содержится в радикале Джекобсона модуля M, содержит в себе ненулевое прямое слагаемое модуля M. Кольцо R называется слабо регулярным, если слабо регулярен модуль R_R .

Через J(R) и J(M) будем соответственно обозначать радикал Джекобсона кольца R и модуля M. Инъективную оболочку модуля M будем обозначать через E(M). Если модуль M обладает композиционным рядом, то число композиционных факторов в композиционном ряде модуля M называется его длиной и обозначается через l(M). Модуль, который изоморфен подмодулю гомоморфного образа прямых сумм копий модуля M, называется M-подпорожденным. Полную подкатегорию всех правых R-модулей, состоящую из всех M-подпорожденных модулей, будем обозначать через $\sigma(M)$.

Модуль M называется SV-модулем, если он является полуартиновым V-модулем. Кольцо R называется npaвым SV-кольцом, если $R_R - SV$ -модуль. Модуль M назовем обобщенным SV-модулем, если каждый модуль из категории $\sigma(M)$ является слабо регулярным. Кольцо R называется обобщенным справа SV-кольцом, если каждый правый R-модуль слабо регулярен.

Слабо регулярные кольца под названием I_0 -колец введены и изучены Никольсоном в работе [1]. Понятие слабо регулярного модуля введено И. И. Сахаевым в начале 90-х гг. прошлого столетия. Проективные слабо регулярные модули подробно изучены в [2]. Основным результатом настоящей работы является теорема 13, в которой характеризуются квазипроективные обобщенные SV-модули. В частности, даются описания обобщенных справа SV-колец.

Рядом Леви модуля М называется возрастающая цепочка

$$0 \subset \operatorname{Soc}_1(M) = \operatorname{Soc}(M) \subset \cdots \subset \operatorname{Soc}_{\alpha}(M) \subset \operatorname{Soc}_{\alpha+1}(M) \subset \cdots$$

где $\operatorname{Soc}_{\alpha}(M)/\operatorname{Soc}_{\alpha-1}(M)=\operatorname{Soc}(M/\operatorname{Soc}_{\alpha-1}(M))$ для каждого непредельного ординального числа α и $\operatorname{Soc}_{\alpha}(M)=\bigcup_{\beta<\alpha}\operatorname{Soc}_{\beta}(M)$ для каждого предельного ординального числа α . Обозначим через L(M) подмодуль вида $\operatorname{Soc}_{\xi}(M)$, где ξ —

наименьший ординал, для которого выполнено равенство $\mathrm{Soc}_{\xi}(M)=\mathrm{Soc}_{\xi+1}(M).$ Модуль M называется *полуартиновым*, если выполнено равенство M=L(M). Кольцо R называется *полуартиновым справа*, если модуль R_R является полуартиновым. Для произвольного кольца R через L(R) и $\mathrm{Soc}(R)$ будем обозначать соответственно идеалы $L(R_R)$ и $\mathrm{Soc}(R_R)$.

Для произвольного правого R-модуля M определим по трансфинитной индукции для каждого ординального числа α подмодуль $I_{\alpha}(M)$ следующим образом. При $\alpha=0$ положим $I_{\alpha}(M)=0$. Если $\alpha=\beta+1$, то $I_{\beta+1}(M)/I_{\beta}(M)$ сумма всех локальных M-инъективных правых подмодулей модуля $M/I_{\beta}(M)$ длины не больше двух, у которых фактор-модуль по радикалу Джекобсона является M-инъективным модулем. Когда α — предельное ординальное число, положим $I_{\alpha}(M)=\bigcup_{\beta<\alpha}I_{\beta}(M)$. Ясно, что для некоторого ординального числа τ

имеют место равенства $I_{\tau}(M) = I_{\tau+1}(M)$ и $I_1(M/I_{\tau}(M)) = 0$. Далее через I(M) будем обозначать подмодуль $I_{\tau}(M)$. Для произвольного кольца R через I(R) будем обозначать правый идеал $I(R_R)$, который, как легко заметить, является идеалом.

