Копылов А. П.  
          О Wlq-регулярности решений систем дифференциальных 
          уравнений в случае, когда уравнения строятся на основе разрывных функций 
        Получено в определенном отношении окончательное решение
          проблемы регулярности с точки зрения теории пространств Соболева
          решений системы (вообще говоря) нелинейных дифференциальных
          уравнений с частными производными в случае, когда эта система
          локально близка к эллиптическим системам линейных уравнений с
          постоянными коэффициентами. 
           
         
        | 
     
        Kopylov A. P. 
          On the Wlq-regularity of solutions to 
          systems of differential equations in the case when the equations are 
          constructed from discontinuous functions 
        Some solution, final in a sense from the standpoint of the theory of 
          Sobolev spaces, is obtained to the problem of regularity of solutions 
          to a system of (generally) nonlinear partial differential equations 
          in the case when the system is locally close to elliptic systems of 
          linear equations with constant coefficients. The main consequences of 
          this result are Theorems 5 and 8. According to the first of them, the 
          higher derivatives of an elliptic Cl-smooth solution to a system of 
          lth-order nonlinear partial differential equations constructed from 
          Cl-smooth functions meet the local Hoelder condition with every exponent 
          α, 0<α<1. Theorem 8 claims that if a system of linear partial 
          differential equations of order l with measurable coefficients and right-hand 
          sides is uniformly elliptic then, under the hypothesis of a (sufficiently) 
          slow variation of its leading coefficients, the degree of local integrability 
          of lth-order partial derivatives of every Wlq,loc-solution, 
          q>1, to the system coincides with the degree of local integrability 
          of lower coefficients and right-hand sides. 
           
         
        |