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REPRESENTATION THEOREM FOR STOCHASTIC
DIFFERENTIAL EQUATIONS IN HILBERT SPACES AND

ITS APPLICATIONS

Viorica Mariela Ungureanu

Abstract. In this survey we recall the results obtained in [16] where we gave a represen-

tation theorem for the solutions of stochastic di¤erential equations in Hilbert spaces. Using this

representation theorem and the deterministic characterizations of exponential stability and uniform

observability obtained in [16], [17], we will prove a result of Datko type concerning the exponential

dichotomy of stochastic equations.

1 Introduction

In [16] V. Ungureanu established a representation theorem (see Theorem 3) for the
mild solutions of linear stochastic di¤erential equations. More precisely, in [16] a
Lyapunov equation is associated to the discussed linear stochastic di¤erential equa-
tion and it is established a relation between the mean square of the mild solution of
the stochatic equation and the mild solution of the Lyapunov equation.

This representation theorem is a powerful tool which allow us to obtain deter-
ministic characterizations of di¤erent properties of solutions of linear di¤erential
stochastic equations.

The aim of this survey is to illustrate how problems like uniform exponential
stability, uniform observability or uniform exponential dichotomy of stochastic equa-
tions can be solved by using the result obtained in [16].

The survey is organized as it follows.
In the second section we recall basic facts concerning linear stochastic di¤erential

equations and Lyapunov equations, which we need in the sequel.
The representation theorem is stated in the third section.
In section 4 we introduce a solution operator associated to the Lyapunov equa-

tion associated to the stochastic di¤erential equation and we establish some of its
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118 Viorica Mariela Ungureanu

properties.

In section 5 we use the representation theorem to obtain deterministic charac-
terizations of the uniform exponential stability, respectively uniform observability
properties of the considered stochastic di¤erential equation. We also recall an uni-
form exponential stability result obtained under uniform observability conditions
and a result which give necessary and su¢ cient conditions for the uniform expo-
nential stability of stochastic equations with periodic coe¢ cients. We note that the
characterizations of the uniform exponential stability obtained by the authoress of
this survey are di¤erent to those obtained by G. Da Prato and I. Ichikawa in [3].

In the last section we introduce a notion of uniform exponential dichotomy for
stochastic equations, which is slowly di¤erent to that introduced in [18]. Using the
solution operator introduced in section 4 we derive deterministic characterizations
of the uniform exponential dichotomy (see Theorem 20, which is a result of Datko�s
type or Theorem 19). Finally we obtained necessary (see Theorem 22) or su¢ cient
(Theorem 23) conditions for the uniform exponential dichotomy by using Lyapunov
functions.

2 Notations and preliminaries

LetH;V be separable real Hilbert spaces. We will denote by L (H) the Banach space
of all linear and bounded operators from H into V . Let E be the Banach subspace
of L(H) formed by all self adjoint operators. The operator A 2 E is nonnegative
and we will write A � 0 if hAx; xi � 0 for all x 2 H:We will use the notation L+(H)
for the cone of all nonnegative operators from E . Let P 2 L+(H) and A 2 L(H):
We denote by P 1=2 the square root of P and by jAj the operator (A�A)1=2. We put
kAk1 = Tr(jAj) � 1 and we denote by C1(H) the set fA 2 L(H)= kAk1 <1g (the
trace class of operators)(see [5], [6]).

If E is a Banach space we also denote by C(J;E) the space of all mappings
G(t) : J ! E that are continuous. For each interval J � R+(R+ = [0;1)) we will
denote by Cs(J; L(H)) the space of all mappings G(t) : J ! L(H) that are strongly
continuous.

Let (
; F;Ft; t 2 [0;1); P ) be a stochastic basis and let us denote L2s(H) =
L2(
;Fs; P;H). In this paper we consider stochastic di¤erential equations of the
form

dy(t) = A(t)y(t)dt+
mX
i=1

Gi(t)y(t)dwi(t) (1)

y(s) = � 2 L2s(H);

where and wi�s are independent real Wiener processes relative to Ft.and the coe¢ -
cients A(t) and Gi(t) satisfy the hypotheses:
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Representation Theorem for Stochastic Di¤erential Equations 119

P1 : a) A(t), t 2 [0;1) is a closed linear operator on H with constant domain D
dense in H.

