МАКСИМАЛЬНЫЕ ТРУБКИ ПРИ ДЕФОРМАЦИЯХ ТРЕХМЕРНЫХ ГИПЕРБОЛИЧЕСКИХ КОНИЧЕСКИХ МНОГООБРАЗИЙ С. Чой, Дж. Ли

Аннотация: Используя деформации гиперболических конических многообразий, Ходжсон и Керкгоф показали, что мощность множества трехмерных многообразий, полученных хирургиями Дена на гиперболических узлах и не допускающих гиперболическую структуру, конечна. Они поставили следующий вопрос: «Убывает ли квадрат длины меридиана, нормированный площадью, максимальной трубчатой окрестности сингулярного множества конического многообразия при изменении конических углов и возрастает ли, если к нему добавить квадрат конического угла?» В работе дан положительный ответ на этот вопрос в окрестности нулевых конических углов для бесконечного семейства гиперболических конических многообразий, полученных хирургиями Дена вдоль дополнений к зацеплению Уайтхеда. Основной используемый метод опирается на явные вычисления групп голономий с помощью А-полиномов и максимальных трубок. Один из ключевых инструментов — разложение в ряд Тейлора геометрической компоненты множества нулей A-полинома в терминах конических углов. Также показано, что последовательность данных разложений в ряд Тейлора для многообразий, полученных хирургиями Дена, сходится к разложению для предельного гиперболического многообразия.

Ключевые слова: гиперболическое многообразие, коническое многообразие, деформации.

§1. Введение

Недавно Ходжсон и Керкгоф [1] получили универсальную оценку числа негиперболических хирургий Дена на гиперболическом многообразии с одним каспом. Их доказательство основано на анализе вариации максимальных трубок вокруг сингулярностей в конических многообразиях фиксированного топологического типа при возрастании конических углов начиная с нуля.

Пусть M — ориентируемое 3-многообразие конечного объема с одним каспом, которое допускает полную гиперболическую структуру. Для каждого наклона γ на каспе многообразия M обозначим через $M(\gamma)$ многообразие, полученное хирургией Дена вдоль γ . По теореме Громова и Тёрстона [2] $M(\gamma)$ допускает метрику отрицательной кривизны, если длина кратчайшей кривой, лежащей на границе орисферической окрестности каспа и изотопной γ , больше 2π . Однако в этом случае остается открытым вопрос: допускает ли $M(\gamma)$ гиперболическую структуру?

 Γ иперболическое коническое многообразие размерности 3 — это многообразие, локально смоделированное на открытом подмножестве гиперболического

The first author gratefully acknowledges support from Korea Research Foundation (Grant KRF-2002-070-C00010).

^{© 2006} Чой С., Ли Дж.

пространства или на открытой области в открытом множестве, ограниченном двумя вполне геодезическими плоскостями, пересекающимися по геодезической и отождествленными эллиптической изометрией. По теореме Тёрстона о гиперболической хирургии Дена если $\theta>0$ мало, то $M(\gamma)$ для любого γ допускает гиперболическую коническую структуру, чьим сингулярным множеством является добавленная замкнутая кривая с некоторым малым коническим углом θ . Обозначим получившееся коническое многообразие через $M_{\theta}(\gamma)$. Очевидно, что гомотопический класс сингулярного множества соответствует замкнутой кривой, пересекающейся с γ один раз. (Исходное многообразие M мы часто будем рассматривать как $M_0(\gamma)$ с коническим углом $\theta=0$.)

У любого конического многообразия существует максимальная трубка вокруг его сингулярного множества. Если мы сможем ограничить снизу радиусы максимальных трубок, пока конический угол не достигнет 2π , то получим гиперболическую структуру на $M(\gamma)$ без сингулярностей. Пусть T — плоская торическая граница орисферической окрестности каспа в M. В [1] показано, что если нормированная длина (метрика на T выбрана так, что площадь T равна 1) геодезической на T, изотопной γ , больше 7.515, то мы можем ограничить снизу радиусы максимальных трубок в $M_{\theta}(\gamma)$, пока конический угол θ не достигнет 2π , и тем самым получить, что $M(\gamma)$ гиперболическое. С учетом этого там же доказано, что существует не больше 60 негиперболических хирургий Дена на гиперболическом многообразии с одним каспом.

В одной из лекций Ходжсон и Керкгоф сформулировали следующий

Вопрос. Пусть $\{M_{\theta}(\gamma): 0<\theta<\theta_0\}$ — непрерывное семейство гиперболических конических структур на $M(\gamma)$ с вышеописанной сингулярностью. Пусть $\mu=\mu(\theta)$ — длина хирургической кривой на границе T_{θ} максимальной трубки вокруг сингулярного множества $M_{\theta}(\gamma)$, и пусть $\hat{\mu}=\mu/\sqrt{\operatorname{Area}(T_{\theta})}$ — нормированная длина. Верно ли, что $\hat{\mu}^2$ и $\hat{\mu}^2+\theta^2$ — убывающая и возрастающая функции переменной θ на $[0,\theta_0)$ соответственно?

Ходжсон и Керкгоф показали, что если ответ на этот вопрос положительный, то можно эффективно контролировать радиусы максимальных трубок (см. [3] для более детального описания).

Основной результат данной работы базируется на взаимосвязи между A-полиномами и коническими углами. Пусть M — гиперболическое многообразие конечного объема с двумя каспами, и пусть $\{\mathcal{M}_1, \mathcal{L}_1\}$ — базис периферической подгруппы P фундаментальной группы $\pi_1(M)$, соответствующей первому каспу многообразия M. Выберем базис $\{\mathcal{M}_2, \mathcal{L}_2\}$ для второй периферической подгруппы и зафиксируем эти два базиса. Пусть (p_1, q_1) и (p_2, q_2) обозначают пары взаимно простых целых чисел, а $M(p_1, q_1)$ — 3-многообразие, полученное из M с помощью (p_1, q_1) -хирургии Дена на первом каспе. Пусть $M(\infty, \infty)_{\theta}(p_2, q_2)$ обозначает гиперболическое коническое многообразие, у которого один касп соответствует первому каспу многообразия M, а на втором каспе выполнена (p_2, q_2) -хирургия Дена, где соответствующий заполненный тор имеет сингулярность конического типа с коническим углом θ . Пусть $M(p_1, q_1)_{\theta}(p_2, q_2)$ обозначает гиперболическое коническое многообразие, у которого на первом каспе выполнена (p_1, q_1) -хирургия Дена, а на втором — (p_2, q_2) -хирургия Дена с сингулярностью конического типа с коническим углом $\theta > 0$.

Характеристическое многообразие $\mathrm{SL}_2(\mathbb{C})$ -представлений фундаментальной группы многообразия M — это пространство следов $\pi_1(M) \to \mathbb{C}$, определенных взятием следов голономий фундаментальной группы $\pi_1(M)$ (подробности

см. в [4]).

Характеристическое многообразие $SL_2(\mathbb{C})$ -представлений фундаментальной группы многообразия M, которые оставляют голономии \mathcal{M}_1 , \mathcal{L}_1 параболическими, задает взаимосвязь между собственными значениями l_1 и m_1 голономий \mathcal{L}_1 и \mathcal{M}_1 — так в данной статье определяются A-полиномы. Так называемая геометрическая компонента множества нулей A-полинома — это компонента, полученная деформацией гиперболического многообразия, соответствующая коническим структурам второго каспа. Используя геометрическую компоненту A-полинома вместе с соотношением хирургии Дена

$$p\lograc{m}{m_0}+q\lograc{l}{l_0}=rac{\sqrt{-1} heta}{2},$$

мы можем получить разложения функций m и l в ряд Тейлора по переменной θ , которые нам потребуются только с точностью до третьего порядка.

Аналогично определим A-полином многообразия $M(p_1,q_1)$ относительно базиса $\{\mathcal{M}_2,\mathcal{L}_2\}$. Используя соотношение хирургии Дена, получим ряды Тейлора m_2 и l_2 , соответствующие геометрической компоненте A-полинома как функции переменной θ .

В заключение докажем теорему 3.2, устанавливающую сходимость разложений l и m в ряд Тейлора по переменной θ с точностью до третьего порядка, соответствующих A-полиному многообразия M(p,q), к ряду Тейлора, соответствующему многообразию $M(\infty,\infty)$. В связи с громоздкостью доказательства эта теорема будет доказана в последнем § 6.

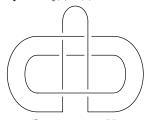


Рис. 1. Зацепление Уайтхеда.

Основной результат данной работы заключается в следующем утверждении: для бесконечного числа гиперболических многообразий $\{W(p_1,q_1)\}$, полученных из дополнения W к зацеплению Уайтхеда хирургией Дена на первом торическом крае, имеем частичный ответ на вопрос Ходжсона — Керкгофа. Пусть W — дополнение к зацеплению Уайтхеда (рис. 1), и пусть $\mathcal{M}_1, \mathcal{L}_1, \mathcal{M}_2, \mathcal{L}_2$ —

подобранные подходящим образом меридианы и параллели для двух концов W.

Теорема 1.1. Пусть $\mu=\mu_{p_1,q_1,p_2,q_2}(\theta)-$ длина хирургической кривой на границе максимальной трубки $W(p_1,q_1)_{\theta}(p_2,q_2)$ вокруг сингулярности. Пусть $\hat{\mu}=\hat{\mu}_{p_1,q_1,p_2,q_2}(\theta)-$ нормированная длина хирургической кривой. Если $|p_1|+|q_1|$ достаточно большое, то для любой пары p_2,q_2 взаимно простых целых чисел, за исключением, быть может, одной, $\hat{\mu}^2-$ убывающая, а $\hat{\mu}^2+\theta^2-$ возрастающая функции в точке $\theta=0$.

Очевидно, это означает, что функция $\hat{\mu}$ убывающая. Приведем набросок доказательства теоремы. Для гиперболического многообразия M конечного объема с отмеченным каспом определим орисферическую окрестность каспа, вычисляя элементы $\pi_1(M)$, голономии которых имеют достаточно большие изометрические сферы.

Используем эти элементы — так называемые связующие классы — для нахождения максимальной трубчатой окрестности сингулярности в $M_{\theta}(p,q)$, когда |p|+|q| большое, а θ малое. Справедливость этого утверждения вытекает из того, что связующие классы стабильны в окрестности $\theta=0$. (См. § 4 для более подробного описания.)

Теперь выразим длину $\mu_{p,q}(\theta)$ и нормированную длину $\hat{\mu}_{p,q}(\theta)$ хирургической кривой на максимальной трубке вокруг сингулярности в $M_{\theta}(p,q)$ в терминах следов голономий коммутатора связующего класса и дополнительного элемента (см. предложение 4.2).

Сосредоточим наше внимание на W. Мы можем в точности вычислить представление группы голономий $\pi_1(W)$, соответствующее полной структуре, и определить связующий класс. Заметим, что W с полной гиперболической структурой распадается на четыре идеальных тетраэдра. Каждому тетраэдру поставим в соответствие с точностью до изометрии комплексный инвариант. Данные инварианты z_1, z_2, z_3, z_4 удовлетворяют двум соотношениям, соответствующим двум идеальным ребрам W. Соотношения определяют некоторую комплексную поверхность, параметризующую все гиперболические структуры на W в окрестности полной гиперболической структуры.

Пусть m_1, l_1, m_2, l_2 обозначают собственные значения голономий $\mathcal{M}_1, \mathcal{L}_1, \mathcal{M}_2, \mathcal{L}_2$ соответственно. Мы можем записать их как функции от инвариантов тетраэдров z_1, z_2, z_3, z_4 .

Далее вычислим представления группы голономий как функции некоторых легко определяемых переменных x, y. Нетрудно заметить, что $x = m_1$, и мы можем записать l_1 как функцию переменных x и y. Таким образом, представления группы голономий являются функциями переменных m_1, l_1 . Отсюда можно также найти два соотношения между m_1, l_1 и m_2, l_2 .

Выразим $\hat{\mu}_{p_1,q_1,p_2,q_2}^2(\theta)$ как $k_0(p_1,q_1,p_2,q_2)+k_1(p_1,q_1,p_2,q_2)\theta^2+O(|\theta|^3)$, где функции k_0 и k_1 определены для целых чисел (p_1,q_1,p_2,q_2) при достаточно больших $|p_1|+|q_1|$ и $|p_2|+|q_2|$. По теореме 3.2 $k_1(p_1,q_1,p_2,q_2)\to k_1^\infty(p_2,q_2)$ при $|p_1|+|q_1|\to\infty$ для некоторой функции k_1^∞ , принимающей значения в отрезке $[K_1,K_2]\subset (-1,0)$.

Отметим, что $k_1^{\infty}(p_2,q_2)$ — соответствующая функция для $W(\infty,\infty,p_2,q_2)$. Применяя предыдущие рассуждения, мы можем вычислить данную функцию и тем самым доказать основную теорему.

В своей кандидатской диссертации Доути [5] под руководством Ходжсона получил аналогичный результат в случае дополнений к узлу «восьмерка». Результат настоящей работы обобщает его результат и дает возможность лучше понять действие хирургии Дена. В перспективе мы надеемся ответить на вопрос Ходжсона и Керкгофа в случае более общих многообразий и без ограничений на конический угол, хотя на данный момент, видимо, нет возможности построить общую теорию. Наш метод интересен тем, что его можно будет применить в дальнейшем для построения новых примеров и методов решений, которые мы сможем использовать для дальнейшего изучения и развития общей теории.

Мы благодарим Д. Купера, К. Ходжсона и С. Керкгофа за многочисленные обсуждения и помощь. Мы также благодарим факультет математики Стенфордского университета за гостеприимство во время написания настоящей статьи.

