СПЕКТРАЛЬНЫЕ СВОЙСТВА РЕШЕНИЯ ЗАДАЧИ ГЕЛЛЕРСТЕДТА ДЛЯ УРАВНЕНИЙ СМЕШАННОГО ТИПА И ИХ ПРИМЕНЕНИЯ

К. Б. Сабитов, А. Н. Кучкарова

Аннотация: Найдены собственные значения и соответствующие собственные функции задачи Геллерстедта для уравнений смешанного типа с оператором Лаврентьева — Бицадзе. Изучены спектральные свойства системы собственных функций, и показаны их применения для построения решения задачи Геллерстедта в виде суммы рядов. Библиогр. 18.

§ 1. Постановка задачи и основные результаты

Рассмотрим уравнение

$$Lu \equiv u_{xx} + \operatorname{sgn} y \cdot u_{yy} + \lambda u = 0, \tag{1}$$

где λ — комплексный параметр, в области D, ограниченной простой кривой Γ , лежащей в полуплоскости y>0, с концами в точках $A_1(-1,0)$ и $A_2(1,0)$ и характеристиками $A_1C_1(x+y=-1), C_1O(x-y=0), OC_2(x+y=0), C_2A_2(x-y=1)$ уравнения (1) при y<0, где $C_1(-1/2;-1/2), O(0;0), C_2(1/2;-1/2).$

Обозначим $D_0=D\cap\{y>0\},\ D_1=D\cap\{x<0\land y<0\},\ D_2=D\cap\{x>0\land y<0\}.$

В области D для уравнения (1) поставим следующую спектральную задачу.

Спектральная задача Геллерстедта (Задача G_{λ}). Найти значения комплексного параметра λ и соответствующие функции u(x,y), удовлетворяющие условиям

$$u(x,y) \in C(\overline{D}) \wedge C^{1}(D) \wedge C^{2}(D_{0} \cup D_{1} \cup D_{2}),$$

$$Lu(x,y) = 0, \quad (x,y) \in D_{0} \cup D_{1} \cup D_{2},$$

$$u(x,y) = 0, \quad (x,y) \in C_{1}O \cup OC_{2} \cup \Gamma.$$

Задача Геллерстедта для уравнений смешанного типа изучалась в работах [1–12].

В данной работе рассмотрены спектральные свойства решений задачи G_{λ} и приведены применения этих свойств при построении решения задачи Геллерстедта для уравнений смешанного типа с оператором Лаврентьева — Бицадзе.

В § 2 спектральная задача G_{λ} для оператора Лаврентьева — Бицадзе сведена к новой нелокальной спектральной задаче для оператора Лапласа. В случае, когда D_0 является полукругом с центром в начале координат, методом

Работа выполнена при финансовой поддержке Министерства образования РФ (грант № 22) и Российского фонда фундаментальных исследований (код проекта 99–01–00934).

разделения переменных найдены собственные значения и соответствующие им собственные функции задачи G_{λ} . Исследован вопрос о полноте системы собственных функций в областях эллиптичности, гиперболичности и в целом в смешанной области.

В $\S 3$ —5 на основании результатов $\S 2$ построены решения задачи Геллерстедта для уравнений смешанного типа с оператором Лаврентьева — Бицадзе в виде суммы рядов.

\S 2. Построение собственных функций задачи G_{λ} и исследование на полноту

Предварительно в областях D_1 и D_2 для уравнения (1) построим в явном виде решение задач Дарбу.

Первая задача Дарбу. 1. Найти в области D_1 решение u(x,y) уравнения (1), удовлетворяющее краевым условиям

$$u(x,x) = 0, \quad -\frac{1}{2} \le x \le 0,$$
 (2)

$$u(x,0) = \tau(x), \quad -1 \le x \le 0.$$
 (3)

2. Найти в области D_2 решение u(x,y) уравнения (1), удовлетворяющее краевым условиям:

$$u(x, -x) = 0, \quad 0 \le x \le \frac{1}{2},$$
 (4)

$$u(x,0) = \tau(x), \quad 0 \le x \le 1,$$
 (5)

где $\tau(x)$ — заданная функция, $\tau(0) = 0$.

Теорема 1. 1. Если $\tau(x) \in C[-1,0] \wedge C^2(-1,0), \tau'(x) \in L_1[-1,0]$, то существует единственное решение задачи (1)–(3) и оно определяется формулой

$$u(x,y) = \tau(x-y) + \lambda y \int_{x-y}^{0} \tau(t) \overline{J}_1 \left[\sqrt{\lambda(t-x+y)(t-x-y)} \right] dt.$$
 (6)

2. Если $\tau(x) \in C[0,1] \wedge C^2(0,1)$, $\tau'(x) \in L_1[0,1]$, то существует единственное решение задачи (1), (4), (5) и оно определяется формулой

$$u(x,y) = \tau(x+y) + \lambda y \int_{0}^{x+y} \tau(t) \overline{J}_{1} \left[\sqrt{\lambda(t-x+y)(t-x-y)} \right] dt, \tag{7}$$

где $\overline{J}_1(z)=rac{J_1(z)}{z},\ J_1(z)$ — функция Бесселя, $\sqrt{\lambda}>0$ при $\lambda>0.$

Вторая задача Дарбу. 1. Найти в области D_1 решение u(x,y) уравнения (1), удовлетворяющее краевым условиям (2) и

$$u_y(x,0) = \nu(x), \quad -1 < x < 0.$$
 (8)

2. Найти в области D_2 решение u(x,y) уравнения (1), удовлетворяющее условиям (4) и

$$u_y(x,0) = \nu(x), \quad 0 < x < 1,$$
 (9)

где $\nu(x)$ — заданная функция.

Теорема 2. 1. Если $\nu(x) \in C^1(-1,0) \wedge L_1[-1,0]$, то существует единственное решение задачи (1), (2), (8) и оно определяется формулой

$$u(x,y) = \int_{x-y}^{0} \nu(t) J_0 \left[\sqrt{\lambda(t-x+y)(t-x-y)} \right] dt.$$
 (10)

2. Если $\nu(x) \in C^1(0,1) \wedge L_1[0,1]$, то существует единственное решение задачи (1), (4), (9) и оно определяется формулой

$$u(x,y) = \int_{0}^{x+y} \nu(t) J_0 \left[\sqrt{\lambda(t-x+y)(t-x-y)} \right] dt.$$
 (11)

где $J_0(z)$ — функция Бесселя, $\sqrt{\lambda} > 0$ при $\lambda > 0$.