Для правых R-модулей P, M и $S = \operatorname{End}_R(P)$ абелеву группу $\operatorname{Hom}_R(P,M)$ можно рассматривать как правый S-модуль, положив (fs)(m) = f(s(m)), где $f \in \operatorname{Hom}_R(P,M)$, $s \in S$ и $m \in M$.

Лемма 1. Пусть P — конечно порожденный квазипроективный правый R-модуль и $S = \operatorname{End}_R(P)$. Если $M \in \sigma(P)$, то имеют место следующие утверждения:

- (1) если N подмодуль модуля M, то существует изоморфизм правых S-модулей $\operatorname{Hom}_R(P,M/N)\cong \operatorname{Hom}_R(P,M)/\operatorname{Hom}_R(P,N);$
- (2) если M простой правый R-модуль, то $\operatorname{Hom}_R(P,M)$ является либо простым, либо нулевым правым S-модулем;
- (3) если M полупростой правый R-модуль, то $\operatorname{Hom}_R(P,M)$ полупростой правый S-модуль;
- (4) если $M=\sum_{i\in I}N_i$ и ${\rm Hom}_R(P,M)\neq 0$, то существует $i_0\in I$ такой, что ${\rm Hom}_R(P,N_{i_0})\neq 0$;
 - (5) если $\phi \in \operatorname{Hom}_R(P, M)$, то $\phi S = \operatorname{Hom}_R(P, Jm(\phi))$.

Доказательство. (1) Пусть f — каноническое отображение из M на M/N. Рассмотрим отображение g: $\operatorname{Hom}_R(P,M) \to \operatorname{Hom}_R(P,M/N)$, действующее по правилу $g(\phi) = f\phi$. Ясно, что g - S-гомоморфизм и $\operatorname{Ker}(g) = \operatorname{Hom}_R(P,N)$. Согласно [3, 18.3] P — проективный объект категории $\sigma(P)$. Тогда g — эпиморфизм, что и доказывает наше утверждение.

- (2) Расмотрим ненулевой гомоморфизм $\phi \in \operatorname{Hom}_R(P, M)$. Покажем, что $\phi S = \operatorname{Hom}_R(P, M)$. Пусть $\alpha \in \operatorname{Hom}_R(P, M)$. Так как ϕ ненулевой, он является эпиморфизмом. Тогда из квазпроективности P следует существование такого гомоморфизма $\beta \in S$, что $\alpha = \phi \beta$.
- (3) Пусть $M = \bigoplus_{i \in I} S_i$, где для каждого i модуль S_i прост. Поскольку P является конечно порожденным, то $\operatorname{Hom}_R(P,\bigoplus_{i \in I} S_i) \cong \bigoplus_{i \in I} \operatorname{Hom}_R(P,S_i)$. Тогда полупростота S-модуля $\operatorname{Hom}_R(P,M)$ следует из предыдущего пункта.
- (4) Пусть $\phi \in \operatorname{Hom}_R(P,M)$ ненулевой гомоморфизм. Рассмотрим естественный эпиморфизм f из $\bigoplus_{i \in I} N_i$ на $\sum_{i \in I} N_i$. Поскольку P проективный объект

в категории $\sigma(P)$, существует такой гомоморфизм $g:P\to \bigoplus_{i\in I} N_i$, что $\phi=fg$. Тогда g — ненулевой гомоморфизм и, следовательно, существует такой $i_0\in I$, что $\operatorname{Hom}_R(P,N_{i_0})\neq 0$;

(5) Утверждение следует из квазипроективности модуля P. \square

Следующая лемма непосредственно вытекает из [4, 11.35].

Лемма 2. Пусть P — правый R-модуль и кольцо $S = \operatorname{End}_R(P)$ регулярно. Тогда из инъективности правого R-модуля M следует инъективность правого S-модуля $\operatorname{Hom}_R(P,M)$.