§ 2. Гиперболические конические многообразия и хирургия Дена

В этом параграфе мы напомним некоторые факты из теории гиперболических конических многообразий и гиперболической хирургии Дена. В конце параграфа мы приведем необходимый нам в дальнейшем результат Ноймана и Цагира [6]. Гиперболическое многообразие — это многообразие, наделенное римановой метрикой постоянной секционной кривизны -1. В настоящей статье мы рассматриваем только трехмерные ориентируемые многообразия. Обозначим односвязное полное гиперболическое многообразие через \mathbb{H}^3 . Группа изометрий \mathbb{H}^3 , сохраняющих ориентацию, образует группу Ли $\mathrm{PSL}_2(\mathbb{C})$. Если M — гиперболическое многообразие, то открытая окрестность каждой точки M изометрична открытому множеству в \mathbb{H}^3 . Существуют изометрия dev с универсального накрытия \widetilde{M} на \mathbb{H}^3 и групповой гомоморфизм $\rho:\pi_1(M)\to\mathrm{PSL}_2(\mathbb{C})$ такой, что dev $\circ\gamma=\rho(\gamma)\circ$ dev для каждого γ из группы преобразований наложения $\pi_1(M)$. Таким образом, гиперболическое многообразие изометрично фактор-пространству \mathbb{H}^3 по действию дискретной группы сохраняющих ориентацию изометрий \mathbb{H}^3 .

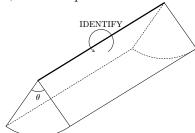


Рис. 2. Окрестность сингулярной точки в гиперболическом коническом многообразии.

Гиперболические конические многообразия возникают в контексте гиперболической хирургии Дена — Тёрстона и вызывают несомненный интерес [3,7,8]. Трехмерное многообразие N, наделенное метрикой, является гиперболическим коническим многообразием, если открытая окрестность каждой точки N изометрична открытому множеству в \mathbb{H}^3 или метрическому фактор-пространству, полученному из открытого трехмерного шара в \mathbb{H}^3 удалением области с границей, состоящей

из двух вполне геодезических плоскостей, пересекающихся по геодезической и отождествленных изометрией, оставляющей неподвижной данную геодезическую (рис. 2).

Множество всех точек гиперболического конического многообразия N, у которых не существует открытой окрестности, изометричной открытому множеству в \mathbb{H}^3 , называется сингулярным множеством или сингулярностью N и обозначается через Σ_N (или Σ , если N очевидно из контекста). Сингулярное множество — это одномерное подмногообразие, которое является зацеплением, если M — замкнутое многообразие. Каждой компоненте сингулярного множества ставится в соответствие конический угол вокруг компоненты.

Пусть M — гиперболическое многообразие конечного объема с h каспами. Как показал Тёрстон, M можно продеформировать так, что оно будет иметь неполные гиперболические структуры, а метрические пополнения некоторых продеформированных структур индуцируют полные гиперболические конические структуры на многообразиях, полученных хирургиями Дена на концах многообразия M. Теорема о гиперболической хирургии Дена утверждает, что в большинстве случаев многообразие, полученное хирургией Дена на концах M, допускает полную гиперболическую структуру, т. е. структуру без сингулярностей конического типа.

Пусть M — гиперболическое многообразие конечного объема с h каспами, которое может быть получено хирургией Дена на некоторых концах идеально триангулированного гиперболического многообразия. Пусть ν — число идеальных тетраэдров, а $\mathcal{M}_1, \mathcal{L}_1, \ldots, \mathcal{M}_h, \mathcal{L}_h$ — фиксированные меридианы и параллели для концов M. Пусть полная гиперболическая структура M соответствует точке $\mathbf{z}^0 = (z_1^0, \ldots, z_\nu^0) \in \mathbb{C}^\nu$. Тёрстон показал, что множество \mathcal{V} ,

состоящее из точек \mathbb{C}^{ν} в окрестности \mathbf{z}^{0} , удовлетворяющих некоторому условию склейки, является гладким аналитическим подмножеством комплексной размерности h в \mathbb{C}^{ν} . Показано [6], что отображения $\mathbf{m}=(m_{1},\ldots,m_{h}): \mathscr{V} \to \mathbb{C}^{h}$ и $\mathbf{l}=(l_{1},\ldots,l_{h}): \mathscr{V} \to \mathbb{C}^{h}$, которые приписывают собственные значения образов голономий $\mathscr{M}_{1},\ldots,\mathscr{M}_{h}, \mathscr{L}_{1},\ldots,\mathscr{L}_{h}$, соответственно, являются биголоморфными отображениями в точке \mathbf{z}^{0} .

Пусть
$$(m_1^0,\ldots,m_h^0)=\mathbf{m}(\mathbf{z}^0)$$
 и $(l_1^0,\ldots,l_h^0)=\mathbf{l}(\mathbf{z}^0).$

Теорема 2.1 [6]. Для каждого $i \in \{1, ..., h\}$ существует голоморфная функция τ_i , определенная в окрестности начала координат \mathbb{C}^h , такая, что

$$\log(l_i/l_i^0) = \log(m_i/m_i^0)\tau_i(\log(m_1/m_1^0), \dots, \log(m_h/m_h^0)).$$

Более того, функция τ_i четна по каждой переменной для любого i, а $\tau_i(0,\ldots,0)$ — модуль плоской структуры на торической границе окрестности каспа для i-го конца относительно \mathcal{M}_i , \mathcal{L}_i . В частности, каждое $\tau_i(0,\ldots,0)$ является комплексным числом.

§ 3. А-полиномы и обобщенные хирургии Дена

В данном параграфе определим так называемые A-полиномы для гиперболических многообразий с несколькими каспами относительно некоторого отмеченного каспа, которые мы будем также называть относительными A-полиномами. Мы определим геометрические компоненты алгебраического множества собственных значений голономий, т. е. множество нулей A-полинома. Разложим полиномиальные соотношения геометрических компонент в ряд Тейлора и приведем примеры. Затем мы покажем, как представить геометрическую компоненту в виде функции от конических углов. В заключение покажем, что ряд Тейлора геометрической компоненты многообразия, на одном каспе которого выполнена (p,q)-хирургия Дена, сходится к ряду Тейлора геометрической компоненты многообразия без хирургии при $(p,q) \to (\infty,\infty)$.

3.1. Геометрические компоненты пространств представлений собственных значений. Куллер и Шален [4] определили характеристическое многообразие трехмерного многообразия как алгебраическое множество следов голономий элементов фундаментальной группы, упорядоченных определенным образом.

Обобщим определение A-полинома из [9]. Пусть M — гиперболическое 3-многообразие по крайней мере с одним каспом. Зафиксируем касп и обозначим через P его фундаментальную группу. Обозначим через $R(\pi_1(M))$ пространство представлений фундаментальной группы $\pi_1(M)$ многообразия M в группу $\mathrm{SL}_2(\mathbb{C})$, а через $R(\pi_1(M))_P$ — подмножество тех представлений, сужение которых на замкнутые петли имеют параболические или тождественные образы во всех каспах, кроме P. Обозначим характеристическое многообразие $\mathrm{SL}_2(\mathbb{C})$ -представлений группы $\pi_1(M)$ через X(M), а каноническую сюръективную проекцию — через $t: R(\pi_1(M)) \to X(M)$ (см. [4]). Будем писать R(M) вместо $R(\pi_1(M))$. Обозначим через $X(M)_P$ образ $X(M)_P$. С учетом рассуждений из [4] $X(M)_P$ является плотным подмножеством конечного объединения характеристик, которое обозначим через $X''(M)_P$ (мы не утверждаем, что они равны).

Пусть $B = \{\mathscr{L}, \mathscr{M}\}$ — фиксированный базис P. Определим отображение сужения $r: X''(M)_P \to X(P)$. Обозначим символом \triangle подпространство диагональных представлений в R(P). Существует изоморфизм $p_B: \triangle \to \mathbb{C}^* \times \mathbb{C}^*$,

определенный равенством $p_B(\rho)=(l,m)$, где ρ задано следующим образом:

$$\rho(\mathscr{L}) = \begin{bmatrix} l & * \\ 0 & l^{-1} \end{bmatrix} \quad \text{if} \quad \rho(\mathscr{M}) = \begin{bmatrix} m & ** \\ 0 & m^{-1} \end{bmatrix}.$$

Проекция t индуцирует (2-1)-отображение $t_{\triangle}: \triangle \to X(P)$.

Обозначим через $X'(M)_P$ объединение неприводимых компонент $X''(M)_P$, образы которых при отображении r имеют комплексную размерность 1. Для каждой компоненты Z' из $X'(M)_P$ обозначим через Z кривую $t_{\triangle}^{-1}(\overline{r(Z')}) \subset \triangle$. Определим $D_{M,P}$ как объединение кривых Z, когда Z' пробегает компоненты $X''(M)_P$.

Будем говорить, что $D_{M,P}$ является A-множеством многообразия M относительно P. Отметим, что A-множество инвариантно относительно инволюции $(l,m) \mapsto (l^{-1},m^{-1})$.

Определим A-полином $A_{M,P}$ многообразия M относительно P как определяющий полином замыкания $D_{M,P}$ в $\mathbb{C} \times \mathbb{C}$. В случае многообразия M с одним каспом наше определение совпадает с определением из [9]. В очевидных ситуациях будем опускать символ P в $A_{M,P}$.

Определение 3.1. Пусть M — гиперболическое многообразие с каспом, а $B = \{\mathscr{L}, \mathscr{M}\}$ — базис фундаментальной группы окрестности каспа многообразия M. Предположим, что $(l^0, m^0) \in \mathbb{C} \times \mathbb{C}$ совпадает с одной из пар $(\pm 1, \pm 1)$ и принадлежит множеству нулей $A_M(l,m)$. Пусть l(m) — голоморфная функция, определенная в окрестности (например, U) m^0 и принимающая значения в окрестности l^0 . Будем говорить, что голоморфная функция l = l(m), определенная в окрестности $(l^0, m^0) \in \mathbb{C} \times \mathbb{C}$, является геометрической кривой A-множества в точке (l^0, m^0) , если существует голоморфное семейство $\{\rho_m : m \in U\}$ представлений группы $\pi_1(M)$ в группу $\mathrm{SL}_2(\mathbb{C})$ такое, что каждое ρ_m является поднятием представления группы голономий гиперболической структуры на M и

$$ho_m(\mathscr{L}) = egin{bmatrix} l(m) & * \ 0 & 1/l(m) \end{bmatrix}, \quad
ho_m(\mathscr{M}) = egin{bmatrix} m & ** \ 0 & 1/m \end{bmatrix}.$$

Очевидно, что если l = l(m) является геометрической кривой A-полинома $A_M(l,m)$ в точке (m^0, l^0) , то A(l(m), m) = 0 для всех m в окрестности m^0 .

Предложение 3.1. Компонента A-множества содержит образ геометрической кривой как плотное множество.

Доказательство проводится непосредственной проверкой.

Геометрической компонентой называется компонента А-множества, содержащая геометрическую кривую как плотное множество, а геометрическим множество, порождающий идеала, определяющего вышеуказанную компоненту.

ПРИМЕР. Пусть M — дополнение к узлу «восьмерка». Представление Виртингера группы $\pi_1(M)$ имеет вид

$$\langle \alpha, \beta : \alpha^{-1} \beta \alpha \beta^{-1} \alpha \beta \alpha^{-1} \beta^{-1} \alpha \beta^{-1} \rangle,$$

где $\{\alpha, \beta^{-1}\alpha\beta\alpha^{-2}\beta\alpha\beta^{-1}\}$ — базис периферической подгруппы фундаментальной группы $\pi_1(M)$. А-полином многообразия M относительно данного базиса имеет вид

$$A_M(l,m) = lm^8 - lm^6 - (l^2 + 2l + 1)m^4 - lm^2 + l.$$

Решая уравнение второго порядка по l, получим два решения l(m), содержащих квадратные корни, и два множителя $A_M(l,m)$. Поскольку $A_M(-1,-1)=0$, соответствующие множители можно разложить в ряд по m+1:

$$l+1-2\sqrt{-3}(m+1)-(6+\sqrt{-3})(m+1)^2-(6-2\sqrt{-3}/3)(m+1)^3+O(|m+1|^4),$$

 $l+1+2\sqrt{-3}(m+1)-(6-\sqrt{-3})(m+1)^2-(6+2\sqrt{-3}/3)(m+1)^3+O(|m+1|^4).$

Заметим, что длина сингулярной геодезической возрастает при возрастании конического угла начиная с нуля, т. е. при деформации полного гиперболического многообразия. Таким образом, первый множитель является геометрическим: если взять $m=-\exp(i\theta)$, то -l становится возрастающей функцией вещественной переменной θ начиная с нуля.

3.2. Ряд Тейлора геометрических кривых. Пусть M — трехмерное многообразие, допускающее полную гиперболическую структуру конечного объема с одним каспом. Пусть \mathcal{M} , \mathcal{L} — фиксированная пара, состоящая из меридиана и параллели на конце многообразия M, а $A_M(l,m)$ — A-полином многообразия M относительно данной пары.

Предположим, что деформации гиперболических структур на M в окрестности полной структуры задают следующее соотношение между собственными значениями m и l меридиана M и параллели $\mathcal L$ соответственно для поднятия представлений группы голономий в окрестности гиперболических структур:

$$l = l^0 + a_1(m - m^0) + \frac{a_2}{2}(m - m^0)^2 + \frac{a_3}{6}(m - m^0)^3 + O(|m - m^0|^4).$$
 (1)

Здесь m^0 и l^0 — собственные значения поднятия представления группы голономий полной структуры. Таким образом, m^0 и l^0 принимают значения ± 1 .