Доказательство теорем 1 и 2 приведено в работе [13]. Из формул (6) и (7) имеем

$$u_y(x,0) + u_x(x,0) = \lambda \int_{x}^{0} \tau(t) \overline{J}_1[\sqrt{\lambda}(t-x)] dt, \quad -1 < x < 0,$$
 (12)

$$u_y(x,0) - u_x(x,0) = \lambda \int_0^x \tau(t) \overline{J}_1[\sqrt{\lambda}(x-t)] dt, \quad 0 < x < 1.$$
 (13)

Полагая в формулах (10) и (11) y = 0, имеем

$$u(x,0) = \int_{-\infty}^{0} u_y(t,0) J_0[\sqrt{\lambda}(t-x)] dt, \quad -1 \le x \le 0,$$
 (12₁)

$$u(x,0) = \int_{0}^{x} u_y(t,0) J_0[\sqrt{\lambda}(x-t)] dt, \quad 0 \le x \le 1.$$
 (13₁)

Отметим, что равенства (12) и (12₁), (13) и (13₁) являются формулами взаимного обращения относительно функций $\tau(x)$ и $\nu(x)$.

Таким образом, задача G_{λ} сведена к новой нелокальной спектральной задаче для оператора Лапласа в области D_0 : найти значения комплексного параметра λ и соответствующие им собственные функции u(x,y), удовлетворяющие условиям

$$u(x,y) \in C(\overline{D}_0) \wedge C^1(D_0 \cup A_1O \cup OA_2) \wedge C^2(D_0), \tag{14}$$

$$u_{xx} + u_{yy} + \lambda u = 0, \quad (x, y) \in D_0,$$
 (15)

$$u(x,y) = 0, \quad (x,y) \in \Gamma, \tag{16}$$

и (12) и (13) или (12_1) и (13_1) .

Исследование задачи (12)—(16) в случае произвольной кривой Γ представляет значительные трудности. Поэтому здесь рассмотрим случай, когда кривая Γ является полуокружностью $x^2+y^2=1,\,y\geq 0$. В области $D_0=\{x^2+y^2<1,\,y>0\}$ введем полярные координаты: $x=r\cos\varphi,\,y=r\sin\varphi,\,0< r<1,\,0<\varphi<\pi$. В

полярных координатах (r,φ) , разделяя переменные $u(x,y)=v(r,\varphi)=R(r)\Phi(\varphi)$, из (12)–(16) получим

$$R''(r) + \frac{1}{r}R'(r) + \left(\lambda - \frac{\mu^2}{r^2}\right)R(r) = 0, \quad 0 < r < 1,$$
(17)

$$R(0) = 0, \quad R(1) = 0,$$
 (18)

$$\Phi''(\varphi) + \mu^2 \Phi(\varphi) = 0, \quad 0 < \varphi < \pi, \tag{19}$$

$$\Phi'(\pi) \frac{R(-x)}{x} + \Phi(\pi)R'(-x) = \lambda \Phi(\pi) \int_{-x}^{0} R(-t)\overline{J}_{1}[\sqrt{\lambda}(t-x)] dt, \quad -1 < x < 0, (20)$$

$$\Phi'(0)\frac{R(x)}{x} - \Phi(0)R'(x) = \lambda\Phi(0)\int_{0}^{x} R(t)\overline{J}_{1}[\sqrt{\lambda}(x-t)] dt, \quad 0 < x < 1.$$
 (21)

Известно, что решением уравнения (17), удовлетворяющим первому условию из (18), является функция Бесселя

$$R(r) = J_{\mu}(\sqrt{\lambda}r), \quad \text{Re}\,\mu > 0.$$
 (22)

Подставляя функцию (22) в равенства (20), (21) и вычисляя полученный интеграл по формуле 2.12.33.6 из [14], находим граничные условия

$$\Phi'(\pi) + \mu \Phi(\pi) = 0, \quad \Phi'(0) - \mu \Phi(0) = 0$$
(23)

для нахождения функции $\Phi(\varphi)$. Теперь, решая краевую задачу (19) и (23), будем иметь

$$\Phi_n(\varphi) = c_n(\cos \mu_n \varphi + \sin \mu_n \varphi), \tag{24}$$

где $\mu_n = n - 1/2$, $c_n = \text{const}$, $n = 1, 2, \dots$

Далее, учитывая найденные значения μ_n и требуя от функции (22) выполнения второго условия из (18), получим

$$J_{\mu_n}(\sqrt{\lambda}) = 0. (25)$$

Как известно [15, с. 530], функция $J_{\nu}(z)$ при $\nu>-1$ имеет только вещественные нули. Тогда, обозначая через $\alpha_{n,m}$ m-й корень уравнения (25), находим собственные значения задачи G_{λ} :

$$\lambda_{n,m} = \alpha_{n,m}^2, \quad n, m = 1, 2, \dots$$
 (26)

На основании формул (22), (24), (26) найдем собственные функции задачи G_{λ} в области D_0 :

$$u_{n,m}(x,y) = v_{n,m}(r,\varphi) = c_{n,m}J_{\mu_n}(\sqrt{\lambda_{n,m}}r)(\cos\mu_n\varphi + \sin\mu_n\varphi), \qquad (27)$$

где $c_{n,m} = \text{const.}$

Для построения собственных функций в области D_2 можно воспользоваться формулами (6) и (7) или (10) и (11). Из-за громоздкости вычислений здесь применим прием, предложенный в [16]. В области D_2 введем новые переменные

$$\sigma = \sqrt{x^2 - y^2}, \quad \theta = -\frac{y^2}{x^2 - y^2}.$$

Разделяя переменные в уравнении (1), находим его частные решения

$$u(x,y) = \left[k_1 \left(\frac{x-y}{x+y} \right)^{\rho/2} + k_2 \left(\frac{x+y}{x-y} \right)^{\rho/2} \right] J_{\rho} \left[\sqrt{\lambda(x^2 - y^2)} \right], \tag{28}$$

где $\operatorname{Re} \rho \geq 0, k_1$ и k_2 — произвольные постоянные.

Из формулы (27) вычислим

$$\tau_{n,m}(x) = u_{n,m}(x,0) = c_{n,m} J_{\mu_n}(\sqrt{\lambda_{n,m}} x), \quad 0 \le x \le 1,$$
(29)

$$\nu_{n,m}(x) = \frac{\partial u_{n,m}(x,0)}{\partial y} = \frac{\mu_n c_{n,m}}{x} J_{\mu_n}(\sqrt{\lambda_{n,m}} x), \quad 0 < x < 1.$$
 (30)

Если в формуле (28) положить $\rho = \mu_n = n - 1/2$, $\lambda = \lambda_{n,m}$, $k_1 = 0$, $k_2 = c_{n,m}$, то она определит решение задачи Коши для уравнения (1) в области D_2 с краевыми условиями (29) и (30).