b) there exist M > 0, � 2 (12�; �) and � 2 (�1; 0) such that S�;� = f� 2 C;
jarg(�� �)j < �g � �(A(t)); for all t � 0 and

kR(�;A(t))k � M

j�� �j

for all � 2 S�;� where we denote by �(A), R(�;A) the resolvent set of A and
respectively the resolvent of A.

c) there exist numbers � 2 (0; 1) and eN > 0 such thatA(t)A�1(s)� I � eN jt� sj� ; t � s � 0.
P2 : Gi 2 Cs(R+; L(H)); i = 1; :::;m, D (s) 2 Cs(R+; L+(H)):

Throughout this paper we will assume that P1 and P2 hold.
It is known that if P1 holds then the family fA(t)gt2R+ generates the evolution

operator U(t; s); t � s � 0 (see [3], [13]).
Let us consider T > 0. It is known (see [1]) that (1) has a unique mild solution

in C([s; T ];L2(
;H)) that is adapted to Ft; namely the solution of

y(t) = U(t; s)� +
mX
i=1

tZ
s

U(t; r)Gi(r)y(r)dwi(r): (2)

By convenience, we denote by y(t; s; �) the solution of (1) with the initial condi-
tion y(s) = �, � 2 L2s(H).

Lemma 1. [3]There exists a unique mild (resp. classical) solution to (1).

Now we consider the following Lyapunov equation:

dQ(s)

ds
+A�(s)Q(s) +Q(s)A(s) +

mX
i=1

G�i (s)Q(s)Gi(s) +D (s) = 0; s � 0 (3)

According with [3], we say that Q is a mild solution on an interval J � R+ of
(3), if Q 2 Cs(J; L+(H)) and if for all s � t, s; t 2 J and x 2 H it satis�es

Q(s)x = U�(t; s)Q(t)U(t; s)x+

tZ
s

U�(r; s)[
mX
i=1

G�i (r)Q(r)Gi(r) (4)

+D (s)]U(r; s)xdr:

******************************************************************************
Surveys in Mathematics and its Applications 1 (2006), 117 �134

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v01/v01.html
http://www.utgjiu.ro/math/sma


120 Viorica Mariela Ungureanu

Lemma 2. [3] Let 0 < T <1 and let R 2 L+(H). Then there exists a unique mild
solution Q of (3)(denoted Q(T; s;R)) on [0; T ] such that Q(T ) = R and it is given
by

Q(s)x = U�(T; s)RU(T; s)x (5)

+

TZ
s

U�(r; s)[
mX
i=1

G�i (r)Q(r)Gi(r) +D (r)]U(r; s)xdr

Moreover it is monotone in the sense that Q(T; s;R1) � Q(T; s;R2) if R1 � R2:

3 The covariance operator of the mild solutions of lin-
ear stochastic di¤erential equations and the Lyapunov
equations

Let � 2 L2(
;H): We denote by E(� 
 �) the bounded and linear operator which
act on H given by E(� 
 �)(x) = E(hx; �i �):

The operator E(� 
 �) is called the covariance operator of � (see also [8]). The
following result is known.

Theorem 3. [16] Let V be another real separable Hilbert space and B 2 L(H;V ).
If y(t; s; �); � 2 L2s(H) is the mild solution of (1) and Q(t; s; R) is the unique mild
solution of (3), where D (s) = 0; s 2 R+; with the �nal value Q(t) = R � 0 then

a) hE[y(t; s; �)
 y(t; s; �)]u; ui = TrQ(t; s;u
 u)E (� 
 �) for all u 2 H
b)

E kBy(t; s; �)k2 = TrQ(t; s;B�B)E (� 
 �) :
If we replace the hypotheses P1, P2 with

H1 : A;Gi 2 C(R+; L(H)); i = 1; :::;m;

we have the following corollary.

Corollary 4. [16]If the assumption H1 holds then the statements a) and b) of the
Theorem 3 are true.