Данное соотношение соответствует геометрическому множителю A-полинома $A_M(l,m)$.

Теперь опишем, как данное соотношение (в окрестности полной структуры) вместе с соотношением хирургии Дена

$$p\log\left(\frac{m}{m^0}\right) + q\log\left(\frac{l}{l^0}\right) = \frac{\sqrt{-1}\theta}{2} \tag{2}$$

позволит нам вычислить коэффициенты ряда Тейлора функций m и l. Для простоты предполагаем, что $m^0=l^0=-1$. В других случаях доказательство аналогично.

Напомним, что a_1 не является вещественным числом, поскольку в общем случае будет модулем плоской структуры каспа относительно $\{\mathcal{M}, \mathcal{L}\}$, когда гиперболическая структура полна.

Так как $a_1 \neq -p/q$ ввиду невещественности a_1 , множества, определенные уравнениями (1) и (2), некасательны в точке $m^0 = l^0 = -1$. Мы будем рассматривать m и l как локально голоморфные функции переменной θ в окрестности $\theta = 0$.

Наша цель — получить коэффициенты ряда Тейлора функций m и l в терминах θ с точностью до третьего порядка. Последовательно дифференцируя уравнения (1) и (2) и вычисляя в точке $\theta=0$, определим искомые коэффициенты.

Дифференцируя (2), получим

$$\frac{p}{m}\frac{dm}{d\theta} + \frac{q}{l}\frac{dl}{d\theta} = \frac{\sqrt{-1}}{2},\tag{3}$$

и при $\theta = 0$

$$p\frac{dm}{d\theta}\bigg|_{\theta=0} + q\frac{dl}{d\theta}\bigg|_{\theta=0} = -\frac{\sqrt{-1}}{2}.$$
 (4)

С другой стороны, дифференцируя (1) и вычисляя в точке $\theta = 0$, имеем

$$\frac{dl}{d\theta}\bigg|_{\theta=0} = a_1 \frac{dm}{d\theta}\bigg|_{\theta=0}.$$
 (5)

Из (3) и (4) вытекает, что

$$\left.\frac{dm}{d\theta}\right|_{\theta=0} = -\frac{\sqrt{-1}}{2(p+a_1q)}, \quad \left.\frac{dl}{d\theta}\right|_{\theta=0} = -\frac{a_1\sqrt{-1}}{2(p+a_1q)}.$$

Действуя таким же образом, получим

$$\left. \frac{d^2m}{d\theta^2} \right|_{\theta=0} = \frac{p + (a_1^2 + a_2)q}{4(p + a_1q)^3}, \quad \left. \frac{d^2l}{d\theta^2} \right|_{\theta=0} = \frac{(a_1 - a_2)p + a_1^3q}{4(p + a_1q)^3},$$

$$\left. \frac{d^3m}{d\theta^3} \right|_{\theta=0} = \frac{i \left\{ p^2 + \left(6a_1^2 - 2a_1^3 + 6a_2 - 2a_1 - 3a_1a_2 - a_3 \right) pq \right\}}{8(p + a_1q)^5} + \frac{i \left\{ \left(a_1^4 + 3a_1^2a_2 + 3a_2^2 - a_1a_3 \right) q^2 \right\}}{8(p + a_1q)^5},$$

$$\left. \frac{d^3l}{d\theta^3} \right|_{\theta=0} = \frac{i\{(a_1 - 3a_2 + a_3)p^2\}}{8(p + a_1q)^5} + \frac{i\{(6a_1^3 - 2a_1^4 - 2a_1^2 - 6a_1^2a_2 - 3a_2^2 + 3a_1a_2 + a_1a_3)pq + a_1^5q^2\}}{8(p + a_1q)^5},$$

где $i = \sqrt{-1}$.

Напомним, что $a_2=a_1-a_1^2$, если кривая, заданная уравнением (1), инвариантна относительно инволюции $(l,m)\mapsto (1/l,1/m)$ в окрестности $(l^0,m^0)=(-1,-1)$. Таким образом, нами получены следующие формулы для $m,\ l$ и $r\log(\frac{m}{m^0})+s\log(\frac{l}{l^0})$ в терминах θ при $a_2=a_1-a_1^2$:

$$m = -1 - \frac{\sqrt{-1}}{2(p+a_1q)}\theta + \frac{1}{8(p+a_1q)^2}\theta^2 + \sqrt{-1}\frac{p + (3a_1 - 3a_1^2 + a_1^3 - a_3)q}{48(p+a_1q)^4}\theta^3 + O(|\theta|^4),$$
(6)

$$l = -1 - \frac{a_1\sqrt{-1}}{2(p+a_1q)}\theta + \frac{a_1^2}{8(p+a_1q)^2}\theta^2 + \sqrt{-1}\frac{\left(-2a_1 + 3a_1^2 + a_3\right)p + a_1^4q}{48(p+a_1q)^4}\theta^3 + O(|\theta|^4),$$
(7)

$$r\log(-m) + s\log(-l) = \frac{\sqrt{-1}(r+a_1s)}{2(p+a_1q)}\theta + \frac{\sqrt{-1}(2a_1 - 3a_1^2 + a_1^3 - a_3)(ps - qr)}{48(p+a_1q)^4}\theta^3 + O(|\theta|^4).$$
(8)

3.3. Сходимость коэффициентов ряда Тейлора геометрических множителей A-полиномов. Пусть M-3-многообразие, допускающее полную гиперболическую структуру с двумя каспами, а \mathcal{M}_1 , \mathcal{M}_2 и \mathcal{L}_2 — фиксированные меридианы и параллели для концов M. Мы предполагаем, что M

может быть получено хирургией Дена на некоторых концах идеально триангулированного гиперболического многообразия. Пусть ν — число тетраэдров.

Мы имеем голоморфное вложение открытого множества $V \subset \mathbb{C}^2$ в \mathbb{C}^{ν} , образ которого является подмножеством $\mathscr{V} \subset \mathbb{C}^{\nu}$, состоящим из точек (z_1, \ldots, z_{ν}) , удовлетворяющих условиям склейки (см., например, [6]).

Тёрстон показал, что представления группы голономий в окрестности представления группы голономий полной гиперболической структуры на M имеют поднятия ρ_0 на $\mathrm{SL}_2(\mathbb{C})$. Пусть $m_1^0, l_1^0, m_2^0, l_2^0$ — собственные значения $\rho_0(\mathcal{M}_1)$, $\rho_0(\mathcal{M}_2)$, $\rho_0(\mathcal{M}_2)$, $\rho_0(\mathcal{M}_2)$. Каждое из $m_1^0, l_1^0, m_2^0, l_2^0$ принимает значения 1 либо -1. Имеем голоморфное отображение из \mathcal{V} в \mathbb{C}^4 , которое ставит в соответствие каждой точке \mathbf{z} множества \mathcal{V} собственные значения m_1, l_1, m_2, l_2 образов $\rho(\mathcal{M}_1)$, $\rho(\mathcal{L}_1)$, $\rho(\mathcal{M}_2)$, $\rho(\mathcal{L}_2)$, соответственно, где ρ — поднятие представления группы голономий, соответствующего точке \mathbf{z} . Более того, мы выбираем голоморфное отображение так, что значение (m_1, l_1, m_2, l_2) совпадает с $(m_1^0, l_1^0, m_2^0, l_2^0)$ в точке множества \mathcal{V} , соответствующей полной структуре.

Если первый конец остается каспом, то собственные значения m_2 и l_2 удовлетворяют следующему соотношению:

$$l_2 = l_2^0 + a_1ig(m_2 - m_2^0ig) + rac{a_2}{2}ig(m_2 - m_2^0ig)^2 + rac{a_3}{6}ig(m_2 - m_2^0ig)^3 + Oig(ig|m_2 - m_2^0ig|^4ig).$$

Аналогично если p_1,q_1 — взаимно простые целые числа и $|p_1|+|q_1|$ большое, то m_2 и l_2 удовлетворяют соотношению

$$l_2 = l_2^0 + a_1^{p_1,q_1}ig(m_2 - m_2^0ig) + rac{a_2^{p_1,q_1}}{2}ig(m_2 - m_2^0ig)^2 + rac{a_3^{p_1,q_1}}{6}ig(m_2 - m_2^0ig)^3 + Oig(ig|m_2 - m_2^0ig|^4ig),$$

когда на первом конце выполнена хирургия Дена вдоль наклона (p_1, q_1) .

Теорема 3.2. Пусть M- гиперболическое многообразие c двумя каспами. Пусть $M(p_1,q_1)-3$ -многообразие, полученное (p_1,q_1) -хирургией Дена на первом каспе многообразия M. Пусть a_i-i -й коэффициент ряда Тейлора функции l_2 переменной m_2 в геометрическом множителе A-полинома второго каспамногообразия M, а $a_i^{p_1,q_1}-i$ -й коэффициент в случае многообразия $M(p_1,q_1)$. Тогда $a_i^{p_1,q_1}\to a_i$ при $|p_1|+|q_1|\to\infty,\ i=1,2,3$.

Данный результат показывает сходимость последовательности коэффициентов ряда Тейлора геометрических компонент (определенных в п. 3.1) A-полиномов многообразий $M(p_1,q_1)$, полученных хирургией Дена на первом конце гиперболического многообразия M с двумя каспами. Хотя мы показали сходимость коэффициентов разложений с точностью только до третьего порядка, мы можем легко расширить наше доказательство и установить, что сходимость имеет место и для более высоких порядков.

Мы докажем теорему 3.2 в § 6.

§ 4. Максимальные трубки в гиперболических конических многообразиях

В этом параграфе рассмотрим в общем случае максимальные трубки в гиперболических конических многообразиях. Сперва определим связующие классы, кратчайшие негомотопные пути, соединяющие сингулярности. Мы обсудим стабильность связующих классов при геометрической сходимости и получим формулу для радиуса максимальной трубки, используя следы некоторых элементов, включая коммутатор связующих классов. В заключение получим длину

и нормированную длину меридиана в терминах радиуса максимальной трубки, конических углов и длины сдвига.

У гиперболического многообразия конечного объема с отмеченным каспом существует окрестность каспа в виде оришара. Наибольшая из таких окрестностей называется орисферической или максимальной окрестностью каспа.

Аналогично гиперболическое коническое многообразие, сингулярным множеством которого является узел, имеет стандартные трубчатые окрестности сингулярного множества, а наибольшая из таких окрестностей называется максимальной трубчатой окрестностью или максимальной трубкой вокруг сингулярного множества.

Пусть M — гиперболическое многообразие конечного объема с каспом и P — периферическая подгруппа фундаментальной группы $\pi_1(M)$. Граница орисферической окрестности каспа — это тор, например T, который касается сам себя в конечном числе точек. В каждой точке касания x существует единственная геодезическая, ортогональная T в точке x и стремящаяся к концу каспа в обоих направлениях. Такая геодезическая соответствует единственным образом классу эквивалентности пространства двойных смежных классов $P \setminus \pi_1(M)/P$, т. е. классу эквивалентности относительно отношения \sim , определенного на $\pi_1(M)$ по правилу $\alpha \sim \beta$ тогда и только тогда, когда $\alpha = \gamma_1 \beta \gamma_2$ или $\alpha = \gamma_1 \beta^{-1} \gamma_2$ для некоторых $\gamma_1, \gamma_2 \in P$. В этом случае данный класс эквивалентности называют связующим классом подгруппы P или каспа, соответствующего подгруппе P.

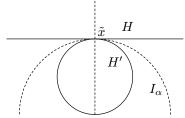


Рис. 3. Представитель связующего класса для орисферической окрестности каспа.

Пусть $\rho_0:\pi_1(M)\to \mathrm{PSL}_2(\mathbb{C})$ — представление группы голономий для гиперболической структуры на M такое, что $\rho_0(P)$ фиксирует ∞ в гиперболическом пространстве \mathbb{H}^3 , реализованном в верхнем полупространстве. Пусть H — горизонтальная плоскость в \mathbb{H}^3 , которая является поднятием тора T, и пусть $\tilde{x}\in H$ — поднятие точки x. Тогда мы имеем еще одну орисферу H', которая является поднятием T и содержит \tilde{x} . Тем са-

мым элемент α группы $\pi_1(M)$ такой, что $\alpha(H') = H$ представляет связующий класс (рис. 3).

Связующий класс можно описать также следующим образом: представитель класса имеет наибольшие изометрические сферы относительно представлений ρ_0 , где $\rho_0(P)$ фиксирует ∞ .

Определим связующий класс гиперболического конического многообразия. Пусть N — гиперболическое коническое многообразие, сингулярным множеством Σ которого является простая замкнутая кривая, а конический угол меньше 2π . Пусть P — периферическая подгруппа фундаментальной группы $\pi_1(N-\Sigma)$. Границей максимальной трубки вокруг сингулярного множества является тор T_Σ с несколькими точками самокасания. Для каждой точки самокасания x имеем единственную геодезическую дугу, которая является объединением двух кратчайших путей из x в Σ . Такая геодезическая дуга соответствует классу эквивалентности в двойном смежном классе $P \setminus \pi_1(N-\Sigma)/P$.