Таким образом, система собственных функций задачи G_{λ} в области D_2 имеет вид

$$u_{n,m}(x,y) = c_{n,m} \left(\frac{x+y}{x-y}\right)^{\mu_n/2} J_{\mu_n} \left[\sqrt{\lambda_{n,m}(x^2-y^2)}\right].$$

Для получения системы собственных функций в области D_1 воспользуемся симметрией уравнения относительно оси x=0. Заменяя в формуле (28) (x,y) на (-x,y), получим

$$u(x,y) = \left[k_3 \left(\frac{x+y}{x-y} \right)^{\rho/2} + k_4 \left(\frac{x-y}{x+y} \right)^{\rho/2} \right] J_{\rho} \left[\sqrt{\lambda(x^2 - y^2)} \right], \tag{31}$$

где $\operatorname{Re} \rho \geq 0$, k_3 и k_4 — произвольные постоянные.

Из (27) имеем

$$\tau_{n,m}(x) = u_{n,m}(x,0) = (-1)^{n+1} c_{n,m} J_{\mu_n} [\sqrt{\lambda_{n,m}}(-x)], \quad -1 \le x \le 0,$$
 (32)

$$\nu_{n,m}(x) = \frac{\partial u_{n,m}(x,0)}{\partial y} = (-1)^n \frac{\mu_n c_{n,m}}{x} J_{\mu_n}[\sqrt{\lambda_{n,m}}(-x)], \quad -1 < x < 0.$$
 (33)

Положив в формуле (31) $\rho = \mu_n = n - 1/2$, $\lambda = \lambda_{n,m}$, $k_3 = 0$, $k_4 = (-1)^{n+1}c_{n,m}$, получим решение задачи Коши для уравнения (1) в области D_1 с краевыми условиями (32) и (33).

Тем самым собственные функции задачи G_{λ} в области D_1 имеют вид

$$u_{n,m}(x,y) = (-1)^{n+1} c_{n,m} \left(\frac{x-y}{x+y} \right)^{\mu_n/2} J_{\mu_n} \left[\sqrt{\lambda_{n,m}(x^2 - y^2)} \right].$$

Следовательно, собственные функции задачи G_{λ} таковы:

$$u_{n,m}(x,y) = \begin{cases} c_{n,m} J_{\mu_n} \left[\sqrt{\lambda_{n,m}(x^2 + y^2)} \right] (\cos \mu_n \varphi + \sin \mu_n \varphi), & (r,\varphi) \in D_0, \\ (-1)^{n+1} c_{n,m} \left(\frac{x-y}{x+y} \right)^{\mu_n/2} J_{\mu_n} \left[\sqrt{\lambda_{n,m}(x^2 - y^2)} \right], & (x,y) \in D_1, \\ c_{n,m} \left(\frac{x+y}{x-y} \right)^{\mu_n/2} J_{\mu_n} \left[\sqrt{\lambda_{n,m}(x^2 - y^2)} \right], & (x,y) \in D_2, \end{cases}$$

где $\mu_n = n - 1/2$, $c_{n,m} = \text{const}$, $n = 1, 2, \dots$

Исследуем свойства системы функций (34).

Теорема 3. Система собственных функций (34) задачи G_{λ} полна в пространстве $L_2(D_0)$.

Доказательство. Допустим, что в $L_2(D_0)$ существует функция F(x,y) такая, что

$$\iint\limits_{D_0} F(x,y)u_{n,m}(x,y) \, dxdy = 0 \tag{35}$$

для всех $n, m = 1, 2, \dots$ Покажем, что F = 0 почти всюду в D_0 .

В (35) перейдем в полярную систему координат $x=r\cos\varphi,\ y=r\sin\varphi.$ Тогда с учетом (34) получим

$$0 = \int_{0}^{1} \int_{0}^{\pi} f(r,\varphi) J_{\mu_n}(\sqrt{\lambda_{n,m}}r) (\cos \mu_n \varphi + \sin \mu_n \varphi) r \, d\varphi dr$$
$$= \sqrt{2} \int_{0}^{1} F_n(r) J_{\mu_n}(\sqrt{\lambda_{n,m}}r) r \, dr, \quad (36)$$

где

$$F_n(r) = \int_0^{\pi} f(r, \varphi) \sin\left(\mu_n \varphi + \frac{\pi}{4}\right) d\varphi, \quad f(r, \varphi) = F(x, y).$$

В силу (36) для функции $F_n(r)$ все коэффициенты ряда Фурье — Бесселя равны нулю, поэтому из теоремы Юнга [15] следует, что $F_n(r) \equiv 0, \ (n=1,2,\ldots),$ если интеграл $\int\limits_0^1 \sqrt{r} |F_n(r)| \, dr$ абсолютно сходится. В самом деле, из неравенства Коши — Буняковского имеем

$$\begin{split} \int_{0}^{1} \sqrt{r} |F_{n}(r)| \, dr & \leq \left(\int_{0}^{1} r \, dr \int_{0}^{1} |F_{n}(r)|^{2} \, dr \right)^{1/2} \\ & \leq \frac{1}{\sqrt{2}} \left(\int_{0}^{1} \left| \int_{0}^{\pi} f(r, \varphi) \sin(\mu_{n} \varphi + \frac{\pi}{4}) d\varphi \right|^{2} \, dr \right)^{1/2} \\ & \leq \frac{1}{\sqrt{2}} \left[\int_{0}^{\pi} \sin^{2}(\mu_{n} \varphi + \frac{\pi}{4}) \, d\varphi \right]^{1/2} \left[\int_{0}^{1} \int_{0}^{\pi} |f(r, \varphi)|^{2} \, d\varphi dr \right]^{1/2} \leq C \|F\|_{L_{2}(D_{0})} < +\infty. \end{split}$$

Тогда

$$\int_{0}^{\pi} f(r,\varphi) \sin(\mu_n \varphi + \pi/4) \, d\varphi = 0 \tag{37}$$

для всех $n = 1, 2, \dots$ при любом $r \in [0, 1]$.

Поскольку система функций $\{\sin((n-1/2)\varphi+\pi/4)\}_{n=1}^\infty$ образует базис в $L_2[0,\pi]$ [17], то она полна в $L_2[0,\pi]$. Поэтому из (37) получаем, что при каждом r множество тех φ , где $f(r,\varphi)\neq 0$, имеет меру нуль. В силу теоремы Фубини это означает, что $f(r,\varphi)=0$ почти всюду в D_0 .