We note that if A is time invariant (A(t) = A; for all t � 0), then the condition
P1 can be replaced with the hypothesis

H2 : A is the in�nitesimal generator of a C0-semigroup

and the time invariant version of the above result is the following:

Proposition 5. [16]If P2 and H2 hold, then the conclusions of the above theorem
stay true. Particularly, if we replace P2 with the condition Gi 2 L(H); i = 1; :::;m
the statement b) becomes:

E kBy(t; s; �)k2 = TrQ(t; s; 0;B�B)E (� 
 �) = TrQ(t� s;B�B)E (� 
 �)
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Representation Theorem for Stochastic Di¤erential Equations 121

4 The solution operators associated to the Lyapunov
equations

Let us assume throughout this section that the therm D of the Lyapunov equation
(3) satisfy the condition D (s) = 0 for all s � 0. Let Q(T; s;R); R 2 L+(H); T �
s � 0 be the unique mild solution of the Lyapunov equation (3), which satis�es the
condition Q(T ) = R:

Using the Gronwall�s inequality we deduce the following Lemma:

Lemma 6. [16]a) If R1; R2 2 L+(H) and �; � > 0 then

Q(T; s;�R1 + �R2) = �Q(T; s;R1) + �Q(T; s;R2):

b) Q(p; s;Q(t; p;R)) = Q(t; s;R) for all R 2 L+(H); t � p � s � 0:

The following lemma is known [19].

Lemma 7. Let T 2 L(E). If T (L+(H)) � L+(H) then kTk = kT (I)k ; where I is
the identity operator on H.

If R 2 E then there exist R1; R2 2 L+(H) such that R = R1 � R2 (we take for
example R1 = kRk I and R2 = kRk I �R).

Let us introduce the mapping T (t; s) : E ! E ,

T (t; s)(R) = Q(t; s;R1)�Q(t; s;R2) (6)

for all t � s � 0: The mapping T (t; s) called the solution operator associated to the
Lyapunov equation (3) has the following properties (see [16]):

1. T (t; s) is well de�ned. Indeed if R01; R02 are another two nonnegative operators
such as R = R01 � R02 we have R01 + R2 = R1 + R

0
2: From lemmas L.2 and

L.6 we have Q(t; s;R01 +R2) = Q(t; s;R1 +R
0
2) and Q(t; s;R

0
1) +Q(t; s;R2) =

Q(t; s;R1) +Q(t; s;R
0
2): The conclusion follows.

2. T (t; s)(�R) = �T (t; s)(R); R 2 E .

3. T (t; s)(R) = Q(t; s;R) for all R 2 L+(H) and t � s � 0:

4. T (t; s)(L+(H)) � L+(H):

5. For all R 2 E and x 2 H we have

hT (t; s)(R)x; xi = E hRy(t; s;x); y(t; s;x)i : (7)

(It follows from the Theorem 3 and from the de�nition of T (t; s)(R).)
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122 Viorica Mariela Ungureanu

6. T (t; s) is a linear and bounded operator and kT (t; s)k = kT (t; s)(I)k :
From 5. we deduce that T (t; s) is linear. If R 2 E , we use (7) and we get

kT (t; s)(R)k � kRk sup
x2H;kxk=1

E ky(t; s;x)k2 = kRk kQ(t; s; I)k :

Thus T (t; s) is bounded. Using 4. and Lemma 7 we obtain the conclusion.

7. T (p; s)T (t; p)(R) = T (t; s)(R) for all t � p � s � 0 and R 2 E :
It follows from Lemma 6 and the de�nition of T (t; s).

8. If t � 0 is �xed, then T (t; p)(R) !
p!p0

T (t; p0)(R) for any R 2 E :

It is a direct consequence of Theorem 2.

Let us introduce the following hypothesis

P3 U (t; s) has an exponentially growth, that is there exist the positive constants
m and a such that

kU (t; s)k � mea(t�s):

9 If P3 holds, then there exists an increasing function f : R+ ! R+ such that

T (t; s)(I) � f(t� s)I (8)

for all 0 � s � t:

Indeed, T (t; s)(I) = Q(t; s; I) and using (4), Gronwall�s inequality and P3 we
deduce that exists an increasing function f : R+ ! R+ such that kT (t; s)(I)k �
f(t� s)I: Since T (t; s)(I) 2 L+ (H) ; then the last inequality is equivalent with (8).
The proof of the statement is complete.