Лемма 3. Пусть M — слабо регулярный правый R-модуль и N — подмодуль модуля M такой, что (N+J(M))/J(M) — простой подмодуль модуля M/J(M). Тогда модуль N содержит такое локальное прямое слагаемое mR модуля M, что (N+J(M))/J(M)=(m+J(M))R.

Доказательство. Пусть n — элемент подмодуля N такой, что

$$(N + J(M))/J(M) = (n + J(M))R.$$

Из слабой регулярности модуля M следует существование такого циклического подмодуля mR, что $mR \not\subset J(M), \ mR \subset nR$ и mR — прямое слагаемое модуля M. Тогда

$$(N+J(M))/J(M)=(m+J(M))R\cong mR/(J(M)\cap mR)\cong mR/J(mR),$$
что доказывает локальность модуля mR . \square

Лемма 4. Пусть M — правый R-модуль и в категории $\sigma(M)$ каждый модуль является слабо регулярным. Тогда каждый локальный модуль из категории $\sigma(M)$ локальный длины не больше двух.

Доказательство. Пусть N — локальный модуль из категории $\sigma(M)$. Если N непростой, то из [5, лемма 3.3] следует, что $N \not\subset J(E(N))$, где E(N) — инъективная оболочка модуля N в категории $\sigma(M)$. Тогда из слабой регулярности модуля E(N) получаем равенство N=E(N). Поскольку каждый инъективный неразложимый модуль однороден и по [5, лемма 3.3] J(N) полупрост, то N — локальный модуль длины два. \square

Лемма 5. Если M — полуартинов модуль и в категории $\sigma(M)$ каждый модуль является слабо регулярным, то каждый неполупростой модуль N из $\sigma(M)$ будет содержать инъективный локальный подмодуль длины не больше двух.

ДОКАЗАТЕЛЬСТВО. Поскольку N является неполупростым, то из [5, теорема 3.4] следует, что он будет содержать ненулевой инъективный подмодуль N_0 . Так как M — полуартинов модуль, ввиду [6, 3.12] подмодуль N_0 также является полуартиновым и, следовательно, $N_0/J(N_0)$ будет содержать простой подмодуль. Тогда из лемм 3 и 4 вытекает, что модуль N_0 будет содержать прямое слагаемое, которое является инъективным, локальным и длины не больше двух. \square

Модуль M называется полулокальным, если M/J(M) является полупростым модулем. Говорят, что подмодуль N модуля M лежит над прямым слагаемым модуля M, если существуют такие подмодули N_1 и N_2 , что $N_1 \oplus N_2 = M$, $N_1 \subset N$ и $N_2 \cap N$ косуществен в N_2 . Правый R-модуль M называется модулем со свойством подъема, если каждый его подмодуль лежит над прямым слагаемым модуля M. Легко видеть, что каждый модуль со свойством подъема является слабо регулярным.

Теорема 6. Пусть M — правый R-модуль. Тогда следующие условия равносильны:

- (1) M полулокальный и каждый модуль в $\sigma(M)$ слабо регулярен;
- (2) M локально нётеров и каждый модуль в $\sigma(M)$ слабо регулярен;
- (3) каждый модуль в $\sigma(M)$ является модулем со свойстом подъема.