Опишем связующий класс в универсальном накрывающем пространстве. Пусть x — точка самокасания на T_{Σ} , и пусть τ — один из кратчайших путей из x в Σ . Пусть U_{Σ} — внутренность максимальной трубчатой окрестности вокруг

 Σ в $N-\Sigma$, и пусть \widetilde{U}_0 — компонента поднятия U_Σ в $\widetilde{N}-\Sigma$, левоинвариантная относительно действия P на $\widetilde{N}-\Sigma$. Пусть \widetilde{x}_0 — поднятие x в $\widetilde{N}-\Sigma$, лежащее на границе \widetilde{U}_0 , и пусть $\widetilde{\tau}_0$ — поднятие $\tau-\Sigma$ в $\overline{\widetilde{U}_0}$ с одним концом в \widetilde{x}_0 . Продолжая геодезическую дугу $\widetilde{\tau}_0$, содержащую \widetilde{x}_0 , получим открытую геодезическую дугу, стремящуюся к концам $\widetilde{N}-\Sigma$ в обоих направлениях. Один конец выходит из \widetilde{U}_0 , а другой — из образа \widetilde{U}_0' компоненты \widetilde{U}_0 при действии $\pi_1(N-\Sigma)$ на $\widetilde{N}-\Sigma$. Тогда связующий класс максимальной трубки в точке x представляется элементом α группы $\pi_1(N-\Sigma)$ таким, что $\alpha(\widetilde{U}_0')=\widetilde{U}_0$.

Пусть $\{M_{\theta}: 0 < \theta < \theta_0\}$ — семейство гиперболических конических многообразий одного топологического типа такое, что M_{θ} сходится (в смысле Громова — Хаусдорфа) к полному гиперболическому многообразию M_0 конечного объема по крайней мере с одним каспом, и для любого θ многообразие M_{θ} имеет сингулярное множество Σ_{θ} с коническим углом θ , а $M_{\theta} - \Sigma_{\theta}$ гомеоморфно фиксированному 3-многообразию M_0 относительно отображения $\phi_{\theta}: M_0 \to M_{\theta} - \Sigma_{\theta}$. Тогда мы имеем представления группы голономий $\rho_0: \pi_1(M_0) \to \mathrm{PSL}_2(\mathbb{C})$ и $\rho_{\theta}: \pi_1(M_{\theta} - \Sigma_{\theta}) \to \mathrm{PSL}_2(\mathbb{C})$, где $0 < \theta < \theta_0$, такие, что $\rho_{\theta} \circ (\phi_{\theta})_* \to \rho_0$ — изоморфизм, где $(\phi_{\theta})_*$ является индуцированным гомоморфизмом. Пусть P — периферическая подгруппа фундаментальной группы $\pi_1(M_0)$.

Предложение 4.1. Если M_0 имеет связующий класс $[\alpha]$, где $\alpha \in \pi_1(M_0)$, каспа, соответствующего P, то коническое многообразие M_{θ} также имеет связующий класс относительно $(\phi_{\theta})_*(P)$, который представляется в виде $(\phi_{\theta})_*(\alpha)$ при малых θ .

Доказательство очевидно в силу свойств топологии Громова — Хаусдорфа, поскольку последовательность максимальных трубок сходится к орисферической окрестности. \square

Предложение 4.2. Пусть N — гиперболическое коническое многообразие, сингулярным множеством которого является простая замкнутая кривая, а конический угол меньше 2π . Пусть P — периферическая подгруппа фундаментальной группы $\pi_1(N-\Sigma)$, а $\rho:\pi_1(N-\Sigma)\to \mathrm{PSL}_2(\mathbb{C})$ — представление группы голономий гиперболической структуры на $N-\Sigma$. Пусть $\alpha\in\pi_1(N-\Sigma)$ представляет связующий класс максимальной трубки. Тогда радиус R максимальной трубки вокруг сингулярного множества удовлетворяет соотношению

$$\cosh(2R) = \frac{|\operatorname{tr} \rho(\alpha \gamma \alpha^{-1} \gamma^{-1}) - 2| + |\operatorname{tr}^2 \rho(\gamma) - \operatorname{tr} \rho(\alpha \gamma \alpha^{-1} \gamma^{-1}) - 2|}{|\operatorname{tr}^2 \rho(\gamma) - 4|},$$

где γ — любой элемент P такой, что $\rho(\gamma) \neq I$.

ДОКАЗАТЕЛЬСТВО. Пусть dev обозначает отображение развертки $\widetilde{N-\Sigma}\to\mathbb{H}^3$ для гиперболической структуры на $N-\Sigma$ такое, что dev $\circ\gamma=\rho(\gamma)\circ$ dev для любых $\gamma\in\pi_1(N-\Sigma)$. Пусть $x,\ \tilde{x}_0,\ \tau,\ \tilde{\tau}_0,\ U_\Sigma$ и \widetilde{U}_0 , как выше. Тогда $\rho(P)$ оставляет неподвижной геодезическую $\widetilde{\Sigma}$ в \mathbb{H}^3 , а dev (\widetilde{U}_0) является множеством точек в \mathbb{H}^3 , лежащих в пределах радиуса максимальной трубки от $\widetilde{\Sigma}$. Пусть \widetilde{x} и $\widetilde{\tau}$ — образы \widetilde{x}_0 и $\widetilde{\tau}_0$ при отображении dev $|\widetilde{\widetilde{U}_0}|$, соответственно. Тогда dev (\widetilde{U}_0) и dev $(\alpha^{-1}(\widetilde{U}_0))$ являются гиперсферическими областями вокруг $\widetilde{\Sigma}$ и $\rho(\alpha^{-1})(\widetilde{\Sigma})$, соответственно, касательными в точке \widetilde{x} (рис. 4).

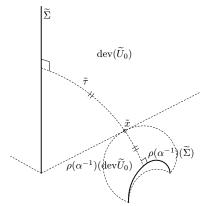


Рис. 4. Представитель связующего класса для максимальной трубки.

Напомним, что R — это половина расстояния между $\widetilde{\Sigma}$ и $\alpha^{-1}(\widetilde{\Sigma})$, а $\widetilde{\Sigma}$ — ось $\rho(\gamma)$ для любого $\gamma \in P$ такого, что $\rho(\gamma) \neq I$. В модели гиперболического пространства, реализованного в верхнем полупространстве, геодезические представляются в виде пар различных чисел, принадлежащих расширенной комплексной плоскости. Мы можем предположить, что $\widetilde{\Sigma}$ является вертикальной геодезической, заданной $(0,\infty)$, а $\rho(\gamma)$ имеет вид $\begin{bmatrix} u & 0 \\ 0 & 1/u \end{bmatrix}$. Пусть

$$ho(lpha) = egin{bmatrix} a & b \ c & d \end{bmatrix}$$
, где $ad-bc = 1$. Тогда

геодезическая $\rho(\alpha^{-1})(\widetilde{\Sigma})$ задается посредством (-b/a,-d/c). Таким образом, по

следующей лемме гиперболический косинус cosh расстояния между $\widetilde{\Sigma}$ и $\rho(\alpha^{-1})(\widetilde{\Sigma})$ равен |ad|+|bc|=|bc|+|bc+1|. Поскольку $\operatorname{tr}\rho(\alpha\gamma\alpha^{-1}\gamma^{-1})-2=-bc(u-1/u)^2=-bc(\operatorname{tr}^2\rho(\gamma)-4)$, непосредственным вычислением нетрудно проверить равенство в предложении. \square

Лемма 4.3. Расстояние d между геодезическими (w_1, w_2) и (w_3, w_4) удовлетворяет соотношению

$$\cosh d = \frac{1 + |[w_1, w_2; w_3, w_4]|}{|1 - [w_1, w_2; w_3, w_4]|} \;,$$

где $[w_1,w_2;w_3,w_4]=rac{(w_1-w_3)(w_2-w_4)}{(w_1-w_4)(w_2-w_3)}$ — ангармоническое отношение.

Доказательство. Поскольку ангармонические отношения и гиперболические расстояния инвариантны относительно гиперболических изометрий, достаточно доказать лемму в случае $w_1=-1,\ w_2=1,\ w_3=-w,\ w_4=w$ для некоторого $w\in\mathbb{C}$. Но в этом случае равенство очевидно. \square

Пусть θ — конический угол сингулярного множества, а γ_0 — элемент P такой, что $\rho(\gamma_0)$ не является эллиптическим элементом и сдвигается на минимальное расстояние вдоль своей оси. Пусть t — длина оси $\rho(\gamma_0)$, равная абсолютному значению действительной части $2\log(u)$, когда $\operatorname{tr}\rho(\gamma_0)$ равен u+1/u, т. е. длине сингулярного множества. Пусть μ и $\hat{\mu}$ — длина и нормированная длина меридиана на границе максимальной трубки соответственно. Тогда

$$\mu = \theta \sinh(R) = \theta \sqrt{\frac{\cosh(2R) - 1}{2}}, \quad \hat{\mu}^2 = \frac{\theta \tanh(R)}{t} = \frac{\theta}{t} \sqrt{\frac{\cosh(2R) - 1}{\cosh(2R) + 1}}$$
(9)

и мы можем выразить μ и $\hat{\mu}$ в терминах конического угла и следов образов голономий некоторых элементов группы $\pi_1(N-\Sigma)$, соответствующих связующим классам.

§ 5. Максимальные трубки в конических многообразиях с сингулярностью «зацепление Уайтхеда»

Цель данного параграфа — доказать теорему 1.1. Выберем пару, состоящую из меридиана и параллели для каждого конца. Для каждой пары p_1 ,

 q_1 взаимно простых целых чисел пусть $W(p_1,q_1)$ — многообразие, полученное из дополнения W к зацеплению Уайтхеда хирургией Дена на первом конце вдоль наклона (p_1,q_1) . Если $|p_1|+|q_1|$ достаточно большое, то $W(p_1,q_1)$ гиперболическое. При малых $\theta>0$ пусть $W(p_1,q_1)_{\theta}(p_2,q_2)$ — гиперболическое коническое многообразие, полученное обобщенной хирургией Дена на втором конце многообразия $W(p_1,q_1)$ вдоль наклона (p_2,q_2) с коническим углом θ , и пусть $\mu=\mu_{p_1,q_1,p_2,q_2}(\theta)$ — длина хирургической кривой на максимальной трубке конического многообразия $W(p_1,q_1)_{\theta}(p_2,q_2)$ вокруг сингулярности. Пусть $\hat{\mu}=\hat{\mu}_{p_1,q_1,p_2,q_2}(\theta)$ — нормированная длина хирургической кривой, т. е. равная длине μ , разделенной на квадратный корень из площади границы максимальной трубки.

Теорема 5.1. Если $|p_1| + |q_1|$ достаточно большое, то для любой пары p_2, q_2 взаимно простых целых чисел, за исключением, быть может, одной, $\hat{\mu}^2$ — убывающая, а $\hat{\mu}^2 + \theta^2$ — возрастающая функции в окрестности точки $\theta = 0$ для $W(p_1, q_1)_{\theta}(p_2, q_2)$.

Приведем набросок доказательства теоремы 5.1. Сначала дадим основные сведения о деформациях гиперболических структур на дополнении W к зацеплению Уайтхеда в окрестности полной структуры.

В п. 5.1 укажем параметризацию гиперболических структур в окрестности полной структуры, используя разложение W на идеальные тетраэдры, а в п. 5.2 получим все поднятия представлений группы голономий гиперболических структур на W в окрестности полной структуры с точностью до сопряжения. В п. 5.3, применяя результаты п. 5.2, получим формулы для $\hat{\mu}_{p_1,q_1,p_2,q_2}^2$ в терминах собственных значений m_2 и l_2 образов голономий \mathcal{M}_2 и \mathcal{L}_2 (для гиперболической структуры на W, индуцирующей гиперболическую коническую структуру на $W(p_1,q_1)_{\theta}(p_2,q_2)$).

Следует отметить, что существование легко вычислимого связующего класса для максимального каспа второго конца в W влечет существование единственного связующего класса для максимального каспа в $W(p_1,q_1)$.

В нашем случае если M имеет единственный связующий класс своего максимального каспа, то мы можем найти представителя данного класса и вычислить геометрическую компоненту множества нулей A-полинома, а затем получить нормированную длину меридиана в $M_{\theta}(p,q)$ в терминах θ .

Из сказанного ясно, что полное гиперболическое многообразие $W(p_1,q_1)$ с одним каспом (при больших $|p_1|+|q_1|$) имеет единственный связующий класс своего максимального каспа и мы можем легко найти представителя данного класса.

Применяя полученные ранее результаты, в п. 5.4 вычислим коэффициенты ряда Тейлора в разложении функции $\hat{\mu}^2_{p_1,q_1,p_2,q_2}(\theta)$ с точностью до второго порядка. Используя конкретные значения a_1,a_2,a_3 , покажем справедливость теоремы 5.1, когда первый касп остается каспом, т. е. при $p_1=q_1=\infty$. Затем мы завершим доказательство за счет сходимости $a_i^{p_1,q_1}\to a_i\ (i=1,2,3)$, полученной в \S 6.

5.1. Параметризация гиперболических структур на дополнении к зацеплению Уайтхеда. Рассмотрим представление группы голономий и область Форда полной гиперболической структуры на дополнении к зацеплению Уайтхеда. Воспользуемся представлением

$$\langle \alpha, \beta, \gamma : \alpha \gamma = \gamma \beta, \gamma \alpha \beta \alpha^{-1} = \alpha \beta^{-1} \alpha \beta \alpha^{-1} \gamma \rangle$$

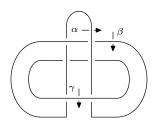


Рис. 5. Дополнение к зацеплению Уайтхеда с порождающими Виртингера.

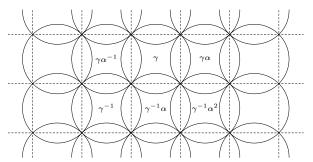


Рис. 6. Область Форда для второго каспа дополнения к зацеплению Уайтхеда.