If we change the de�nition of the mild solution of (3) by replacing the condition
Q 2 Cs(J; L+(H)) with Q 2 Cs(J; E); then the statements of Lemma 2 stay true.
Proposition 8. [16]Let R 2 E and T > 0. There exists a unique mild solution Q
of (3) on [0; T ] such that Q(T ) = R. It is given by (5). Moreover, Q(T; s;R) =
T (T; s)(R):
Proof. Let R = R1 � R2 2 E , R1; R2 � 0: It is easy to see that Q(T; s;R1) �
Q(T; s;R2) 2 Cs([0; T ]; E) satis�es the integral equation (5). If Q0 2 Cs([0; T ]; E)
is another mild solution of (3) such that Q0(T ) = R then we denote K(s) =
Q(T; s;R1)�Q(T; s;R2)�Q0(s) 2 Cs([0; T ]; E) and we have

kK(s)k = sup
x2H;kxk=1

������
mX
i=1

TZ
s

hK(r)Gi(r)U(r; s)x;Gi(r)U(r; s)xi dr

������
�

mX
i=1

TZ
s

kK(r)k kGi(r)k kU(r; s)k2 dr:
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Representation Theorem for Stochastic Di¤erential Equations 123

Now, we use the Gronwall�s inequality and we obtain the conclusion.

5 Uniform exponential stability and uniform observ-
ability

De�nition 9. [16] We say that (1) is uniformly exponentially stable if there exist the
constants M � 1, ! > 0 such that E ky(t; s;x)k2 �Me�!(t�s) kxk2 for all t � s � 0
and x 2 H.

Using the representation Theorem 3 and the property 6. of the operator T (t; s)
we obtain the following theorem:

Theorem 10. [16] Let Q(t; s; R) be the unique mild solution of (3)(where D (s) = 0
for all s � 0) such that Q(t) = R;R � 0. The following statements are equivalent:

a) the equation (1) is uniformly exponentially stable
b) there exist the constants M � 1, ! > 0 such that Q(t; s; I) � Me�!(t�s)I for

all t � s � 0;
c) there exist the constants M � 1, ! > 0 such that kT (t; s)k �Me�!(t�s).
If C 2 Cs(R+; L(H)), we consider the equation (1) and the observation relation

z(t) = C(t)y(t; s; x) (9)

The system (1), (9) will be denoted fA;C;Gig.
Since y(:; s;x) 2 C([s; T ];L2(
;H)) for all x 2 H it follows that C(:)y(:; s;x) 2

C([s; T ];L2(
; V )): We note that

t! E kC(t)y(t; s;x)k2 is continuous on [s; T ]: (10)

De�nition 11. [12],[16]The system fA;C;Gig is uniformly observable if there exist
� > 0 and  > 0 such that for all s 2 R+ and x 2 H,

E

s+�Z
s

kC(t)y(t; s;x)k2 dt �  kxk2

The following result is known and gives a characterization of the uniform expo-
nential stability of uniformly observable di¤erential stochastic equations in therms
of Lyapunov equations:

Theorem 12. [17]Let us assume that P3 holds, C;C� 2 Cs(R+; L(H)) and D(s) =
C�(s)C(s); s � 0 in (3). If fA;C;Gig is uniformly observable then the equation (1)
is uniformly exponentially stable if and only if the equation (3) has a unique mild
solution Q with the property that there exist the positive constants em, fM such thatem kxk2 � hQ(s)x; xi � fM kxk2 (11)

for all s � 0 and x 2 H:
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124 Viorica Mariela Ungureanu

Many results concerning stochastic uniform exponential stability (see the above
theorem) or stochastic stabilizability (see [15], [12], [11]) are obtained under uniform
observability conditions. Hence a deterministic characterization of the stochastic
uniform observability is an important tool in solving problems which involve this
property of stochastic di¤erential equations.

Theorem 13. [16] The system fA;C;Gig is uniformly observable i¤ there exist

� > 0 and  > 0 such that
s+�R
s
Q(t; s;C�(t)C(t))dt � I for all s 2 R+; where I is

the identity operator on H.

Proof. By Theorem 3 b) we get E kC(t)y(t; s;x)k2 = hQ(t; s;C�(t)C(t))x; xi for all
x 2 H: Because t! E kC(t)y(t; s;x)k2 is continuous we deduce
s+�R
s
E kC(t)y(t; s;x)k2 dt < 1: From De�nition 11 and Fubini�s theorem it follows

the conclusion.