Доказательство. (1) \Rightarrow (2) Покажем, что модуль M локально нётеров. Пусть N — конечно порожденный подмодуль модуля M. Ясно, что модуль $N/(N \cap J(M))$ является полупростым модулем конечной длины. Используя индукцию по длине модуля $N/(N \cap J(M))$, покажем, что N — модуль конечной длины. Если $l(N/(N\cap J(M)))=1$, то из леммы 3 следует существование такого локального подмодуля N_0 модуля N, что $(N_0 + J(M))/J(M) \cong (N + J(M))/J(M)$ и $M=N_0\oplus L$, где L — подмодуль M. Тогда $N=N_0\oplus (N\cap L)$, где $N\cap L\subset J(M)$ и $J(M) \subset {\rm Soc}(M)$ согласно [5, лемма 3.3]. Поскольку $N \cap L$ — конечно порожденный полупростой модуль, а по лемме $4 N_0$ — локальный модуль конечной длины, то N- модуль конечной длины. Пусть наше утверждение доказано для конечно порожденных подмодулей S модуля M, у которых $l(S/(S \cap J(M))) < n$ и N конечно порожденный подмодуль модуля M, у которого $l(N/(N\cap J(M)))=n$. Выберем в модуле N такой подмодуль N_0 , что $N_0/(N_0\cap J(M))$ — простой модуль. Из леммы 3 следует существование такого локального подмодуля mRмодуля N_0 , что $M=mR\oplus L$, где L подмодуль M. Тогда $N=mR\oplus (N\cap L)$ и $l(N/(N\cap J(M)))=1+l((N\cap L)/((N\cap L)\cap J(M)))$. Модули mR и $N\cap L$ в силу предположения индукции имеют конечную длину, следовательно, модуль N также имеет конечную длину. Таким образом, модуль M является локально нётеровым.

 $(2)\Rightarrow (3)$ Покажем, что каждый модуль в категории $\sigma(M)$ является полуартиновым. Для этого согласно [6, 3.12] достаточно показать полуартиновость модуля M. Пусть M/N — фактор-модуль модуля M и N_0 — ненулевой конечно порожденный подмодуль модуля M/N. Тогда N_0 — нётеров модуль и, следовательно, согласно [7, предложение 10.14] имеем равенство $N_0=N_1\oplus\cdots\oplus N_k$, где для каждого i модуль N_i неразложим. Поскольку каждый нерадикальный и неразложимый слабо регулярный модуль, очевидно, локален, из леммы 4 следует, что $\mathrm{Soc}(N_0)\neq 0$. Таким образом, каждый фактор-модуль модуля M имеет ненулевой цоколь, что и доказывает полуартиновость модуля M.

Пусть N — неполупростой модуль из $\sigma(M)$. Обозначим через A множество всех подмодулей N, которые являются локальными инъективными длины не больше двух. Из леммы Цорна следует, что мы можем выбрать максимальное подмножество A_0 множества A со свойством $\sum\limits_{U\in A_0} U=\bigoplus\limits_{U\in A_0} U$. Пусть $N_0=\bigoplus\limits_{U\in A_0} U$. Поскольку по предположению M локально нётеров, из [3, 27.3] получим равенство $N=N_0\oplus L$, где L — подмодуль модуля N. Если L — неполупростой модуль, то из леммы 5 вытекает, что L содержит инъективный локальный подмодуль длины не больше двух. Это противоречит выбору модуля N_0 . Таким образом, каждый модуль из категории $\sigma(M)$ является прямой суммой локальных модулей длины не больше двух. Тогда согласно [8, теорема 2.4] в категории $\sigma(M)$ каждый модуль является модулем со свойстом подъема.

 $(3) \Rightarrow (1)$ Импликация непосредственно следует из [8, теорема 2.4]. \square

Лемма 7. Если M — правый R-модуль, то каждый ненулевой фактормодуль модуля $\bigoplus_{\alpha\in A}I(M_{\alpha}),$ где $M\cong M_{\alpha}$ для каждого $\alpha,$ содержит ненулевой

локальный M-инъективный подмодуль длины не больше двух.