Теорема 4. Подсистема собственных функций (34) задачи G_{λ} при $n=2,3,\ldots$ полна в $L_2(D_2)$.

ДОКАЗАТЕЛЬСТВО. Допустим, что в $L_2(D_2)$ существует функция F(x,y) такая, что

$$\iint\limits_{D_2} F(x,y)u_{n,m}(x,y) \, dxdy = 0$$

для всех $n=2,3,\ldots, m=1,2,\ldots$ Покажем, что F(x,y)=0 почти всюду в D_2 . В двойном интеграле произведем замену переменных $\xi=x+y$ и $\eta=x+y$. Тогда область D_2 перейдет в область $\Delta=\{(\xi,\eta)\mid 0<\xi<\eta<1\}$, а интеграл запишется в виде

$$\iint_{\Lambda} f(\xi, \eta) v_{n,m}(\xi, \eta) d\xi d\eta = 0, \tag{38}$$

где $f(\xi,\eta) = F(x,y), v_{n,m}(\xi,\eta) = u_{n,m}(x,y)$. Учитывая (34), преобразуем интеграл (38):

$$\int_{0}^{1} d\eta \int_{0}^{\eta} f(\xi, \eta) \left(\frac{\xi}{\eta}\right)^{\mu_n/2} J_{\mu_n}(\sqrt{\lambda_{n,m}\xi\eta}) d\xi = 0.$$

Полагая во внутреннем интеграле $\xi=\eta t$ и меняя порядок интегрирования, затем полагая $\eta\sqrt{t}=r,\,t=s^2,$ получим

$$\int_{0}^{1} J_{\mu_n}(\sqrt{\lambda_{n,m}}r)r \, dr \int_{r}^{1} s^{\mu_n - 1} f(rs, r/s) \, ds = 0.$$

Из последнего равенства имеем, что для функции

$$F_n(r) = \int_{r}^{1} h(s, r) s^{\mu_n - 1} ds, \quad 0 \le r \le 1, \ n = 2, 3, \dots,$$

где h(s,r)=f(rs,r/s), все коэффициенты ряда Фурье — Бесселя равны нулю, поэтому из теоремы Юнга следует, что

$$\int_{r}^{1} h(s,r)s^{\mu_n - 1} ds = 0$$

для всех $n = 2, 3, \dots$ и при каждом $r \in [0, 1]$.

Рассмотрим систему функций $\{s^{\mu_n-1}\}$, $\mu_n=n-1/2,\ n=2,3,\ldots$ По теореме Мюнца система $\{s^{\mu_n-1}\}$ полна в $L_2[0,1]$. Тогда при каждом r множество тех s, где $h(s,r)\neq 0$, имеет меру нуль. В силу теоремы Фубини это означает, что h(s,r)=0 почти всюду в области D_2 .

Теорема 5. Подсистема собственных функций (34) задачи G_{λ} при $n=2,3,\ldots$ полна в $L_2(D_1)$.

Доказательство проводится аналогично доказательству теоремы 4.

Теорема 6. Система собственных функций (34) задачи G_{λ} не полна в $L_2(D)$.

Доказательство. В области D рассмотрим функцию

$$F(x,y) = \begin{cases} F_0(x,y), & (x,y) \in D_0, \\ F_1(x,y), & (x,y) \in D_1, \\ F_2(x,y), & (x,y) \in D_2, \end{cases}$$

где $F_k(x,y) \in L_2(D_k), k = 0,1,2,$ и интегралы

$$J = \int_{D} \int F(x,y)u_{n,m} dxdy = \sum_{k=0}^{2} \int \int_{D_{k}} F_{k}(x,y)u_{n,m} dxdy = i_{0} + i_{1} + i_{2}.$$
 (39)

Подсчитаем каждый из $i_k, k = 0, 1, 2$. Переходя к полярным координатам (r, φ) в интеграле i_0 , получим

$$i_0 = \sqrt{2}c_{n,m} \int_0^1 J_{\mu_n}(\sqrt{\lambda_{n,m}}r)r \, dr \int_0^\pi f_0(r,\varphi) \sin(\mu_n \varphi + \pi/4) \, d\varphi, \tag{40}$$

где $f_0(r,\varphi) = F_0(x,y)$.

Используя рассуждения, приведенные при доказательстве теоремы 4, интегралы i_1 и i_2 преобразуем к виду

$$i_1 = (-1)^{n+1} c_{n,m} \int_0^1 J_{\mu_n}(\sqrt{\lambda_{n,m}} r) r \, dr \int_r^1 s^{\mu_n - 1} f_1(rs, r/s) \, ds, \tag{41}$$

$$i_2 = c_{n,m} \int_0^1 J_{\mu_n}(\sqrt{\lambda_{n,m}}r)r \, dr \int_r^1 s^{\mu_n - 1} f_2(rs, r/s) \, ds, \tag{42}$$

где $f_1(\xi,\eta) = F_1(x,y), f_2(\xi,\eta) = F_2(x,y).$

Теперь, подставляя (40)-(42) в (39), получим

$$J = c_{n,m} \int_{0}^{1} J_{\mu_{n}}(\sqrt{\lambda_{n,m}}r)r \left[\sqrt{2} \int_{0}^{\pi} f_{0}(r,\varphi) \sin(\mu_{n}\varphi + \pi/4) d\varphi + \int_{r}^{1} s^{\mu_{n}-1} [f_{2}(rs,r/s) + (-1)^{n+1} f_{1}(rs,r/s)] ds \right] dr.$$
 (43)

Следуя [16], рассмотрим функции

$$f_0(r,\varphi) = \frac{1}{\sqrt{2}} \sum_{k=1}^{\infty} \left[\frac{(-1)^k}{(k+1)(k+2)} + \frac{1}{(k+3)(k+4)} - (-1)^k \left(\frac{r^{k+1}}{k+1} - \frac{r^{k+2}}{k+2} \right) - \left(\frac{r^{k+3}}{k+3} - \frac{r^{k+4}}{k+4} \right) \right] h_k(\varphi), \quad (44)$$

$$f_1(rs, r/s) = s^{3/2}(1-s), \quad f_2(rs, r/s) = -s^{7/2}(1-s),$$
 (45)

где $h_k(\varphi)$ — биортогональная система относительно системы синусов $\sin(\mu_n \varphi + \frac{\pi}{4}), n = 1, 2, \ldots,$ и она имеет вид

$$h_k(\varphi) = \frac{2}{\pi} \frac{(2\cos\varphi/2)^{-1}}{(\mathrm{tg}\,\varphi/2)^{1/2}} \sum_{n=1}^k (\sin n\varphi) B_{k-n},\tag{46}$$

$$B_l = \sum_{m=0}^{l} C_{1/2}^{l-m} C_{1/2}^m (-1)^{l-m}, \quad C_l^n = \frac{l(l-1)\dots(l-n+1)}{n!}.$$

Поскольку $h_k(\varphi)$ равномерно ограничены по k [17], ряд (44) при любом $r \leq 1$ сходится равномерно. Подставляя функции (44) и (45) в (43), получим, что существует функция $F(x,y) \in L_2(D), F(x,y) \neq 0$ в D, такая, что интеграл J равен нулю. Теорема доказана.