5.1 The uniform exponential stability of linear stochastic system
with periodic coe¢ cients

Let us assume that the following hypothesis holds:

P4 There exists � > 0 such that A(t) = A(t + �); Gi(t) = Gi(t + �); i = 1; :::;m
for all t � 0:

It is known (see [14], [2]) that if P1, P4 hold then we have

U(t+ � ; s+ �) = U(t; s) for all t � s � 0: (12)

Proposition 14. [16]If P4 holds and Q(t; s;R) is the unique mild solution of (3)(with
D (s) = 0) such that Q(t) = R;R � 0; then for all t � s � 0 and x 2 H we have

a) Q(t+ � ; s+ � ;R) = Q(t; s;R).
b) T (t+ � ; s+ �) = T (t; s)
c)T (n�; 0) = T (� ; 0)n
d) E ky(t+ � ; s+ � ;x)k2 = E ky(t; s;x)k2

The next result (see its proof in [16]) gives necessary and su¢ cient conditions
for uniform exponential stability of periodic equations.

Theorem 15. If P4 holds, then the following assertions are equivalent:
a) the equation (1) is uniformly exponentially stable;
b) lim

n!1
E ky(n�; 0;x)k2 = 0 uniformly for x 2 H, kxk = 1;

c) �(T (� ; 0)) < 1.
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Representation Theorem for Stochastic Di¤erential Equations 125

It is not di¢ cult to see that under the hypothesis H1 the Lyapunov equation
3 with �nal condition has a unique classical solution. Consequently the operator
T (t; s) is well de�ned and has the properties 1.-9. stated in the last section. From
Corollary 4 and Proposition 5 we obtain the following result:

Proposition 16. Assume that P4 hold. If either H2 and P2 or H1 hold, then the
statements of the above theorem stay true.

The following example illustrate the theory (see also [16]).

Example 17. Consider an example of equation (1)

dy = e� sin
2(t)ydt+ sin(t)ydw(t); t � 0 (13)

where w(t) is a real Wiener process. It is clear that H1 and P4 (with � = 2�) hold.
The Lyapunov equation associated to (13) is

dQ+ (2e� sin
2(t) + sin2(t))Qdt = 0 and

Q(2�; 0; I) = exp(�
2�Z
0

2e� sin
2(t) + sin2(t)dt)I

� e�� exp(�
2�Z
0

2e� sin
2(t)dt)I < I:

Since
�(T (2�; 0)) � kT (2�; 0)k = kT (2�; 0)(I)k = kQ(2�; 0; I)k < 1

we can deduce from the Proposition 16 that the solution of the stochastic equation
(13) is uniformly exponentially stable.

6 Uniform exponential dichotomy of stochastic di¤er-
ential equations

In this section we will introduce the notion of uniform exponential dichotomy for
linear di¤erential stochastic equations, which is di¤erent to those introduced in [18].
Using the representation Theorem 3 and the solution operator T (t; s) introduced in
section 2, we will give deterministic characterizations of this concept.

The obtained result are stochastic versions of those obtained in [10], [9] for
deterministic case.

Let �x s � 0. We will assume that H1 is a closed subspace of H: (An example of
H1 could be the closure of the linear subspace formed by all x 2 H with the property
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sup
t�s
E ky(t; s;x)k2 < 1). Let P1 be the projection of H on H1 and P2 = I � P1 be

the projection of H on H2 = H?
1 . If y(t; s;x) is the mild solution of (1), we will

denote y1(t; s;x) = y(t; s;P1x) and respectively y2(t; s;x) = y(t; s;P2x):

De�nition 18. We say that the pair (H1;H2) induces an uniform exponential di-
chotomy for the mild solution y(t; s;x) of (1), i¤ there exists the constants N1, N2,
 > 0 such that

E(ky1(t; s;x)k2) � N1e�(t��)E(ky1(� ; s;x)k2) (14)

E(ky2(t; s;x)k2) � N2e(t��)E(ky2(� ; s;x)k2) (15)

for all x 2 H and t � � � s.

6.1 Characterizations of the exponential dichotomy

The following result is a direct consequence of De�nition 18 and Theorem 3.