Доказательство. Пусть $L=\big(\bigoplus_{\alpha\in A}I(M_\alpha)\big)/N$ — ненулевой фактор-модуль модуля $\bigoplus_{\alpha\in A}I(M_\alpha)$ и φ — канонический гомоморфизм из $\bigoplus_{\alpha\in A}I(M_\alpha)$ в L. Тогда существует такой индекс α_0 , что $\varphi i_{\alpha_0}(I(M_{\alpha_0}))\neq 0$, где i_{α_0} — каноническое вложение модуля $I(M_{\alpha_0})$ в модуль $\bigoplus_{\alpha\in A}I(M_\alpha)$. Пусть γ — наименьшее ординальное число, для которого имеет место неравенство $\varphi i_{\alpha_0}(I_\gamma(M_{\alpha_0}))\neq 0$. Ясно, что γ — непредельное ординальное число. Тогда модуль L содержит ненулевой гомоморфный образ модуля $I_\gamma(M_\alpha)/I_{\gamma-1}(M_\alpha)$ и, следовательно, L содержит локальный M-инъективный подмодуль длины не больше двух. \square

Теорема 8. Если M — полуартинов правый R-модуль, являющийся порождающим объектом категории $\sigma(M)$, то следующие условия равносильны:

- (1) каждый модуль категории $\sigma(M)$ является слабо регулярным;
- (2) каждый модуль в $\sigma(M/I(M))$ является модулем со свойством подъема;
- (3) каждый модуль из $\sigma(M/I(M))$ является прямой суммой модулей длины не больше двух.

Доказательство. (1) \Rightarrow (2) Если модуль (M/I(M))/J((M/I(M))) содержит ненулевой M-инъективный подмодуль, то он, очевидно, будет содержать и простой M-инъективный подмодуль. Тогда из лемм 4 и 5 следует, что модуль M/I(M) содержит M-инъективный локальный подмодуль длины не больше двух, у которого фактор-модуль по радикалу Джекобсона является M-инъективным модулем. Поскольку $I_1(M/I(M)) = 0$, получаем противоречие. Таким образом, (M/I(M))/J((M/I(M))) не содержит ненулевых M-инъективных подмодулей и, следовательно, согласно [5, теорема 3.4] является полупростым модулем. Тогда M/I(M) является полулокальным модулем и импликация следует из теоремы 6.

Равносильность пп. (2) и (3) вытекает из [8, теорема 2.4].

 $(3)\Rightarrow (1)$ Покажем, что каждый локальный модуль N длины два из категории $\sigma(M/I(M))$ является инъективным в $\sigma(M)$. Пусть E(N) — инъективная оболочка модуля N в категории $\sigma(M)$ и φ — эпиморфизм из $\bigoplus_{\alpha\in A}M_{\alpha}$ в E(N), где для каждого α имеет место изоморфизм $M\cong M_{\alpha}$. Если $\varphi(\bigoplus_{\alpha\in A}I(M_{\alpha}))=0$, то E(N) — объект категории $\sigma(M/I(M))$. Тогда по [8, теорема 2.4] E(N) — модуль со свойством подъема, и поскольку $N\not\subset J(E(N))$, получаем равенство E(N)=N. В случае, когда $\varphi(\bigoplus_{\alpha\in A}I(M_{\alpha}))\neq 0$, из леммы 7 следует, что E(N) содержит M-инъективный локальный подмодуль длины не больше двух, что, очевидно, влечет равенство E(N)=N.

Рассмотрим произвольный неполупростой модуль N из категории $\sigma(M)$. Из условия теоремы получаем существование эпиморфизма φ из $\bigoplus_{\alpha \in A} M_{\alpha}$ в N, где для каждого α имеет место изоморфизм $M \cong M_{\alpha}$. Если $\bigoplus_{\alpha \in A} I(M_{\alpha}) \subset \operatorname{Ker} \varphi$, то N будет неполупростым объектом категории $\sigma(M/I(M))$ и, следовательно, будет содержать в себе ненулевой инъективный подмодуль. Пусть $\bigoplus_{\alpha \in A} I(M_{\alpha}) \not\subset \operatorname{Ker} \varphi$. Тогда из леммы 7 следует, что N содержит ненулевой локальный M-инъективный подмодуль. Таким образом, приведенные выше рассуждения по-казывают, что в произвольном неполупростом модуле N содержится ненулевой инъективный подмодуль. Тогда импликация следует из [5, теорема 3.4]. \square