§ 3. Построение решения задачи Геллерстедта для уравнения Лаврентьева — Бицадзе

Рассмотрим уравнение

$$Lu \equiv u_{xx} + \operatorname{sgn} y \cdot u_{yy} = 0 \tag{47}$$

в области D, ограниченной частью окружности $\Gamma(x^2+y^2=1,y>0)$ и характеристиками $A_1C_1,\,C_1O,\,OC_2,\,C_2A_2,$ уравнения (1) при y<0.

Задача Геллерстедта (задача G). Найти функцию u(x,y), удовлетворяющую условиям

$$u(x,y) \in C(\overline{D}) \wedge C^1(D) \wedge C^2(D_0 \cup D_1 \cup D_2), \tag{48}$$

$$Lu(x,y) \equiv 0, \quad (x,y) \in D_0 \cup D_1 \cup D_2,$$
 (49)

$$u(x,y)|_{\Gamma} = v(r,\varphi)|_{r=1} = f(\varphi), \quad \varphi \in [0,\pi],$$

 $u(x,y)|_{C_1O \cup OC_2} = 0,$ (50)

где f — заданная достаточно гладкая функция.

Отметим, что единственность решения задачи G для уравнения (47) в области D (см. §1) с произвольной кривой Γ доказана в работе [5].

Решая первую задачу Дарбу для уравнения (47) в области D_1 с граничными условиями (2) и (3) и в области D_2 с условиями (4) и (5), получим соотношения на отрезках A_1O и OA_2 оси y=0:

$$u_x(x,0) + u_y(x,0) = 0, -1 < x < 0,$$
 (51)

$$u_x(x,0) - u_y(x,0) = 0, \quad 0 < x < 1.$$
 (52)

Тем самым задача G сведена к смешанной задаче для уравнения Лапласа: найти функцию u(x,y), удовлетворяющую условиям (48)–(52).

Введя в области D_0 полярные координаты (r,φ) и разделяя переменные $u(x,y)=v(r,\varphi)=R(r)\Phi(\varphi),$ из (48)–(52) получим

$$R''(r) + \frac{1}{r}R'(r) - \frac{\mu^2}{r^2}R(r) = 0, \quad 0 < r < 1,$$
(53)

$$R(0) = 0, \quad |R(1)| < +\infty,$$
 (54)

$$\Phi''(\varphi) + \mu^2 \Phi(\varphi) = 0, \quad 0 < \varphi < \pi, \tag{55}$$

$$\Phi'(\pi) \frac{R(-x)}{x} + \Phi(\pi)R'(-x) = 0, \quad -1 < x < 0, \tag{56}$$

$$\Phi'(0)\frac{R(x)}{x} - \Phi(0)R'(x) = 0, \quad 0 < x < 1,$$
(57)

где $\mu = \text{const.}$

Решением уравнения (53), удовлетворяющим условиям (54), является функция

$$R(r) = r^{\mu}, \quad \mu > 0.$$
 (58)

Подставляя функцию (58) в равенства (56) и (57), получим

$$\Phi'(\pi) + \mu \Phi(\pi) = 0, \quad \Phi'(0) - \mu \Phi(0) = 0. \tag{59}$$

Решая краевую задачу (55), (59), найдем

$$\Phi_n(\varphi) = c_n(\cos \mu_n \varphi + \sin \mu_n \varphi) = C_n \sin \left(\mu_n \varphi + \frac{\pi}{4}\right),$$

где $\mu_n = n - 1/2, \, C_n = {\rm const}, \, n = 1, 2, \dots$ Следовательно, функции вида

$$v_n(r,\varphi) = C_n r^{\mu_n} \sin\left(\mu_n \varphi + \frac{\pi}{4}\right), \quad \mu_n = n - \frac{1}{2}, \ n = 1, 2, \dots,$$

являются частными решениями уравнения Лапласа в области D_0 , удовлетворяющими условиям (48), (51) и (52).

Разложим функцию $f(\varphi)$ в ряд по системе синусов $\{\sin[(n-1/2)\varphi+\pi/4]\}_{n=1}^{\infty}$, $0 \le \varphi \le \pi$ [17]:

$$f(\varphi) = \sum_{n=1}^{\infty} f_n \sin\left[\left(n - \frac{1}{2}\right)\varphi + \frac{\pi}{4}\right],\tag{60}$$

где

$$f_n = \int_0^\pi f(\varphi) h_n(\varphi) \, d\varphi, \tag{61}$$

а функция $h_n(\varphi)$ определяется по формуле (46).

Из работы [17] следует, что если $f(\varphi) \in C^{\alpha}[0,\pi], 0 < \alpha \le 1, f(0) = f(\pi) = 0,$ то ряд (60) сходится равномерно на $[0,\pi]$ к функции $f(\varphi)$.

Решение задачи (48)–(52) в области D_0 будем искать в виде суммы ряда

$$v(r,\varphi) = \sum_{n=1}^{\infty} f_n r^{n-1/2} \sin\left[\left(n - \frac{1}{2}\right)\varphi + \frac{\pi}{4}\right],\tag{62}$$

где f_n определяется по формуле (61).

При любом r<1 ряд (62) сходится равномерно и допускает почленное дифференцирование по r и φ сколько угодно раз, а при r=1 из (62) получаем ряд (60), который также сходится равномерно к функции $f(\varphi)$.

Таким образом, сумма ряда (62) непрерывна в \overline{D}_0 и на $D_0 \cup A_1O \cup OA_2$ допускает почленное дифференцирование по r и φ любое число раз.

Из (62) при $\varphi=0$ получим функцию

$$v(r,\varphi)|_{\varphi=0} = u(x,0) = \tau(x) = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} f_n x^{n-\frac{1}{2}},$$
 (63)

которая принадлежит классу $C[-1,1] \wedge C^{\infty}(-1,0) \wedge C^{\infty}(0,1)$.