Theorem 19. The mild solution of the equation (1) has an uniform exponential
dichotomy induced by the pair (H1;H2) i¤ there exist the constants N1, N2,  > 0
such that

hP1T (t; s)(I)P1x; xi � N1e
�(t��) hP1T (� ; s)(I)P1x; xi ; (16)

hP2T (t; s)(I)P2x; xi � N2e
(t��) hP2T (� ; s)(I)P2x; xi (17)

for all x 2 H and t � � � s; where T (t; s) is the solution operator associated to the
Lyapunov equation (3).

The next theorem is a result of Datko type [4] (see also the results obtained in [10]
for deterministic systems) which is similar to that obtained in [18] for autonomous
stochastic di¤erential equations and di¤erent notion of dichotomy.

Theorem 20. If P1, P2 and P3 hold, then the solution of (1) has an exponential
dichotomy induced by the pair (H1;H2) i¤ there exist the positive constants M1,M2

and M3 such that

1Z
�

hT (t; s)(I)P1x; P1xi dt �M1 hT (� ; s)(I)P1x; P1xi (18)

and
�Z
s

hT (t; s)(I)P2x; P2xi dt �M2 hT (� ; s)(I)P1x; P1xi ; (19)

hT (t; s)(I)P2x; P2xi �M3 hT (t+ 1; s)(I)P2x; P2xi (20)

for all x 2 H and � � s � 0.
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Proof. a) First we will prove the equivalence of (14) and 18. Let us prove the
implication �(14) ) (18)�. Integrating (16) with respect to t on the interval [� ;1)
we get (18) with M1 =

N1
 : Now we will prove the converse.

Step 1. We will prove that there exists K > 0 such that

hT (t; s)(I)P1x; P1xi �
K

t� � + 1 hT (� ; s)(I)P1x; P1xi (21)

for all 0 � s � � � t; x 2 H. Let x 2 H and c =
1R
0

1
f(u)du ,where f : R+ ! R+ is

given by (8).

We have c hT (t; s)(I)P1x; P1xi =
tR

t�1

1
f(t�r) hT (t; s)(I)P1x; P1xi dr:

Case 1. Let s � t � 1: If r 2 [t � 1; t], then r � s and we have T (t; s)(I) =
T (r; s) (T (t; r) (I)) : Using (8) we get

hT (t; s)(I)P1x; P1xi � f(t� r) hT (r; s)(I)P1x; P1xi (22)

Hence c hT (t; s)(I)P1x; P1xi �
tR

t�1
hT (r; s)(I)P1x; P1xi dr:

If � � t�1 then
tR

t�1
hT (r; s)(I)P1x; P1xi dr �

1R
�
hT (r; s)(I)P1x; P1xi dr and using

(18) we get

hT (t; s)(I)P1x; P1xi �
M1

c
hT (� ; s)(I)P1x; P1xi :

If � > t� 1 then t� � < 1 and taking r = � in (22) we obtain

hT (t; s)(I)P1x; P1xi � f(1) hT (� ; s)(I)P1x; P1xi (23)

Case 2. If s > t� 1, then t� � < 1 and reasoning as above we obtain (23).
Consequently, denoting N = minfM1

c ; f (1)g we get for all s � � � t

hT (t; s)(I)P1x; P1xi � N hT (� ; s)(I)P1x; P1xi :

Since

tZ
�

hT (t; s)(I)P1x; P1xi dr � N
tZ
�

hT (r; s)(I)P1x; P1xi dr

� N
1Z
�

hT (r; s)(I)P1x; P1xi dr � NM1 hT (� ; s)(I)P1x; P1xi

Thus
(t� �) hT (t; s)(I)P1x; P1xi � NM1 hT (� ; s)(I)P1x; P1xi
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for all 0 � s � � � t; x 2 H: Summing the last two inequalities we have

(t� � + 1) hT (t; s)(I)P1x; P1xi � N(M1 + 1) hT (� ; s)(I)P1x; P1xi

and

hT (t; s)(I)P1x; P1xi �
N(M1 + 1)

(t� � + 1) hT (� ; s)(I)P1x; P1xi (24)

for all 0 � s � s+ 1 � � � t; x 2 H.
Taking K = N(M1 + 1) we obtain (21).
Step 2. Let � > 0 be such that K

(�+1) =
1
2 ; and let t � � � s: There exist n 2 N

and r0 2 R+ such that t � � = n� + r0, 0 � r0 < �. Using the induction it is easy
to see that if t� � = n�+ r0; 0 � r0 < � then

hT (t; s)(I)P1x; P1xi � (
1

2
)nK hT (� + r0; s)(I)P1x; P1xi (25)