Лемма 9. Пусть P — конечно порожденный квазипроективный обобщенный правый SV-модуль над кольцом R, $S = \operatorname{End}_R(P)$ — регулярное кольцо и $M \in \sigma(P)$. Тогда правый S-модуль $\operatorname{Hom}_R(P,M)$ является либо полупростым, либо содержит в себе ненулевой инъективный подмодуль.

Доказательство. Допустим, что правый S-модуль $\operatorname{Hom}_R(P,M)$ не содержит ненулевых инъективных подмодулей. Определим в модуле M по трансфинитной индукции для каждого ординального числа α подмодуль M_{α} следующим образом. При $\alpha=0$ положим $M_{\alpha}=0$. Если $\alpha=\beta+1$, то $M_{\beta+1}/M_{\beta}$ — сумма всех P-инъективных подмодулей модуля M/M_{β} . Когда α — предельное ординальное число, положим $M_{\alpha}=\bigcup_{\beta<\alpha}M_{\beta}$. Обозначим через M_{0} объединение всех

таких модулей. Покажем с помощью трансфинитной индукции, что для каждого ординального числа α имеет место равенство $\mathrm{Hom}_R(P,M_\alpha)=0$. Если $\alpha=0$, то утверждение тривиально. Пусть α — некоторое ординальное число и для каждого $\beta<\alpha$ имеет место равенство $\mathrm{Hom}_R(P,M_\beta)=0$. Если α — предельное ординальное число, то равенство $\mathrm{Hom}_R(P,M_\alpha)=0$ тривиально. Предположим, что α — непредельное ординальное число и $\alpha=\alpha_0+1$. По предположению индукции $\mathrm{Hom}_R(P,M_{\alpha_0})=0$. Тогда по лемме 1

$$\operatorname{Hom}_R(P, M_{\alpha}/M_{\alpha_0}) \cong \operatorname{Hom}_R(P, M_{\alpha}) / \operatorname{Hom}_R(P, M_{\alpha_0}) \cong \operatorname{Hom}_R(P, M_{\alpha}).$$

Если $\operatorname{Hom}_R(P,M_{\alpha}) \neq 0$, то по лемме 1 в модуле M_{α}/M_{α_0} найдется такой P-инъективный подмодуль L, что $\operatorname{Hom}_R(P,L) \neq 0$. Поскольку по лемме 2 $\operatorname{Hom}_R(P,L)$ — инъективный S-модуль, то $\operatorname{Hom}_R(P,M_{\alpha})$ и, следовательно, $\operatorname{Hom}_R(P,M)$ будут содержать в себе ненулевые P-инъективные подмодули, что противоречит исходному предположению. Таким образом, для каждого ординального числа α имеет место равенство $\operatorname{Hom}_R(P,M_{\alpha})=0$, и, следовательно, $\operatorname{Hom}_R(P,M_0)=0$. Поскольку M/M_0 не содержит P-инъективных подмодулей, из [5, теорема 3.4] следует, что M/M_0 полупрост. Тогда по лемме $1\operatorname{Hom}_R(P,M/M_0)$ — полупростой модуль, и поскольку $\operatorname{Hom}_R(P,M/M_0)$ \cong $\operatorname{Hom}_R(P,M)$, модуль $\operatorname{Hom}_R(P,M)$ также полупростой. \square

Лемма 10. Пусть P — конечно порожденный квазипроективный правый R-модуль, $S = \operatorname{End}_R(P)$ — регулярное кольцо и N — циклический правый S-модуль. Тогда существует такой правый R-модуль M, что $M \in \sigma(P)$ и $N \cong \operatorname{Hom}_R(P,M)$.