В области D_2 решение задачи G определяется как решение задачи Дарбу для уравнения (47) с данными

$$u(x,0) = \tau(x), \ 0 \le x \le 1, \quad u(x,-x) = 0, \ 0 \le x \le \frac{1}{2},$$

где $\tau(x)$ определена формулой (63). Это решение имеет вид

$$u(x,y) = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} f_n(x+y)^{n-\frac{1}{2}}.$$
 (64)

Поскольку в \overline{D}_2 имеем $0 \le x+y \le 1$, то ряд (64) в \overline{D}_2 сходится равномерно и на множестве $D_2 \cup OA_2$ допускает почленное дифференцирование по x и y любое число раз.

Аналогично определяется решение задачи G в области D_1 :

$$u(x,y) = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} (-1)^{n-1} f_n(y-x)^{n-\frac{1}{2}}.$$

Таким образом, доказана

Теорема 7. Если $f(\varphi) \in C^{\alpha}[0,\pi], \ 0 < \alpha \le 1, \ f(0) = f(\pi) = 0, \ \text{то существу-$ ет решение задачи G, которое имеет вид

$$u(x,y) = \begin{cases} \sum_{n=1}^{\infty} f_n r^{n-\frac{1}{2}} \sin[(n-1/2)\varphi + \pi/4], & (r,\varphi) \in D_0, \\ \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} (-1)^{n-1} f_n (y-x)^{n-\frac{1}{2}}, & (x,y) \in D_1, \\ \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} f_n (x+y)^{n-\frac{1}{2}}, & (x,y) \in D_2, \end{cases}$$

где f_n определяются по формуле (61), при этом $u \in C^{\infty}(D_0 \cup A_1O \cup OA_2) \wedge C^{\infty}(D_1 \cup A_1O) \wedge C^{\infty}(D_2 \cup OA_2)$.

Отметим, что в работе [12] методом разделенных переменных решена задача G для уравнения (47), где $\operatorname{sgn} y$ стоит при производной u_{xx} .

§ 4. Решение задачи Геллерстедта для уравнения Лаврентьева — Бицадзе с комплексным параметром

Для уравнения (1) в области D (см. \S 3) построим решение следующей задачи.

Задача Геллерстедта. Найти функцию u(x,y), удовлетворяющую условиям

$$u(x,y) \in C(\overline{D}) \wedge C^1(D) \wedge C^2(D_0 \cup D_1 \cup D_2), \tag{65}$$

$$Lu(x,y) \equiv 0, \quad (x,y) \in D_0 \cup D_1 \cup D_2,$$
 (66)

$$u(x,y)|_{\Gamma} = v(r,\varphi)|_{r=1} = f(\varphi), \quad \varphi \in [0,\pi], \tag{67}$$

$$u(x,y)|_{C_1O \cup OC_2} = 0, (68)$$

где f — заданная функция из $C^{\alpha}[0,\pi]$, $0 < \alpha < 1$.

Используя собственные функции задачи G_{λ} , решение задачи (65)–(68) в области D_0 при $\lambda \neq \lambda_{n,m}$ будем искать в виде суммы ряда

$$v(r,\varphi) = \sum_{n=1}^{\infty} f_n \frac{J_{n-\frac{1}{2}}[\sqrt{\lambda}r]}{J_{n-\frac{1}{2}}[\sqrt{\lambda}]} \sin\left[\left(n - \frac{1}{2}\right)\varphi + \frac{\pi}{4}\right],\tag{69}$$

где $\lambda_{n,m}$ — собственные значения спектральной задачи Геллерстедта, коэффициенты f_n определяются по формулам (61).

На основании асимптотической формулы [18, с. 217]

$$J_n(z) = rac{1}{n!} \left(rac{z}{2}
ight)^n$$
 при $n o \infty$

ряд (69) при любом r < 1 сходится равномерно, так как для достаточно больших n справедлива оценка

$$\left| f_n \frac{J_{n-\frac{1}{2}}[\sqrt{\lambda}r]}{J_{n-\frac{1}{3}}[\sqrt{\lambda}]} \sin \left[\left(n - \frac{1}{2} \right) \varphi + \frac{\pi}{4} \right] \right| \le M r^{n-\frac{1}{2}}, \quad M = \text{const} > 0.$$

Нетрудно заметить, что ряд (69) при r<1 допускает почленное дифференцирование по r и φ любое число раз.

Если r=1, то

$$v(1,\varphi) = f(\varphi) = \sum_{n=1}^{\infty} f_n \sin\left[\left(n - \frac{1}{2}\right)\varphi + \frac{\pi}{4}\right].$$

Равномерная сходимость ряда отмечена в §3.

Построим решение задачи G в областях D_2 и D_1 . Для этого воспользуемся формулами (28) и (31).

Из формулы (69) следует, что

$$\tau(x) = u(x,0) = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} f_n \frac{J_{n-\frac{1}{2}}(\sqrt{\lambda}x)}{J_{n-\frac{1}{2}}(\sqrt{\lambda})}, \quad x \in [0,1],$$
 (70)

$$\nu(x) = u_y(x,0) = \frac{1}{\sqrt{2}x} \sum_{n=1}^{\infty} \left(n - \frac{1}{2} \right) f_n \frac{J_{n-\frac{1}{2}}(\sqrt{\lambda}x)}{J_{n-\frac{1}{2}}(\sqrt{\lambda})}, \quad x \in (0,1).$$
 (71)

Если в формуле (28) положить $\rho = n - 1/2$, $k_1 = 0$, $k_2 = \frac{f_n}{\sqrt{2}J_{n-1/2}(\sqrt{\lambda})}$, то она определит решение задачи Коши для уравнения (1) в области D_2 с краевыми условиями (70) и (71):

$$u(x,y) = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} f_n \left(\frac{x+y}{x-y} \right)^{\frac{n}{2} - \frac{1}{4}} \frac{J_{n-\frac{1}{2}} \left[\sqrt{\lambda(x^2 - y^2)} \right]}{J_{n-\frac{1}{2}} \left[\sqrt{\lambda} \right]}.$$

Аналогично решение задачи G в области D_1 имеет вид

$$u(x,y) = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} (-1)^{n-1} f_n \left(\frac{x-y}{x+y} \right)^{\frac{n}{2} - \frac{1}{4}} \frac{J_{n-\frac{1}{2}} \left[\sqrt{\lambda(x^2 - y^2)} \right]}{J_{n-\frac{1}{2}} \left[\sqrt{\lambda} \right]}.$$