Indeed for n = 0 the statement follows from (21). Assuming that (25) holds for
n � 0 and we will prove the inequality for n + 1: Using (21) and the induction
hypothesis we get hT (t; s)(I)P1x; P1xi = hT (� + (n+ 1)�+ r0; s)(I)P1x; P1xi �

(12) hT (� + (n)�+ r0; s)(I)P1x; P1xi � (
1
2)(

1
2)
nK hT (� + r0; s)(I)P1x; P1xi. The

conclusion follows.
Now

hT (t; s)(I)P1x; P1xi � (
1

2
)
t��
� (
1

2
)
�r0
� K hT (� + r0; s)(I)P1x; P1xi �

2(
1

2
)
t�r
� K1 hT (� ; s)(I)P1x; P1xi

Taking  = �1
� ln

1
2 and N1 = 2K1 we obtain (16).

b) Now we will prove the equivalence between (15) and (19), (20). Since the
implication �(15)) (19), (20)�is obviously true, we only have to prove the converse.

Let 0 � s � r � t:
Case 1. If 0 � s � r � 1 � r � t then we use (22) to deduce the following

inequalities

c hT (r; s)(I)P2x; P2xi �
rZ

r�1

1

f(r � p) hT (r; s)(I)P2x; P2xi dp

�
rZ

r�1

hT (p; s)(I)P2x; P2xi dp

�
tZ
s

hT (p; s)(I)P2x; P2xi dp
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By (19) we obtain for all 0 � s � r � 1 � r � t

c hT (r; s)(I)P2x; P2xi �M2 hT (t; s)(I)P2x; P2xi : (26)

Case 2. If s � r � 1 and r + 1 � t we apply (20), (26) and

hT (r; s)(I)P2x; P2xi � M3 hT (r + 1; s)(I)P2x; P2xi (27)

� M3
M2

c
hT (t; s)(I)P2x; P2xi

for all x 2 H:
Case 3. If s � r � 1 and r + 1 > t then using (20) and (22) we get:

hT (r; s)(I)P2x; P2xi � M3 hT (r + 1; s)(I)P2x; P2xi (28)

� M3f(1) hT (t; s)(I)P2x; P2xi

for all x 2 H:
From (26), (27) and (28) it follows that there exists a positive constant P such

that :
hT (r; s)(I)P2x; P2xi � P hT (t; s)(I)P2x; P2xi

for all t � r � s � 0 and x 2 H: Replacing t with � in the above inequality and
integrating from r to t with respect to � we obtain

(t� r) hT (r; s)(I)P2x; P2xi � P

tZ
r

hT (� ; s)(I)P2x; P2xi d�

� M2P hT (t; s)(I)P2x; P2xi

Summing the last two inequalities we get

(t� r + 1) hT (r; s)(I)P2x; P2xi � (M2 + 1)P hT (t; s)(I)P2x; P2xi

for all t � r � s � 0 and x 2 H:
Thus, C(t�r+1) hT (r; s)(I)P2x; P2xi � hT (t; s)(I)P2x; P2xi, where C = 1

(M2+1)P
.

Arguing as in the last part of the proof of a) we obtain the conclusion

6.2 Uniform exponential dichotomy and Lyapunov functions

De�nition 21. We say that V : R+�H ! R is a Lyapunov function for the mild
solution of (1) if it satisfy the following conditions:

1) There exists k > 0 such that jV (t; x)j � khT (t; s)(I)x; xi for all x 2 H1 [
H2; t � 0 .

2)
tR
�
hT (r; s)(I)x; xi dr � V (� ; x)� V (t; x) for all s � � �t and x 2 H .
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Theorem 22. If the mild solution y(t; s;x) of (1) has an uniform exponential di-
chotomy induced by the pair (H1;H2) then there exists a Lyapunov function V such
that:

i) V (t; x) � 0 for all x 2 H1, t � s ,
ii) V (t; x) � 0 for all x 2 H2, t � s .

Proof. Let

V (t; x) = 2

1Z
t

hT (r; s)(I)P1x; P1xi dr � 2
tZ
s

hT (r; s)(I)P2x; P2xi dr; x 2 H:

It is clear that V (:; :) satisfy the conditions i) and ii). We will prove that V (:; :)
is a Lyapunov functions.