Доказательство. Из [3, 25.5] следует, что гомоморфизм правых S-модулей $\phi:N\bigotimes_S S\to \operatorname{Hom}_R(P,N\bigotimes_S P)$, при котором $n\otimes s\to [p\to n\otimes s(p)]$, является мономорфизмом. Очевидно, что $N\bigotimes_S P\in \sigma(P)$. Таким образом, без ограничения общности мы можем считать, что модуль N является подмодулем модуля $\operatorname{Hom}_R(P,N\bigotimes_S P)$. Поскольку N — циклический модуль, то для некоторого $\phi\in \operatorname{Hom}_R(P,N\bigotimes_S P)$ имеем $N=\phi S$. Тогда из леммы 1 вытекает, что $N=\operatorname{Hom}_R(P,Jm(\phi))$. \square

Лемма 11. Пусть P — конечно порожденный квазипроективный обобщенный правый SV-модуль над кольцом R и $S = \operatorname{End}_R(P)$ — регулярное кольцо. Тогда S — обобщенное справа SV-кольцо.

Доказательство. В силу [5, теорема 3.4] достаточно показать, что каждый циклический неполупростой правый S-модуль содержит ненулевой инъективный подмодуль. Пусть N — циклический неполупростой правый S-модуль.

Из леммы 10 следует, что для некторого $M \in \sigma(P)$ имеет место изоморфизм $N \cong \operatorname{Hom}_R(P,M)$. Тогда согласно лемме 9 N содержит в себе ненулевой инъективный подмодуль. \square

Теорема 12. Если P — квазипроективный обобщенный SV-модуль, то P — полуартинов модуль.

Доказательство. Предположим, что $P \neq L(P)$. Обозначим через M фактор-модуль P/L(P), который согласно $[3,\ 18.2]$ является квазипроективным. Из $[5,\$ лемма $[5,\$ леми $[5,\$

Теорема 13. Для квазипроективного правого R-модуля P следующие условия равносильны:

- (1) P обобщенный SV-модуль;
- (2) если M порождающий объект категории $\sigma(P)$, то в категории $\sigma(M/I(M))$ каждый модуль является модулем со свойством подъема.

Доказательство. Равносильность пп. (1) и (2) непосредственно вытекает из теорем 8 и 12. \square

Следующее утверждение вытекает из предыдущей теоремы и [8, следствие 2.5].

Следствие 14. Для кольца R следующие условия равносильны:

- (1) R обобщенное справа SV-кольцо;
- (2) R/I(R) артиново полуцепное и $J^{2}(R/I(R)) = 0$;
- (3) каждый правый модуль над кольцом R/I(R) является модулем со свойством подъема.

Следствие 15 [9]. Для квазипроективного правого R-модуля P следующие условия равносильны:

- (1) P SV-модуль;
- (2) каждый ненулевой модуль в категории $\sigma(P)$ содержит ненулевой P-инъективный подмодуль.

Доказательство. (1) \Rightarrow (2) Согласно [6, 3.12] каждый модуль в категории $\sigma(P)$ полуартинов. Тогда импликация следует из того факта, что каждый ненулевой модуль в $\sigma(P)$ содержит простой P-инъективный подмодуль.

 $(2)\Rightarrow (1)$ Легко видеть, что P — обобщенный SV-модуль и, следовательно, согласно теореме 12 он полуартинов. Из условия пункта непосредственно вытекает, что каждый простой модуль в $\sigma(P)$ является P-инъективным, т. е. P — V-модуль. \square

Примерами обобщенных SV-колец являются правые SV-кольца и артиновы полуцепные кольца, у которых квадрат радикала Джекобсона равен нулю. Приведем пример обобщенного SV-кольца, который отличен от упомянутых выше примеров.