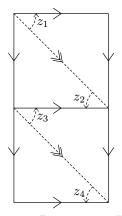


Рис. 7. Разложение Wна идеальные тетраэдры.

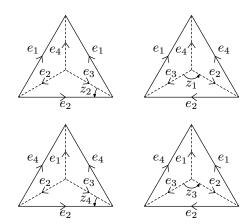


Рис. 8. Схема склейки тетраэдров.

фундаментальной группы W (рис. 5).

Зафиксируем следующую систему меридианов и параллелей для концов W: $\mathcal{M}_1=\gamma, \mathcal{L}_1=\alpha\beta^{-1}\alpha^{-1}\beta, \mathcal{M}_2=\alpha, \mathcal{L}_2=\gamma\alpha^{-1}\gamma^{-1}\alpha\beta^{-1}\alpha.$ Групповой гомоморфизм $\rho_0:\pi_1(W)\to\mathrm{SL}_2(\mathbb{C}),$ отображающий α,β,γ на

$$\begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 2\sqrt{-1} & -1 \end{bmatrix}, \begin{bmatrix} -2 & -(1+\sqrt{-1})/2 \\ 1-\sqrt{-1} & 0 \end{bmatrix}$$

соответственно, является поднятием представления группы голономий полной гиперболической структуры на W.

Область Форда относительно второго каспа, соответствующая ρ_0 , вместе с изометрическими сферами изображена на рис. 6.

Из описания области Φ орда второго конца получим разложение W на четыре идеальных тетраэдра (рис. 7).

Пусть z_1, z_2, z_3, z_4 — параметры, соответствующие четырем тетраэдрам, как изображено на рис. 8. Заметим, что параметры $z_1=z_2=z_3=z_4=(1+\sqrt{-1})/2$ соответствуют полной гиперболической структуре.

Для того чтобы индуцированная метрика была несингулярной вдоль ребер e_1, e_2, e_3, e_4 , параметры $z_i, i = 1, \dots, 4$, должны удовлетворять следующим условиям склейки (рис. 9):

$$(1-z_1)(1-z_4) = (1-z_2)(1-z_3), \quad (1-z_1)(1-z_2)(1-z_3)(1-z_4) = z_1z_2z_3z_4.$$
 (10)

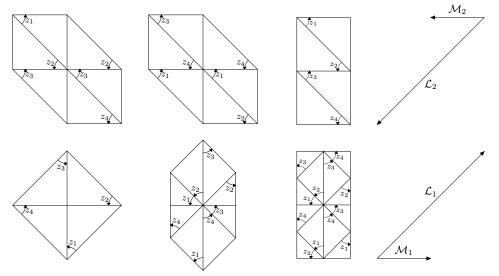


Рис. 9. Схема склейки ребер триангуляции.

Рис. 10. Образы голономий меридианов и параллелей.

Для параметров z_i , $i=1,\ldots,4$ (в окрестности z^0), удовлетворяющих данным условиям, имеем следующее соотношение между z_i , $i=1,\ldots,4$, и собственными значениями соответствующих $\mathrm{SL}_2(\mathbb{C})$ -образов голономий меридиана и параллели для второго конца (рис. 10):

$$m_{1} = -\sqrt{\frac{1-z_{4}}{1-z_{2}}} \quad \left(= -\sqrt{\frac{1-z_{3}}{1-z_{1}}} \right),$$

$$l_{1} = -\frac{1-z_{4}}{1-z_{2}}\sqrt{\frac{z_{3}z_{4}}{z_{1}z_{2}}} \quad \left(= -\frac{1-z_{3}}{1-z_{1}}\sqrt{\frac{z_{3}z_{4}}{z_{1}z_{2}}} \right),$$

$$m_{2} = -\sqrt{\frac{1-z_{2}}{1-z_{1}}} \quad \left(= -\sqrt{\frac{1-z_{4}}{1-z_{3}}} \right),$$

$$l_{2} = -\frac{1-z_{2}}{1-z_{1}}\sqrt{\frac{z_{2}z_{4}}{z_{1}z_{3}}} \quad \left(= -\frac{1-z_{4}}{1-z_{3}}\sqrt{\frac{z_{2}z_{4}}{z_{1}z_{3}}} \right),$$

$$(11)$$

где выбрана такая ветвь квадратного корня, которая принимает значение 1 в точке 1.

5.2. Представления группы голономий фундаментальной группы зацепления Уайтхеда.

Утверждение 5.2. Для любых $x,y\in\mathbb{C}$ существует гомоморфизм $\rho:\pi_1(W)\to \mathrm{SL}_2(\mathbb{C})$ такой, что

$$\begin{split} \rho(\alpha) &= \begin{bmatrix} x & 1 \\ 0 & 1/x \end{bmatrix}, \quad \rho(\beta) = \begin{bmatrix} x & 0 \\ y & 1/x \end{bmatrix}, \\ \rho(\gamma) &= \begin{bmatrix} -\frac{x\{x^2y^2 + x^2(x^2 - 3)y - (x^2 - 1)^2\}}{zw} & z \\ zy & \frac{z(1 - x^2)}{x} \end{bmatrix}, \end{split}$$

где

$$w = (x^2y - x^2 + 1)\{x^2y + (x^2 - 1)^2\}, \quad z = \sqrt{x^2(1 - x^2 - y)/w},$$

а поднятие представления группы голономий $\pi_1(W)$ в окрестности ρ_0 сопряжено одному из вышеперечисленных представлений, где (x,y,z) принадлежит окрестности точки $(-1,2\sqrt{-1},-(1+\sqrt{-1})/2)$.

Доказательство. Пусть $\rho: \pi_1(W) \to \mathrm{SL}_2(\mathbb{C})$ — поднятие представления группы голономий такое, что $\rho(\alpha)$ и $\rho(\beta)$ не коммутируют. Тогда, сопрягая в $\mathrm{SL}_2(\mathbb{C})$, мы можем предположить, что $\rho(\alpha)$ и $\rho(\beta)$ имеют следующий вид:

$$\begin{bmatrix} x & 1 \\ 0 & 1/x \end{bmatrix}, \begin{bmatrix} x & 0 \\ y & 1/x \end{bmatrix}$$
 (12)

соответственно, поскольку $\rho(\alpha)$ и $\rho(\beta)$ сопряжены в $SL_2(\mathbb{C})$. В силу равенства $\alpha\gamma = \gamma\beta$ значение $\rho(\gamma)$ с необходимостью имеет вид

$$\begin{bmatrix} \frac{x(1+yz^2)}{z(1-x^2)} & z\\ zy & \frac{z(1-x^2)}{x} \end{bmatrix}. \tag{13}$$

Наконец, из равенства $\gamma \alpha \beta \alpha^{-1} = \alpha \beta^{-1} \alpha \beta \alpha^{-1} \gamma$ получим z в терминах x,y, как и в утверждении. \square

Для заданного представления группы голономий ρ , описанного выше, возьмем x в качестве собственного значения m_2 образа голономии меридиана $\alpha = \mathcal{M}_2$ для второго конца. Поскольку

$$ho(\mathscr{L}_2) = \left[egin{array}{cc} rac{-1+x^2-x^2y}{-1+x^2+y} & * \ 0 & rac{-1+x^2+y}{-1+x^2-x^2y} \end{array}
ight],$$

мы должны взять собственное значение l_2 образа голономии параллели \mathscr{L}_2 в виде

$$l_2 = \frac{-1 + x^2 - x^2 y}{-1 + x^2 + y}. (14)$$

Затем получим следующее соотношение между собственными значениями m_1 , l_1 , m_2 , l_2 образов голономий $\rho(\mathcal{M}_1)$, $\rho(\mathcal{L}_1)$, $\rho(\mathcal{M}_2)$, $\rho(\mathcal{L}_2)$, вычисляя $\operatorname{tr}^2 \rho(\mathcal{M}_1)$ и $\operatorname{tr} \rho(\mathcal{L}_1)$ в терминах x, y, z в предыдущем утверждении:

$$\left(m_1 + rac{1}{m_1}
ight)^2 = rac{(1+l_2)^2 \left(m_2^4 - l_2
ight)}{l_2 \left(l_2 + m_2^2
ight) \left(m_2^2 - 1
ight)}, \ l_1 + rac{1}{l_1} = rac{l_2^2 \left(1 + m_2^4
ight) + l_2 \left(-1 + 2m_2^2 + 2m_2^4 + 2m_2^6 - m_2^8
ight) + m_2^4 + m_2^8}{m_2^2 \left(l_2 + m_2^2
ight)^2}.$$

5.3. Максимальные трубки в конических многообразиях с сингулярностью «зацепление Уайтхеда». Пусть Σ — сингулярное множество рассматриваемого конического многообразия. Элементы группы $\pi_1(W)$, которые представляют единственный связующий класс максимального каспа W относительно периферической подгруппы P_2 для второго конца, содержащие $\alpha \in \pi_1(W)$, проецируются на элемент группы $\pi_1(W(p_1,q_1)_\theta(p_2,q_2)-\Sigma)$, представляющий связующий класс при больших $|p_1|+|q_1|$ и малых θ .

Из описания области Форда W относительно второго конца в п. 5.1 видим, что $\gamma \in \pi_1(W)$ представляет единственный связующий класс второго каспа относительно P_2 . Учитывая изометрические сферы образов подходящего представления группы голономий, заметим, что γ по-прежнему представляет

единственный связующий класс $\pi_1(W(p_1,q_1,\infty,\infty))$ полного гиперболического многообразия с одним каспом при больших $|p_1|+|q_1|$ и гиперболическом $W(p_1,q_1,\infty,\infty)$.

Применяя результаты § 4 (предложение 4.2 и равенства (9)), видим, что для гиперболического конического многообразия $W(p_1,q_1)_{\theta}(p_2,q_2)$ нормированная длина $\hat{\mu}$ хирургической кривой на границе сингулярного множества удовлетворяет соотношению

$$\hat{\mu}^{2} = \frac{\theta}{2|\operatorname{Re}(r_{2}\log(-m_{2}) + s_{2}\log(-l_{2}))|} \times \sqrt{\frac{|\operatorname{tr}\rho(\alpha\gamma\alpha^{-1}\gamma^{-1}) - 2| + |\operatorname{tr}^{2}(\rho(\alpha)) - \operatorname{tr}\rho(\alpha\gamma\alpha^{-1}\gamma^{-1}) - 2| - |\operatorname{tr}^{2}(\rho(\alpha)) - 4|}{|\operatorname{tr}\rho(\alpha\gamma\alpha^{-1}\gamma^{-1}) - 2| + |\operatorname{tr}^{2}(\rho(\alpha)) - \operatorname{tr}\rho(\alpha\gamma\alpha^{-1}\gamma^{-1}) - 2| + |\operatorname{tr}^{2}(\rho(\alpha)) - 4|}},$$
(15)

где $\rho: \pi_1(W(p_1,q_1)_{\theta}(p_2,q_2)-\Sigma) \to \operatorname{SL}_2(\mathbb{C})$ — поднятие представления группы голономий $W(p_1,q_1)_{\theta}(p_2,q_2)$, а r_2,s_2 — целые числа, удовлетворяющие равенству $p_2s_2-q_2r_2=1$ при больших $|p_1|+|q_1|$ и малых θ .

Соотношение $\operatorname{tr} \rho(\alpha\gamma\alpha^{-1}\gamma^{-1}) = \operatorname{tr} \rho(\alpha\beta^{-1}) = 2-y$ вытекает из уравнений (12) и (13). Используя (14), получим

$$\operatorname{tr}\rho(\alpha\gamma\alpha^{-1}\gamma^{-1}) - 2 = -\frac{(-1 + m_2^2)(1 - l_2)}{l_2 + m_2^2}.$$
 (16)

5.4. Завершение доказательства основного результата. Пусть W — дополнение к зацеплению Уайтхеда, и пусть \mathcal{M}_1 , \mathcal{L}_1 , \mathcal{M}_2 , \mathcal{L}_2 , как и ранее, меридианы и параллели для концов W. Из (15), (16) имеем

$$\hat{\mu}^{2} = \frac{\theta}{2|\operatorname{Re}(r_{2}\log(-m_{2}) + s_{2}\log(-l_{2}))|} \times \sqrt{\frac{\left|\frac{(m_{2}^{2}-1)(1-l_{2})}{m_{2}^{2}+l_{2}}\right| + \left|\left(m_{2} - \frac{1}{m_{2}}\right)^{2} + \frac{(m_{2}^{2}-1)(1-l_{2})}{m_{2}^{2}+l_{2}}\right| - \left|\left(m_{2} - \frac{1}{m_{2}}\right)^{2}\right|}}{\left|\frac{(m_{2}^{2}-1)(1-l_{2})}{m_{2}^{2}+l_{2}}\right| + \left|\left(m_{2} - \frac{1}{m_{2}}\right)^{2} + \frac{(m_{2}^{2}-1)(1-l_{2})}{m_{2}^{2}+l_{2}}\right| + \left|\left(m_{2} - \frac{1}{m_{2}}\right)^{2}\right|}},$$
(17)

где r_2, s_2 — целые числа, удовлетворяющие соотношению $p_2s_2 - q_2r_2 = 1$ при больших $|p_1| + |q_1|$ и малых θ .