Теорема 8. Если $f(\varphi) \in C^{\alpha}[0,\pi], \ 0 < \alpha \le 1, \ f(0) = f(\pi) = 0, \ \text{то существу-}$ ет решение задачи (65)–(68) для любого $\lambda \ne \lambda_{n,m}$ и оно имеет вид

$$u(x,y) = \begin{cases} \sum_{n=1}^{\infty} f_n \frac{J_{n-\frac{1}{2}}[\sqrt{\lambda}r]}{J_{n-\frac{1}{2}}[\sqrt{\lambda}]} \sin\left[\left(n - \frac{1}{2}\right)\varphi + \frac{\pi}{4}\right], & (r,\varphi) \in D_0, \\ \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} (-1)^{n-1} f_n \left(\frac{x-y}{x+y}\right)^{\frac{n}{2} - \frac{1}{4}} \frac{J_{n-\frac{1}{2}}[\sqrt{\lambda(x^2 - y^2)}]}{J_{n-\frac{1}{2}}[\sqrt{\lambda}]}, & (x,y) \in D_1, \\ \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} f_n \left(\frac{x+y}{x-y}\right)^{\frac{n}{2} - \frac{1}{4}} \frac{J_{n-\frac{1}{2}}[\sqrt{\lambda(x^2 - y^2)}]}{J_{n-\frac{1}{2}}[\sqrt{\lambda}]}, & (x,y) \in D_2, \end{cases}$$

где f_n определяются по формуле (61), и при этом $u(x,y) \in C^{\infty}(D_0 \cup A_1O \cup OA_2) \wedge C^{\infty}(D_1 \cup A_1O) \wedge C^{\infty}(D_2 \cup OA_2)$.

§ 5. Пространственная задача Геллерстедта для уравнения смешанного типа

Рассмотрим уравнение

$$LV \equiv V_{xx} + \operatorname{sgn} y \cdot V_{yy} + V_{zz} = 0 \tag{72}$$

в области $T=D\times(0,\pi)$, где D — область плоскости \mathbb{R}^2_{xy} , описанная в \S 3. Обозначим $S=\{x^2+y^2=1,\ y\geq 0,\ z\in[0,\pi]\},\ T_0=T\cap\{y>0\},\ T_1=T\cap\{x<0\land y<0\},\ T_2=T\cap\{x>0\land y<0\}.$

Задача G. Найти функцию V(x, y, z), удовлетворяющую условиям

$$V(x, y, z) \in C(\overline{T}) \cap C^{1}(T) \cap C^{2}(T_{0} \cup T_{1} \cup T_{2}),$$
 (73)

$$LV(x, y, z) \equiv 0, \quad (x, y, z) \in T_0 \cup T_1 \cup T_2,$$
 (74)

$$V(x,y,z)|_S=W(r,\varphi,z)|_{r=1}=f(\varphi,z),\quad \varphi\in[0,\pi],\ z\in[0,\pi],$$

$$V(x, y, z)|_{y=x} = 0, \quad x \in [-1/2, 0], \ z \in [0, \pi],$$
 (75)

$$V(x, y, z)|_{y=-x} = 0, \quad x \in [0, 1/2], \ z \in [0, \pi],$$
 (76)

$$V(x,y,z)|_{z=0} = V(x,y,z)|_{z=\pi} = 0, (77)$$

где f — заданная достаточно гладкая функция.

В области T, разделяя переменные V(x,y,z) = u(x,y)Z(z), из (73)–(77) получим

$$u(x,y) \in C(\overline{D}) \cap C^1(D) \cap C^2(D_0 \cup D_1 \cup D_2), \tag{78}$$

$$u_{xx} + \operatorname{sgn} y \cdot u_{yy} - \mu^2 u = 0, \quad (x, y) \in D,$$
 (79)

$$u(x,y)|_{y=x} = 0, \ x \in [-1/2,0], \quad u(x,y)|_{y=-x} = 0, \ x \in [0,1/2],$$
 (80)

$$Z''(z) + \mu^2 Z(z) = 0, \quad 0 < z < \pi, \quad Z(0) = Z(\pi) = 0,$$
 (81)

где $\mu = \text{const.}$

Задача (78)–(80) есть задача (65), (66), (68), где $\lambda = -\mu^2$. Полагая в формулах (10) и (11) $\lambda = -\mu^2$ и учитывая, что $J_{\nu}(ix) = i^{\nu}I_{\nu}(x)$, приходим к соотношениям

$$u(x,0) = \int_{x}^{0} u_y(t,0) I_0[\mu(t-x)] dt, \quad -1 \le x \le 0,$$

$$u(x,0) = \int_{0}^{x} u_y(t,0)I_0[\mu(x-t)] dt, \quad 0 \le x \le 1,$$

где $I_0(t)$ — модифицированная функция Бесселя, позволяющим свести полученную задачу к нелокальной эллиптической задаче в области D_0 (см. $\S\,2$).

В области D_0 , разделяя переменные $u(x,y) = v(r,\varphi) = R(r)\Phi(\varphi)$, получим

$$R''(r) + \frac{1}{r}R'(r) - \left(\mu^2 + \frac{\nu^2}{r^2}\right)R(r) = 0, \quad 0 < r < 1,$$
(82)

$$|R(1)| < +\infty, \quad R(0) = 0,$$
 (83)

$$\Phi''(\varphi) + \nu^2 \Phi(\varphi) = 0, \quad 0 < \varphi < \pi, \tag{84}$$

$$\Phi(\pi)R(-x) = \Phi'(\pi) \int_{x}^{0} \frac{R(-t)}{t} I_0[\mu(t-x)] dt, \quad -1 \le x \le 0,$$
 (85)

$$\Phi(0)R(x) = \Phi'(0) \int_{0}^{x} \frac{R(t)}{t} I_0[\mu(x-t)] dt, \quad 0 \le x \le 1.$$
 (86)

Решением уравнения (82), удовлетворяющим условиям (83), является модифицированная функция Бесселя

$$R(r) = I_{\nu}(\mu r), \quad \text{Re } \nu > 0.$$

Подставив найденную функцию в условия (85) и (86), получим граничные условия

$$\Phi'(\pi) + \nu \Phi(\pi) = 0, \quad \Phi'(0) - \nu \Phi(0) = 0$$

для определения функций $\Phi(\varphi)$.