ПРИМЕР 16. Пусть R — классически полупростое кольцо, R_0 — подкольцо кольца R, которое является артиновым полуцепным, и $J^2(R_0) = 0$. Рассмотрим

кольцо $S=\prod_{i\geq 1}R_i$, где $R_i=R$ для каждого i. Выделим в кольце S подкольцо $T=\{a\in S\mid \exists N\forall i,j>N: a_i=a_j\&a_i\in R_0\}.$ Тогда из [5, лемма 1.2] непосредственно следует, что $\mathrm{Soc}(T)=I_1(T)=\bigoplus_{i\geq 1}R_i.$

Пусть N — инъективный правый $T/\operatorname{Soc}(T)$ -модуль, который естественным образом можно рассматривать как правый T-модуль. Рассмотрим вложение $N\subset E(N)$, где E(N) — инъективная оболочка правого T-модуля N. Если $E(N)\operatorname{Soc}(T)\neq 0$, то для некоторого примитивного идемпотента e из $\operatorname{Soc}(T)$ имеем $E(N)e\neq 0$. Поскольку N существен в E(N) и e — центральный идемпотент кольца T, то $Ne\neq 0$, а это противоречит равенству $N\operatorname{Soc}(T)=0$. Полученное противоречие показывает, что $E(N)\operatorname{Soc}(T)=0$ и, следовательно, E(N) мы можем рассматривать как модуль над кольцом $T/\operatorname{Soc}(T)$. Поскольку N — инъективный правый $T/\operatorname{Soc}(T)$ -модуль, имеем равенство N=E(N).

Таким образом, каждый модуль, инъективный над кольцом $T/\operatorname{Soc}(T)$, инъективен и над кольцом T. В частности, $I_2(T)/I_1(T) = I_1(T/\operatorname{Soc}(T)_{T/\operatorname{Soc}(T)})$, и, значит, $I(T) = I_2(T) = \{a \in S \mid \exists N \forall i, j > N : a_i = a_j \& a_i \in I_1(R_0)\}$ и $T/I(T) \cong R_0/I(R_0)$. Тогда из следствия 14 следует, что кольцо S является обобщенным SV-кольцом. Отметим, что случай, когда $R = M_2(P)$, а R_0 — кольцо верхних треугольных матриц второго порядка над некоторым полем P, рассматривался в работе [10] как пример полуартинового нерегулярного кольца, у которого радикал Джекобсона равен нулю.

ЛИТЕРАТУРА

- 1. Nicholson W. K. I-rings // Trans. Amer. Math. Soc. 1975. V. 207. P. 361–373.
- 2. Hamza H. I₀-rings and I₀-modules // Okayama Univ. 1998. V. 40, N 1. P. 91–97.
- 3. Wisbauer R. Foundations of module and ring theory. Philadelphia: Gordon and Breach, 1991.
- **4.** Φ ейс K. Алгебра: кольца, модули и категории. М.: Мир, 1977. Т. 1.
- 5. Абызов А. Н. Слабо регулярные кольца над нормальными кольцами // Сиб. мат. журн. 2008. Т. 49, № 4. С. 721–738.
- Dung N. V., Huynh D. V., Smith P. F., Wisbauer R. Extending modules. London: Pitman, 1994
- 7. Anderson F. W., Fuller K. R. Rings and categories of modules. New York: Spriger-Verl., 1991.
- Oshiro K., Wisbauer R. Modules with every subgenerated module lifting // Osaka J. Math. 1995. V. 32. P. 513–519.
- Dung N. V., Smith P. F. On semiartinian V-modules // J. Pure Appl. Algebra. 1992. V. 82, N 1. P. 27–37.
- 10. Baccella G. Semi-Artinian V-rings and semi-Artinian Von Neumann regular rings // J. Algebra. 1995. V. 173, N 3. P. 587–612.

Статья поступила 2 апреля 2008 г.

Абызов Адель Наилевич НИИММ им. Н. Г. Чеботарева, отдел алгебры и математической логики, ул. Профессора Нужина, 17, Казань 420008 aabyzov@ksu.ru