Используя A-полином $-l_2+l_2^2+4l_2m_2+m_2^4-l_2m_2^4$ многообразия $W(\infty,\infty)$ относительно $\{\mathscr{M}_2,\mathscr{L}_2\}$, имеем следующее разложение в ряд Тейлора при $p_1=q_1=\infty$:

$$l_2 = -1 + a_1(m_2+1) + rac{a_2}{2}(m_2+1)^2 + rac{a_3}{6}(m_2+1)^3 + O(|m_2+1|^4),$$

где $a_1=2+2i,\,a_2=2-6i$ и $a_3=-12.$ Таким образом, в случае многообразия $W(p_1,q_1)$ при больших $|p_1|+|q_1|$ получим

$$l_2 = -1 + a_1^{p_1,q_1}(m_2+1) + rac{a_2^{p_1,q_1}}{2}(m_2+1)^2 + rac{a_3^{p_1,q_1}}{6}(m_2+1)^3 + O(|m_2+1|^4),$$

где $a_i^{p_1,q_1} o a_i$ при $|p_1|+|q_1| o \infty, \ i=1,2,3,$ как и в п. 3.3. По лемме 6.6 имеем $a_2^{p_1,q_1}=a_1^{p_1,q_1}-(a_1^{p_1,q_1})^2$ при больших $|p_1|+|q_1|$.

Запишем $\hat{\mu}^2$ в терминах θ . Сначала предположим, что $p_1=q_1=\infty$. Используя (6)–(8), приходим к соотношениям

$$\left(m_2 - \frac{1}{m_2}\right)^2 = -\frac{\theta^2}{(p_2 + a_1 q_2)^2} + O(|\theta|^3),$$

$$\frac{(m_2^2-1)(1-l_2)}{m_2^2+l_2} = \frac{4}{2-a_1} + \frac{-6a_1+3(a_1)^2-2a_3}{12(2-a_1)^2(p_2+a_1q_2)^2}\theta^2 + O(|\theta|^3),$$

 $\operatorname{Re}(r_2\log(-m_2) + s_2\log(-l_2))$

$$=-\frac{\operatorname{Im} a_1}{2|p_2+a_1q_2|^2}\theta-\frac{\operatorname{Im}\{(2a_1-3(a_1)^2+(a_1)^3-a_3)(p_2+\bar{a}_1q_2)^4\}}{48|p_2+a_1q_2|^8}\theta^3+O(|\theta|^4).$$

Воспользуемся следующими фактами. Если $f: \mathbb{R} \to \mathbb{C}$ аналитична в точке 0 и $f(\theta) = c_1 \theta^i + O(|\theta|^{i+1})$ в точке 0 для некоторого положительного целого числа i, то

$$\frac{1}{1+f(\theta)} = 1 - c_1 \theta^i + O(|\theta|^{i+1}), \quad \sqrt{1+f(\theta)} = 1 + \frac{c_1}{2} \theta^i + O(|\theta|^{i+1}),$$
$$|1+f(\theta)| = 1 + \text{Re}(c_1)\theta^i + O(|\theta|^{i+1}).$$

Положим

$$X=rac{(m_2^2-1)(1-l)}{m_2^2+l},\quad Y=\left(m_2-rac{1}{m_2}
ight)^2,$$
 $R=|\operatorname{Re}\{r\log(-m_2)+s\log(-l_2)\}|$ и $U=p_2+a_1q_2.$

Разложим $\frac{\theta}{2R}\sqrt{\frac{|X|+|X+Y|-|Y|}{|X|+|X+Y|+|Y|}}$ в ряд по коническому углу θ с точностью до второго порядка. Имеем следующую последовательность равенств:

$$|X| + |X + Y| + |Y| = rac{8}{|2 - a_1|} + O(| heta|^2),$$

$$\begin{split} \sqrt{\frac{|X| + |X + Y| - |Y|}{|X| + |X + Y| + |Y|}} &= \sqrt{1 - \frac{2|Y|}{|X| + |X + Y| + |Y|}} \\ &= 1 - \frac{|Y|}{|X| + |X + Y| + |Y|} + O(|\theta|^3) = 1 - \frac{|2 - a_1|}{8|U|^2} \theta^2 + O(|\theta|^3), \end{split}$$

поскольку $Y = O(|\theta|^2)$. Также имеем

$$rac{ heta}{2R} = rac{|U|^2}{\mathrm{Im}\,a_1} \left(1 - rac{\mathrm{Im}(A\overline{U}^4)}{24\,\mathrm{Im}\,a_1|U|^6} heta^2
ight) + O(| heta|^3) = rac{|U|^2}{\mathrm{Im}\,a_1} - rac{\mathrm{Im}(A\overline{U}^4)}{24(\mathrm{Im}\,a_1)^2|U|^4} heta^2 + O(| heta|^3),$$

где $A=2a_1-3a_1^2+a_1^3-a_3$, и предполагаем, что мнимая часть a_1 положительна. Вычислим

$$\begin{split} \frac{\theta}{2R} \sqrt{\frac{|X| + |X + Y| - |Y|}{|X| + |X + Y| + |Y|}} \\ &= \frac{|U|^2}{\operatorname{Im} a_1} - \frac{3|2 - a_1| \operatorname{Im} a_1|U|^4 + \operatorname{Im}(A\overline{U}^4)}{24(\operatorname{Im} a_1)^2|U|^4} \theta^2 + O(|\theta|^3) = \frac{|p_2 + a_1q_2|^2}{\operatorname{Im} a_1} \\ &- \frac{3|2 - a_1| \operatorname{Im} a_1|p_2 + a_1q_2|^4 + \operatorname{Im}((2a_1 - 3a_1^2 + a_1^3 - a_3)(p_2 + \overline{a}_1q_2)^4)}{24(\operatorname{Im} a_1)^2|p_2 + a_1q_2|^4} \theta^2 + O(|\theta|^3). \end{split}$$

Значит,

$$\hat{\mu}^{2}(\theta) = \hat{\mu}_{p_{1}=\infty,q_{1}=\infty,p_{2},q_{2}}^{2}(\theta)$$

$$= \frac{|p_{2} + a_{1}q_{2}|^{2}}{|\operatorname{Im} a_{1}|} + \frac{B_{0}p_{2}^{4} + B_{1}p_{2}^{3}q_{2} + B_{2}p^{2}q^{2} + B_{3}p_{2}q_{2}^{3} + B_{4}q_{2}^{4}}{|p_{2} + a_{1}q_{2}|^{4}}\theta^{2} + O(|\theta|^{3}), \quad (18)$$

где $B_j, j = 0, \ldots, 4,$ — непрерывные функции переменных $a_i, i = 1, 2, 3,$ которые принимают следующие значения:

$$B_0 = -1/12$$
, $B_1 = -2/3$, $B_2 = -4$, $B_3 = -32/3$, $B_4 = -32/3$. (19)

Теперь предположим, что $|p_1| + |q_1|$ достаточно большое, и запишем $\hat{\mu}^2$ в терминах θ . Используя (6)–(8), запишем

$$\left(m_2 - \frac{1}{m_2}\right)^2 = -\frac{\theta^2}{(p_2 + a_1^{p_1, q_1} q_2)^2} + O(|\theta|^3),$$

$$\frac{(m_2^2 - 1)(1 - l_2)}{m_2^2 + l_2} = \frac{4}{2 - a_1^{p_1, q_1}} + \frac{-6a_1^{p_1, q_1} + 3(a_1^{p_1, q_1})^2 - 2a_3^{p_1, q_1}}{12(2 - a_1^{p_1, q_1})^2(p_2 + a_1^{p_1, q_1} q_2)^2} \theta^2 + O(|\theta|^3),$$

$$\operatorname{Re}(r_{2} \log(-m_{2}) + s_{2} \log(-l_{2})) = -\frac{\operatorname{Im} a_{1}^{p_{1},q_{1}}}{2|p_{2} + a_{1}^{p_{1},q_{1}}q_{2}|^{2}} \theta$$

$$-\frac{\operatorname{Im}\left\{\left(2a_{1}^{p_{1},q_{1}} - 3\left(a_{1}^{p_{1},q_{1}}\right)^{2} + \left(a_{1}^{p_{1},q_{1}}\right)^{3} - a_{3}^{p_{1},q_{1}}\right)\left(p_{2} + \overline{a_{1}^{p_{1},q_{1}}}q_{2}\right)^{4}\right\}}{48|p_{2} + a_{1}^{p_{1},q_{1}}q_{2}|^{8}} \theta^{3} + O(|\theta|^{4}).$$
(20)

Как и выше, получим разложение

$$\begin{split} \hat{\mu}_{p_{1},q_{1},p_{2},q_{2}}^{2}(\theta) &= \frac{\left|p_{2} + a_{1}^{p_{1},q_{1}}q_{2}\right|^{2}}{\left|\operatorname{Im}a_{1}^{p_{1},q_{1}}\right|} \\ &+ \frac{B_{0}^{p_{1},q_{1}}p_{2}^{4} + B_{1}^{p_{1},q_{1}}p_{2}^{3}q_{2} + B_{2}^{p_{1},q_{1}}p_{2}^{2}q_{2}^{2} + B_{3}^{p_{1},q_{1}}p_{2}q_{2}^{3} + B_{4}^{p_{1},q_{1}}q_{2}^{4}}{\left|p_{2} + a_{1}^{p_{1},q_{1}}q_{2}\right|^{4}} \theta^{2} \end{split}$$

с точностью до второго порядка при больших $|p_1|+|q_1|$, где каждое $B_j^{p_1,q_1},$ $j=0,\ldots,4,$ является константой, непрерывно зависящей от $a_1^{p_1,q_1},a_2^{p_1,q_1},a_3^{p_1,q_1},$ т. е.

$$B_j^{p_1,q_1} = B_j(a_1^{p_1,q_1}, a_2^{p_1,q_1}, a_3^{p_1,q_1}), \quad j = 0, \dots, 4,$$

для непрерывной функции $B_j, j=0,\ldots,4$, определенной в окрестности точки (a_1,a_2,a_3) из \mathbb{C}^3 .

Заметим, что $B_j^{p_1,q_1},\,j=0,\ldots,4$, как функция своих переменных совпадает с функцией $B_j,\,j=0,\ldots,4$.

Все значения функции $\frac{-x^4-8x^3-48x^2-128x-128}{12(x^2+4x+8)^2}$ $(-\infty < x < \infty)$ лежат в отрезке $[-1/6,-1/12] \subset (-1,0)$. Таким образом, значения коэффициента при члене второго порядка в (18)

$$\frac{-p_2^4 - 8p_2^3q_2 - 48p_2^2q_2^2 - 128p_2q_2^3 - 128q_2^4}{12(p_2^2 + 4p_2q_2 + 8q_2^2)^2}$$
(21)

лежат в отрезке $[-1/6,-1/12]\subset (-1,0)$ для любой пары p_2,q_2 взаимно простых целых чисел. Данное утверждение и вычисление $\hat{\mu}^2+\theta^2$ завершают наше доказательство в случае бесконечных p_1 и q_1 .

Поскольку $a_1^{p_1,q_1} \to a_1$ и $B_j^{p_1,q_1} \to B_j, \ j=0,\dots,4,$ при $|p_1|+|q_1|\to\infty,$ доказательство в случае $\hat{\mu}^2_{p_1,q_1,p_2,q_2}$ полностью завершено.

§ 6. Сходимость коэффициентов ряда Тейлора геометрических множителей *А*-полиномов

В данном параграфе приведем доказательство теоремы 3.2. Мы используем обозначения, введенные в п. 3.3.

Пусть M — полное гиперболическое многообразие с двумя каспами, которое разлагается в ν идеальных тетраэдров. Пусть точка $\mathbf{z}^0 = (z_1^0, \dots, z_{\nu}^0) \in \mathbb{C}^{\nu}$ соответствует полной структуре. Пусть \mathscr{V} — пересечение некоторой окрестности \mathbf{z}^0 в \mathbb{C}^{ν} и множества точек, удовлетворяющих описанному выше условию склейки.

Согласно результату из [6] существует голоморфное вложение ι некоторого открытого подмножества V из \mathbb{C}^2 на \mathscr{V} (при необходимости стягивая \mathscr{V}).

Пусть $\rho_0: \pi_1(M) \to \mathrm{SL}_2(\mathbb{C})$ — поднятие представления группы голономий полной структуры, и пусть $m_1^0, l_1^0, m_2^0, l_2^0$ — собственные значения $\rho(\mathcal{M}_1), \, \rho(\mathcal{L}_1), \, \rho(\mathcal{M}_2), \, \rho(\mathcal{L}_2).$

По изложенному выше подходящим выбором собственных значений m_1, l_1, m_2, l_2 , соответствующих $\rho(\mathcal{M}_1), \rho(\mathcal{L}_1), \rho(\mathcal{M}_2), \rho(\mathcal{L}_2)$, для поднятий ρ представлений группы голономий в окрестности гиперболических структур получим голоморфное отображение $G: \mathcal{V} \to \mathbb{C}^4$, которое можно рассматривать как пару отображений $G_1, G_2: \mathcal{V} \to \mathbb{C}^2$, где $G_1 = (m_1, l_1)$ и $G_2 = (m_2, l_2)$.

Более того, мы можем выбрать G так, что $G_1(\mathbf{z}^0) = (m_1^0, l_1^0)$ и $G_2(\mathbf{z}^0) = (m_2^0, l_2^0)$. Пусть $\mathscr{C}_1 \subset \mathscr{V}$ обозначает множество $G_1^{-1}\{(m_1^0, l_1^0)\} \cap \mathscr{V}$, а $C_1 \subset V$ — множество $\iota^{-1}(\mathscr{C}_1) \cap V$. Пусть $(u_0, v_0) \in V$ — точка, соответствующая полной структуре, т. е. являющаяся прообразом $\iota^{-1}G^{-1}\{(m_1^0, l_1^0, m_2^0, l_2^0)\}$.