Решениями уравнения (84), удовлетворяющими полученным граничным условиям, являются функции

$$\Phi_k(\varphi) = C_k \sin\left[\left(k - \frac{1}{2}\right)\varphi + \frac{\pi}{4}\right], \quad C_k = \text{const}, \ k = 1, 2, \dots$$

Решением краевой задачи (81) будут функции вида

$$Z_n(z) = B_n \sin nz$$
, $B_n = \text{const}$, $n = 1, 2, \dots$

Решение задачи G в области T_0 будем искать в виде

$$W(r,\varphi,z) = \sum_{n,k=1}^{\infty} f_{nk} \sin nz \sin \left[\left(k - \frac{1}{2} \right) \varphi + \frac{\pi}{4} \right] \frac{I_{k-\frac{1}{2}}(nr)}{I_{k-\frac{1}{2}}(n)}.$$
 (87)

Полагая в (87) r = 1, получим

$$f(\varphi, z) = \sum_{n = 1}^{\infty} f_{nk} \sin nz \sin \left[\left(k - \frac{1}{2} \right) \varphi + \frac{\pi}{4} \right],$$

где коэффициенты f_{nk} находятся из разложения функции $P_n(\varphi)$ в ряд по системе синусов:

$$P_n(\varphi) = \sum_{k=1}^{\infty} f_{nk} \sin\left[\left(k - \frac{1}{2}\right)\varphi + \frac{\pi}{4}\right], \quad \varphi \in [0, \pi],$$
 (88)

а функция $P_n(\varphi)$ определяется по формуле

$$P_n(\varphi) = \frac{2}{\pi} \int_0^{\pi} f(\varphi, z) \sin nz \, dz.$$

Если функция $P_n(\varphi)$ удовлетворяет условию Гёльдера на $[0,\pi]$ с показателем $\lambda > 0$ и $P_n(0) = P_n(\pi) = 0$, то аналогично [12] можно доказать, что ряд (88) сходится равномерно на $[0,\pi]$.

Решение задачи G в областях T_1 и T_2 имеет вид

$$V(x,y,z) = \begin{cases} \sum_{n,k=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{2}} f_{nk} \sin nz \left(\frac{x-y}{x+y}\right)^{\frac{n}{2} - \frac{1}{4}} \frac{I_{k-\frac{1}{2}}[n\sqrt{(x^2-y^2)}]}{I_{k-\frac{1}{2}}[n]}, & (x,y,z) \in T_1, \\ \sum_{n,k=1}^{\infty} \frac{1}{\sqrt{2}} f_{nk} \sin nz \left(\frac{x+y}{x-y}\right)^{\frac{n}{2} - \frac{1}{4}} \frac{I_{k-\frac{1}{2}}[n\sqrt{(x^2-y^2)}]}{I_{k-\frac{1}{2}}[n]}, & (x,y,z) \in T_2. \end{cases}$$
(89)

Итак, справедлива

Теорема 9. Если функция $f(\varphi, z)$ по переменной φ удовлетворяет на отрезке $[0, \pi]$ условию Гёльдера c показателем $\alpha \in (0, 1]$, а по переменной z на отрезке $[0, \pi]$ условию Гёльдера c показателем $\beta \in (0, 1]$, $f(\varphi, 0) = f(\varphi, \pi) = 0$, $f(0, z) = f(\pi, z) = 0$, то существует решение задачи G в области T и оно задается формулами (87), (89).

ЛИТЕРАТУРА

- Gellerstedt S. Sur un probleme aux limites pour une equation lineaire aux derivees partielles du second ordre de type mixte: Thes. doct. Uppsala, 1935.
- 2. Gellerstedt S. Quelgues problemes mixtes pour l'equation $y^m z_{xx} + z_{yy} = 0$ // Ark. Mat. Astr. Fys. 1938. V. 26A, N 3. P. 78–93.
- **3.** Франкль Ф. И. Избранные труды по газовой динамике. М.: Наука, 1973.
- 4. Овсянников Л. В. Лекции по основам газовой динамики. М.: Наука, 1981.
- Бицадзе А. В. К проблеме уравнений смешанного типа: Дис. . . . д-ра физ.мат. наук. М., 1951.
- Волкодавов В. Ф., Лернер М. Е. К вопросу о единственности решения задачи Геллерстедта // Дифференц. уравнения / Тр. пед. институтов РСФСР, Рязань. 1975. Вып. 6. С. 55–56.
- Хе Кан Чер. О задаче Геллерстедта // Тр. семинара С. Л. Соболева. Новосибирск, 1976.
 № 2. С. 139–145.
- Хе Кан Чер. О задаче Геллерстедта для одного уравнения смешанного типа // Динамика сплошной среды. Новосибирск. 1976. Т. 26. С. 134–141.
- 9. Xe~Kah~ Чер. О единственности решения задачи Геллерстедта для одного уравнения смешанного типа // Сиб. мат. журн. 1977. Т. 18, № 6. С. 1426–1429.
- **10.** *Смирнов М. М.* Уравнения смешанного типа. М.: Наука, 1985.
- 11. Врагов В. Н. К теории краевых задач для уравнений смешанного типа на плоскости и в пространстве: Дис. . . . д-ра физ.-мат. наук. Новосибирск, 1978.
- Моисеев Е. И. Применение метода разделения переменных для решения уравнений смешанного типа // Дифференц. уравнения. 1990. Т. 26, № 7. С. 1160–1172.
- **13.** Сабитов К. Б. Построение в явном виде решений задач Дарбу для телеграфного уравнения и их применение при обращении интегральных уравнений. I // Дифференц. уравнения. 1990. Т. 26, № 6. С. 1023–1032.
- **14.** *Прудников А. П., Брычков Ю. А., Маричев О. И.* Интегралы и ряды. Специальные функции. М.: Наука, 1983.
- **15.** Ватсон Г. Н. Теория бесселевых функций. М.: Изд-во иностр. лит., 1949. Т. 1.
- 16. Сабитов К. Б., Тихомиров В. В. О построении собственных значений и функций одной газодинамической задачи Франкля // Мат. моделирование. 1990. Т. 2, № 10. С. 100–109.
- 17. Моисеев Е. И. О базисности одной системы синусов // Дифференц. уравнения. 1987. Т. 23, № 1. С. 177–179.
- 18. Уиттекер Э. Т., Ватсон Дж. Н. Курс современного анализа. М.: Физматгиз, 1963. Ч. 2.

Cтатья поступила 25 апреля 2000 г., окончательный вариант — 28 мая 2001 г.

Сабитов Камиль Басирович

Стерлитамакский гос. педагогический институт, Стерлитамакский филиал Академии наук республики Башкортостан, просп. Ленина, 37, Стерлитамак 453103, респ. Башкортостан sspi@soros.bashedu.ru

Кучкарова Айгуль Наилевна

Стерлитамакский гос. педагогический институт,

Стерлитамакский филиал Академии наук республики Башкортостан,

просп. Ленина, 37, Стерлитамак 453103, респ. Башкортостан