Приведем этапы доказательства. Сначала покажем гладкость геометрической компоненты C_1 в пространстве параметров тетраэдра, где первый касп остается каспом. Здесь воспользуемся свойствами градиентов m_1 и теоремой 2.1. Мы реализуем C_1 как график функции от одного параметра к другому. Во-вторых, покажем гладкость геометрической компоненты $C_1^{p_1,q_1}$ в пространстве параметров тетраэдра, где на первом каспе выполнена (p_1,q_1) -хирургия Дена. Для доказательства данного утверждения используем метод непрерывности для градиентов. Как и в предыдущем случае, описываем $C_1^{p_1,q_1}$ как график функции. Затем покажем, что последовательность коэффициентов ряда Тейлора функций, соответствующих $C_1^{p_1,q_1}$, сходится к коэффициентам ряда Тейлора функции, соответствующей C_1 . Для завершения доказательства заменим переменные на (m_1,l_1) .

На первом шаге покажем гладкость C_1 .

Для $(u,v) \in V$ обозначим $G_1\iota(u,v)$ и $G_2\iota(u,v)$ через (m_1,l_1) и (m_2,l_2) соответственно, считая их функциями (u,v). Используя результат из [6], заметим, что градиенты ∇m_1 и ∇m_2 линейно независимы в точке (u_0,v_0) (градиент ∇ берется относительно (u,v)). Аналогично ∇l_1 и ∇l_2 линейно независимы в точке (u_0,v_0) .

Более того, по теореме 2.1 градиенты $\nabla m_1(u_0, v_0)$ и $\nabla l_1(u_0, v_0)$ линейно независимы над \mathbb{R} (хотя они зависимы над \mathbb{C}). Таким образом, изменяя параметры $(u, v) \mapsto (v, u)$, где это необходимо, мы можем предположить, что

$$\left. \frac{\partial m_1}{\partial v} \right|_{(u_0,v_0)}$$
 и $\left. \frac{\partial l_1}{\partial v} \right|_{(u_0,v_0)}$ линейно независимы над $\mathbb R.$

Поскольку $\nabla m_1|_{(u_0,v_0)} \neq 0$, то \mathscr{C}_1 и C_1 являются гладкими кривыми в окрестности \mathbf{z}^0 и (u_0,v_0) соответственно. Так как $\frac{\partial m_1}{\partial v} \neq 0$, то C_1 является

графиком голоморфного отображения

$$v-v_0=c_1(u-u_0)+rac{c_2}{2}(u-u_0)^2+rac{c_3}{6}(u-u_0)^3+O(|u-u_0|^4)$$

в точке (u_0, v_0) . Здесь $c_1 \neq 0$ в силу того, что $\frac{\partial m_1}{\partial u} \neq 0$.

На втором шаге проведем аналогичные рассуждения для $C_1^{p_1,q_1}$.

Для каждой пары p_1,q_1 взаимно простых целых чисел, где $|p_1|+|q_1|$ достаточно большое, возьмем $(u_0^{p_1,q_1},v_0^{p_1,q_1})\in \mathscr{V}$ такое, что

$$p_1\log\left(rac{m_1}{m_1^0}
ight)+q_1\log\left(rac{l_1}{l_1^0}
ight)=\pi\sqrt{-1},$$

с тем, чтобы $m_2(u_0^{p_1,q_1},v_0^{p_1,q_1})=m_2^0$ и $l_2(u_0^{p_1,q_1},v_0^{p_1,q_1})=l_2^0$. Точка $\left(u_0^{p_1,q_1},v_0^{p_1,q_1}\right)$ может быть взята так, что гиперболическое многообразие получено (p_1,q_1) -хирургией Дена на первом каспе, а второй касп остается каспом. Поскольку последовательность таких многообразий сходится к W при $|p_1|+|q_1|\to\infty$, видим, что $u_0^{p_1,q_1}\to u_0$ и $v_0^{p_1,q_1}\to v_0$ при $|p_1|+|q_1|\to\infty$. Пусть $C_1^{p_1,q_1}$ — множество точек (u,v) из V, удовлетворяющих равенству

Пусть $C_1^{p_1,q_1}$ — множество точек (u,v) из V, удовлетворяющих равенству $p_1\log\left(\frac{m_1}{m_i^0}\right)+q_1\log\left(\frac{l_1}{l_i^0}\right)=\pi\sqrt{-1}.$

Предложение 6.1. Геометрическая компонента $C_1^{p_1,q_1}$ является гладкой кривой в окрестности точки $(u_0^{p_1,q_1},v_0^{p_1,q_1})$ при достаточно больших $|p_1|+|q_1|$.

Доказательство. Имеем

$$\frac{\partial}{\partial v} \left\{ p_1 \log \left(\frac{m_1}{m_1^0} \right) + q_1 \log \left(\frac{l_1}{l_1^0} \right) \right\} = \frac{p_1}{m_1} \frac{\partial m_1}{\partial v} + \frac{q_1}{l_1} \frac{\partial l_1}{\partial v}.$$

Поскольку значения функций $\frac{\partial m_1}{m_1 \partial v}$ и $\frac{\partial l_1}{l_1 \partial v}$ линейно независимы над \mathbb{R} в любой точке $(u,v) \in V$ окрестности (u_0,v_0) , то $\frac{\partial}{\partial v} \{p_1 \log \left(\frac{m_1}{m_1^0}\right) + q_1 \log \left(\frac{l_1}{l_1^0}\right)\}$ не принимает значение 0 в окрестности (u_0,v_0) . Таким образом, $\nabla \{p_1 \log \left(\frac{m_1}{m_1^0}\right) + q_1 \log \left(\frac{l_1}{l_1^0}\right)\}$ не обращается в нуль в окрестности (u_0,v_0) . \square

Для $(u,v) \in V$ заметим, что $m_1 = m_1^0 \ (=\pm 1)$ тогда и только тогда, когда $l_1 = l_1^0$, поскольку параболические элементы группы $\mathrm{SL}_2(\mathbb{C})$ не коммутируют с эллиптическими или локсодромическими элементами. Таким образом, ∇m_1 и ∇l_1 параллельны в точке (u_0,v_0) , т. е.

$$rac{\partial m_1}{\partial u}rac{\partial l_1}{\partial v}-rac{\partial m_1}{\partial v}rac{\partial l_1}{\partial u}=0$$
 в точке $(u_0,v_0).$

Предложение 6.2. Направление $\nabla \left\{ p_1 \log \left(\frac{m_1}{m_1^0} \right) + q_1 \log \left(\frac{l_2}{l_2^0} \right) \right\} \left(u_0^{p_1,q_1}, v_0^{p_1,q_1} \right)$ сходится к направлению $\nabla m_1(u_0,v_0)$ при $|p_1| + |q_1| \to \infty$.

Доказательство. По определению $\nabla m_1 = \left(\frac{\partial m_1}{\partial u}, \frac{\partial m_1}{\partial v}\right)$ и

$$\nabla \left\{ p_1 \log \left(\frac{m_1}{m_1^0} \right) + q_1 \log \left(\frac{l_2}{l_2^0} \right) \right\} = \left(\frac{p_1}{m_1} \frac{\partial m_1}{\partial u} + \frac{q_1}{l_1} \frac{\partial l_1}{\partial u}, \frac{p_1}{m_1} \frac{\partial m_1}{\partial v} + \frac{q_1}{l_1} \frac{\partial l_1}{\partial v} \right).$$

Но по следующей лемме

$$\frac{\frac{p_1}{m_1}\frac{\partial m_1}{\partial u} + \frac{q_1}{l_1}\frac{\partial l_1}{\partial u}}{\frac{p_1}{m_1}\frac{\partial m_1}{\partial v} + \frac{q_1}{l_1}\frac{\partial l_1}{\partial v}}\Big|_{\substack{(x_0^{p_1,q_1},y_0^{p_1,q_1})\\ (x_0,y_0)}} \to \frac{\frac{\partial m_1}{\partial u}}{\frac{\partial m_1}{\partial v}}\Big|_{\substack{(x_0,y_0)}}$$

при $|p_1| + |q_1| \to \infty$. \square

Лемма 6.3. Пусть a,b,c,d- комплексные числа такие, что c и d линейно независимы над \mathbb{R} , а ad-bc=0. Пусть A,B,C,D- функции на $\mathbb{Z}\times\mathbb{Z}$ такие, что

$$A(p,q) o a, \quad B(p,q) o b, \quad C(p,q) o c, \quad D(p,q) o d \quad \text{при} \quad |p| + |q| o \infty.$$

Тогда

$$rac{Ap+Bq}{Cp+Dq}
ightarrow rac{ap+bq}{cp+dq} \; (=a/c=b/d) \;\;\;$$
при $|p|+|q|
ightarrow \infty.$

На третьем шаге покажем сходимость коэффициентов.

Из предложений 6.1 и 6.2 видим, что при достаточно больших $|p_1|+|q_1|,$ $C_1^{p_1,q_1}$ является графиком голоморфного отображения

$$\begin{split} v^{p_1,q_1} - v_0^{p_1,q_1} &= c_1^{p_1,q_1} \big(u^{p_1,q_1} - u_0^{p_1,q_1} \big) + \frac{c_2^{p_1,q_1}}{2} \big(u^{p_1,q_1} - u_0^{p_1,q_1} \big)^2 \\ &\quad + \frac{c_3^{p_1,q_1}}{6} \big(u^{p_1,q_1} - u_0^{p_1,q_1} \big)^3 + O \big(\big| u^{p_1,q_1} - u_0^{p_1,q_1} \big|^4 \big) \end{split}$$

в точке $(u_0^{p_1,q_1},v_0^{p_1,q_1})$, где $c_1^{p_1,q_1} \neq 0$.

Пусть x — переменная, равная u, если $(u,v) \in C_1$. Пусть y — функция от x, равная v в точке x.

Предложение 6.4. Имеет место сходимость $c_i^{p_1,q_1} \to c_i$ при $|p_1| + |q_1| \to \infty,$ i=1,2,3.

Доказательство. Любая точка $(u,v) \in C_1$ удовлетворяет соотношению

$$p_{1} \left\{ \frac{1}{m_{1}^{0}} \left(m_{1} - m_{1}^{0} \right) - \frac{1}{2} \left(m_{1} - m_{1}^{0} \right)^{2} + \frac{1}{3m_{1}^{0}} \left(m_{1} - m_{1}^{0} \right)^{3} \right\} + q_{1} \left\{ \frac{1}{l_{1}^{0}} \left(l_{1} - l_{1}^{0} \right) - \frac{1}{2} \left(l_{1} - l_{1}^{0} \right)^{2} + \frac{1}{3l_{1}^{0}} \left(l_{1} - l_{1}^{0} \right)^{3} \right\} = 0 \quad (22)$$

для любой пары p_1,q_1 целых чисел. Левая часть равенства является разложением в ряд Тейлора функции $p_1\log\left(\frac{m_1}{m_1^0}\right)+q_1\log\left(\frac{l_1}{l_1^0}\right)$ в точке (m_1^0,l_1^0) с точностью до третьего порядка.

Дифференцируя предыдущее равенство относительно x, получим следующее соотношение:

$$p_{1} \left\{ \frac{1}{m_{1}^{0}} \frac{dm_{1}}{dx} - \left(m_{1} - m_{1}^{0} \right) \frac{dm_{1}}{dx} + \frac{1}{m_{1}^{0}} \left(m_{1} - m_{1}^{0} \right)^{2} \frac{dm_{1}}{dx} \right\} + q_{1} \left\{ \frac{1}{l_{1}^{0}} \frac{dl_{1}}{dx} - \left(l_{1} - l_{1}^{0} \right) \frac{dl_{1}}{dx} + \frac{1}{l_{1}^{0}} \left(l_{1} - l_{1}^{0} \right)^{2} \frac{dl_{1}}{dx} \right\} = 0. \quad (23)$$

Применяя правило дифференцирования сложной функции $\frac{df}{dx} = \frac{\partial f}{\partial u} + \frac{dy}{dx} \frac{\partial f}{\partial v}$ к $f = m_1$ и $f = l_1$ в (23), приходим к равенству

$$c_1 = \frac{dy}{dx}\bigg|_{x=u_0} = -\frac{\frac{p_1}{m_1^0} \frac{\partial m_1}{\partial u} + \frac{q_1}{l_1^0} \frac{\partial l_1}{\partial u}}{\frac{p_1}{m_1^0} \frac{\partial m_1}{\partial v} + \frac{q_1}{l_1^0} \frac{\partial l_1}{\partial v}}\bigg|_{(u,v)=(x_0,y_0)}.$$

С другой стороны, любая точка $(u,v) \in C_1^{p_1,q_1}$ удовлетворяет равенству

$$p_1\log\left(rac{m_1}{m_1^0}
ight)+q_1\log\left(rac{l_1}{l_1^0}
ight)=\pi\sqrt{-1}.$$

Пусть x^{p_1,q_1} — переменная на $C_1^{p_1,q_1}$, равная u, и пусть y^{p_1,q_1} — функция на $C_1^{p_1,q_1}$, равная v. Мы рассматриваем y^{p_1,q_1} как функцию от x^{p_1,q_1} .

Дифференцируя относительно x^{p_1,q_1} , получим соотношение

$$\frac{p_1}{m_1}\frac{dm_1}{dx^{p_1,q_1}} + \frac{q_1}{l_1}\frac{dl_1}{dx^{p_1,q_1}} = 0. (24)$$

Используя правило дифференцирования сложной функции в (24), имеем

$$c_1^{p_1,q_1} = \frac{dy^{p_1,q_1}}{dx^{p_1,q_1}}\bigg|_{x^{p_1,q_1} = x_0^{p_1,q_1}} = -\frac{\frac{p_1}{m_1} \frac{\partial m_1}{\partial u} + \frac{q_1}{l_1} \frac{\partial l_1}{\partial u}}{\frac{p_1}{m_1} \frac{\partial m_1}{\partial v} + \frac{q_1}{l_1} \frac{\partial l_1}{\partial v}}\bigg|_{(u,v) = (u_o^{p_1,q_1}, v_o^{p_1,q_1})}.$$

По лемме 6.3 мы видим, что $c_1^{p_1,q_1} o c_1$ при $|p_1| + |q_1| o \infty$.

Дифференцируя (23) относительно x и используя равенство

$$\frac{d^2f}{dx^2} = \frac{\partial^2f}{\partial u^2} + 2\frac{dy}{dx}\frac{\partial^2f}{\partial u\partial v} + \left(\frac{dy}{dx}\right)^2\frac{\partial^2f}{\partial v^2} + \frac{d^2y}{dx^2}\frac{\partial f}{\partial v},$$

запишем

$$c_{2} = \frac{d^{2}y}{dx^{2}}\Big|_{x=u_{0}} = -\left[\frac{p_{1}}{m_{1}^{0}}\left\{\frac{\partial^{2}m_{1}}{\partial u^{2}} + 2c_{1}\frac{\partial^{2}m_{1}}{\partial u\partial v} + c_{1}^{2}\frac{\partial^{2}m_{1}}{\partial v^{2}} - \frac{1}{m_{1}^{0}}\left(\frac{\partial m_{1}}{\partial u} + c_{1}\frac{\partial m_{1}}{\partial v}\right)^{2}\right\}$$

$$+\frac{q_{1}}{l_{1}^{0}}\left\{\frac{\partial^{2}l_{1}}{\partial u^{2}} + 2c_{1}\frac{\partial^{2}l_{1}}{\partial u\partial v} + c_{1}^{2}\frac{\partial^{2}l_{1}}{\partial v^{2}} - \frac{1}{l_{1}^{0}}\left(\frac{\partial l_{1}}{\partial u} + c_{1}\frac{\partial l_{1}}{\partial v}\right)^{2}\right\}\Big]$$

$$\left/\left[\frac{p_{1}}{m_{1}^{0}}\frac{\partial m_{1}}{\partial v} + \frac{q_{1}}{l_{1}^{0}}\frac{\partial l_{1}}{\partial v}\right]\Big|_{(u,v)=(u_{0},v_{0})}.$$
 (25)

Однако, дифференцируя (24) относительно x^{p_1,q_1} , получим

$$c_{2}^{p_{1},q_{1}} = \frac{d^{2}y^{p_{1},q_{1}}}{d(x^{p_{1},q_{1}})^{2}} \Big|_{x^{p_{1},q_{1}} = x_{0}^{p_{1},q_{1}}}$$

$$= -\left[\frac{p_{1}}{m_{1}} \left\{ \frac{\partial^{2}m_{1}}{\partial u^{2}} + 2c_{1}^{p_{1},q_{1}} \frac{\partial^{2}m_{1}}{\partial u \partial v} + (c_{1}^{p_{1},q_{1}})^{2} \frac{\partial^{2}m_{1}}{\partial v^{2}} - \frac{1}{m_{1}} \left(\frac{\partial m_{1}}{\partial u} + c_{1}^{p_{1},q_{1}} \frac{\partial m_{1}}{\partial v} \right)^{2} \right\}$$

$$+ \frac{q_{1}}{l_{1}} \left\{ \frac{\partial^{2}l_{1}}{\partial u^{2}} + 2c_{1}^{p_{1},q_{1}} \frac{\partial^{2}l_{1}}{\partial u \partial v} + (c_{1}^{p_{1},q_{1}})^{2} \frac{\partial^{2}l_{1}}{\partial v^{2}} - \frac{1}{l_{1}} \left(\frac{\partial l_{1}}{\partial u} + c_{1}^{p_{1},q_{1}} \frac{\partial l_{1}}{\partial v} \right)^{2} \right\} \right]$$

$$\left/ \left[\frac{p_{1}}{m_{1}} \frac{\partial m_{1}}{\partial v} + \frac{q_{1}}{l_{1}} \frac{\partial l_{1}}{\partial v} \right] \Big|_{(u,v) = (x_{0}^{p_{1},q_{1}}, y_{0}^{p_{1},q_{1}})}. \quad (26)$$

Опять используя лемму 6.3, видим, что $c_2^{p_1,q_1} \to c_2$ при $|p_1| + |q_1| \to \infty$. Продолжая аналогичным образом, мы можем также показать, что $c_3^{p_1,q_1} \to c_3$ при $|p_1| + |q_1| \to \infty$. \square

На четвертом шаге рассмотрим голоморфное отображение $G_2\iota=(m_2,l_2):V\to\mathbb{C}^2,$ определенное в окрестности точки $(x_0,y_0).$

Предложение 6.5. Образы \mathscr{C}_1 и $\mathscr{C}_1^{p_1,q_1}$ соответствующих геометрических компонент C_1 и $C_1^{p_1,q_1}$ при отображении $G_2\iota$, когда $|p_1|+|q_1|$ достаточно большое, являются гладкими кривыми, проходящими через точку (m_2^0, l_2^0) . Кроме того, \mathscr{C}_1 является графиком голоморфного отображения

$$l_2 = l_2^0 + a_1 (m_2 - m_2^0) + \frac{a_2}{2} (m_2 - m_2^0)^2 + \frac{a_3}{6} (m_2 - m_2^0)^3 + O(|m_2 - m_2|^4)$$
 (27)

в окрестности точки (m_2^0, l_2^0) , где $a_1 \neq 0$, а $\mathscr{C}_1^{p_1, q_1}$ является графиком голоморфного отображения

$$l_{2} = l_{2}^{0} + a_{1}^{p_{1},q_{1}} \left(m_{2} - m_{2}^{0} \right) + \frac{a_{2}^{p_{1},q_{1}}}{2} \left(m_{2} - m_{2}^{0} \right)^{2} + \frac{a_{3}^{p_{1},q_{1}}}{6} \left(m_{2} - m_{2}^{0} \right)^{3} + O(|m_{2} - m_{2}|^{4}).$$
(28)

ДОКАЗАТЕЛЬСТВО. Геометрическая компонента C_1 является графиком голоморфного отображения, которое разлагается в следующий ряд Тейлора:

$$v - v_0 = c_1(u - u_0) + \frac{c_2}{2}(u - u_0)^2 + \frac{c_3}{6}(u - u_0)^3 + O(|u - u_0|^4)$$

в окрестности точки (u_0, v_0) . По определению C_1 имеем $m_1 = m_1^0$ для точек на C_1 . Таким образом,

$$\left.\frac{dm_1}{dx}\right|_{x=u_0} = \left[\frac{\partial m_1}{\partial u} + c_1 \frac{\partial m_1}{\partial v}\right]_{(u_0,v_0)} = 0.$$

Поскольку $\nabla m_1(u_0,v_0)$ и $\nabla m_2(u_0,v_0)$ линейно независимы, с необходимостью

$$\frac{dm_2}{dx}\bigg|_{x=u_0} = \left[\frac{\partial m_2}{\partial u} + c_1 \frac{\partial m_2}{\partial v}\right]\bigg|_{(u,v)=(u_0,v_0)} \neq 0.$$

Итак, отображение $G_2\iota$, суженное на C_1 , несингулярно в точке (u_0, v_0) ; следовательно, образ C_1 при отображении $G_2\iota$ является гладкой кривой, проходящей через точку (m_2^0, l_2^0) .

Напомним, что $C_1^{p_1,q_1}$ — график голоморфного отображения с разложением

$$v - v_0^{p_1, q_1} = c_1^{p_1, q_1} \left(u - u_0^{p_1, q_1} \right) + \frac{c_2^{p_1, q_1}}{2} \left(u - u_0^{p_1, q_1} \right)^2 + \frac{c_3^{p_1, q_1}}{6} \left(u - u_0^{p_1, q_1} \right)^3 + O\left(\left| u - u_0^{p_1, q_1} \right|^4 \right)$$
(29)

в точке $(u_0^{p_1,q_1},v_0^{p_1,q_1}).$

Поскольку $c_1^{p_1,q_1} \to c_1$ и $\left(u_0^{p_1,q_1},v_0^{p_1,q_1}\right) \to (u_0,v_0)$ при $|p_1|+|q_1|\to\infty$, для достаточно больших $|p_1|+|q_1|$ имеем

$$\left. \frac{dm_2}{dx} \right|_{x=u_0^{p_1,q_1}} = \left[\frac{\partial m_2}{\partial u} + c_1^{p_1,q_1} \frac{\partial m_2}{\partial v} \right] \right|_{(u,v)=(u_0^{p_1,q_1}, v_0^{p_1,q_1})} \neq 0.$$

Выше мы показали, что

$$\left. \frac{dm_2}{dx} \right|_{x=x_0} \neq 0$$
 и $\left. \frac{dm_2}{dx^{p_1,q_1}} \right|_{x^{p_1,q_1}=x_0^{p_1,q_1}} \neq 0$

при достаточно больших $|p_1| + |q_1|$. Аналогично

$$\left. \frac{dl_2}{dx} \right|_{x=u_0} \neq 0$$
 и $\left. \frac{dl_2}{dx} \right|_{x=u_0^{p_1,q_1}} \neq 0$

при достаточно больших $|p_1| + |q_1|$. Таким образом, предложение доказано. \square

ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ 3.2. Дифференцируя (27) относительно x и вычисляя в точке $x=u_0$, получим

$$\left. \frac{dl_1}{dx} \right|_{x=u_0} = a_1 \frac{dm_1}{dx} \Big|_{x=u_0}.$$

Следовательно,

$$a_1 = \left. rac{rac{\partial l_1}{\partial u} + c_1 rac{\partial l_1}{\partial v}}{rac{\partial m_1}{\partial u} + c_1 rac{\partial m_1}{\partial v}}
ight|_{(u,v) = (u_0,v_0)}.$$

Аналогично из (28) вытекает, что

$$a_1^{p_1,q_1} = \frac{\frac{\partial l_1}{\partial u} + c_1^{p_1,q_1} \frac{\partial l_1}{\partial v}}{\frac{\partial m_1}{\partial u} + c_1^{p_1,q_1} \frac{\partial m_1}{\partial v}} \bigg|_{(u,v) = (x_0^{p_1,q_1}, y_0^{p_1,q_1})}.$$

Поскольку по предложению 6.4 имеем $c_1^{p_1,q_1} \to c_1$ при $|p_1| + |q_1| \to \infty$, то $a_1^{p_1,q_1} \to a_1$ при $|p_1| + |q_1| \to \infty$.

Продолжая аналогичным образом, используя последовательное дифференцирование, также получим, что $a_i^{p_1,q_1} \to a_i$ при $|p_1| + |q_1| \to \infty, i = 2, 3$. \square

Завершим данный параграф следующей леммой, вытекающей из инвариантности кривых $G_2\iota(C_1^{p_1,q_1})$ при инволюции $(m_2,l_2)\mapsto (1/m_2,1/l_2)$, суженной на некоторую окрестность точки (m_2^0,l_2^0) в \mathbb{C}^2 .

Лемма 6.6. Имеет место равенство $a_2^{p_1,q_1}=-m_2^0a_1^{p_1,q_1}+l_2^0\left(a_1^{p_1,q_1}\right)^2$ при достаточно больших $|p_1|+|q_1|$.

Доказательство. По результату из [6] существует инволюция $\mathscr{I}: V \to V$ такая, что $G_1 \iota \mathscr{I}(u,v) = (m_1,l_1)$ и $G_2 \iota \mathscr{I}(u,v) = (1/m_2,1/l_2)$, где $G_1 \iota (u,v) = (m_1,l_1)$ и $G_2 \iota (u,v) = (m_2,l_2)$. Поскольку $C_1^{p_1,q_1}$ инвариантно относительно \mathscr{I} , то $G_2 \iota (C_1^{p_1,q_1})$ инвариантно относительно инволюции $(m_2,l_2) \mapsto (1/m_2,1/l_2)$. \square

ЛИТЕРАТУРА

- Hodgson C., Kerckhoff S. Universal bounds for hyperbolic Dehn surgery. (Preprint. Available at arXiv:math.GT/0204345).
- Bleiler S., Hodgson C. Spherical space forms and Dehn-filling // Topology. 1996. V. 35, N 3. P. 809–833.
- 3. Kerckhoff S. Deformations of hyperbolic cone manifolds // Topology and Teichmüller spaces. Singapore: World Sci., 1996. P. 101–114.
- Culler M., Shalen P. Varieties of group representations and splittings of 3-manifolds // Ann. Math. 1983. V. 117. P. 109–146.
- 5. Dowty J. Ortholengths and hyperbolic Dehn surgery. Thes. . . . doct. math. Univ. Melbourne,
- 6. Neumann W., Zagier D. Volumes of hyperbolic 3-manifolds // Topology. 1985. V. 24. P. 307–332.
- S. Kojima Nonsingular parts of hyperbolic 3-cone-manifolds // Topology and Teichmüller spaces. Singapore: World Sci., 1996. P. 115–122.
- Kojima S. Hyperbolic 3-manifolds singular along knots // Chaos Solitons Fractals. 1998. V. 9, N 4–5. P. 765–777.
- Cooper D., Culler M., Gillet H., Long D., Shalen P. Plane curves associated to character varieties of 3-manifolds // Invent. Math. 1994. V. 118, N 1. P. 47–84.

Статья поступила 1 февраля 2005 г.

Suhyoung Choi Department of Mathematics, KAIST 305-701 Daejeon, South Korea schoi@math.kaist.ac.kr

Jungkeun Lee Electronics and Telecommunications Research Institute 305-350 Daejeon, South Korea jklee@etri.re.kr