We note that hRx; xi � 2 (hRP1x; P1xi+ hRP2x; P2xi) for any R 2 L+ (H).
Thus, for all s � � �t and x 2 H;

V (� ; x)� V (t; x) = 2
tZ
�

hT (r; s)(I)P1x; P1xi dr

+2

tZ
�

hT (r; s)(I)P2x; P2xi dr �
tZ
�

hT (r; s)(I)x; xi dr

and we proved 2). Now we will prove the �rst condition. We have

jV (t; x)j � 2
1R
t

hT (t; r)(I)P1x; P1xi dr + 2
tR
s
hT (r; s)(I)P2x; P2xi dr; x 2 H. Using

Theorem 20 ((18) and (19)) we get

jV (t; x)j � 2M1 hT (t; s)(I)P1x; P1xi+ 2M2 hT (t; s)(I)P2x; P2xi)

and the conclusion follows. We deduce that V is a Lyapunov function.
The proof is complete.

Finally we give the converse of this theorem.

Theorem 23. If there exists a Lyapunov function V such that the conditions i) and
ii) of the above theorem hold, then y(r; s;x) has an uniform exponential dichotomy.

Proof. Using the condition i) and the property 2) of Lyapunov function V it follows
that for all t � � � s

tZ
�

hT (r; s)(I)P1x; P1xi dr � V (� ; P1x):
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Taking into account the property 1) in De�nition 21 and passing to the limit for
t! 1 we deduce that there exists k > 0 such that

1Z
�

hT (r; s)(I)P1x; P1xi dr � k hT (� ; s)(I)P1x; P1xi :

Now we apply 2) and 1) from De�nition 21 and hypothesis ii), and we get

tZ
�

hT (r; s)(I)P2x; P2xi dr � �V (t; P2x) � k hT (t; s)(I)P2x; P2xi :

We note that if hT (t; s)(I)P2x; P2xi = 0 it follows by property 9 of the operator
T (t; s)(I) and the above inequality that hT (t; s)(I)P2x; P2xi = 0 for all t � s.
In this case the conclusion of the theorem follows. Hence we may assume, that
hT (t; s)(I)P2x; P2xi = 0 for all t � s and taking k1 = 2k we have

tZ
�

hT (r; s)(I)P2x; P2xi dr < k1 hT (t; s)(I)P2x; P2xi (29)

Now we will prove condition (20) of Theorem 20. Let t � s be �xed.
Let s � t. If t� 1 � s it is easy to see that (20) holds. Indeed, the function

t! hT (t; s)(I)P2x; P2xi
hT (t+ 1; s)(I)P2x; P2xi

is continuous on the compact interval [s; s+ 1] and there exists M3 > 0 such that

hT (t; s)(I)P2x; P2xi
hT (t+ 1; s)(I)P2x; P2xi

�M3:

Condition (20) follows.
Let as assume that t � 1 > s. Using a mean theorem and (29) it follows that

there exists � 2 [t; t+ 1] such that

hT (� ; s)(I)P2x; P2xi =

t+1Z
t

hT (r; s)(I)P2x; P2xi dr

< k1 hT (t+ 1; s)(I)P2x; P2xi : (30)

Let t1 be the smallest � 2 [t� 1; t+ 1] which satisfy the condition

hT (� ; s)(I)P2x; P2xi < k1 hT (t+ 1; s)(I)P2x; P2xi :
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132 Viorica Mariela Ungureanu

If t1 � t the conclusion follow from proprety 9 of T (t; s). Indeed

T (t; s)(I) = T (t1; s)(T (t; t1)(I)) � f(t� t1)T (t1; s)(I) � f (1) T (t1; s)(I)

and it is clear that we obtain (20).
Assume that t1 > t: First we prove that t1 6= t+ 1: If t1 = t+ 1 then

hT (� ; s)(I)P2x; P2xi � k1 hT (t+ 1; s)(I)P2x; P2xi

for all � 2 [t; t+1) and integrating on [t; t+1] with respect to � we contradict (30).
Hence t1 < t+ 1: On the other hand for r 2 [t1 � 1; t1) � [t� 1; t+ 1] we have

hT (r; s)(I)P2x; P2xi � k1 hT (t+ 1; s)(I)P2x; P2xi

and
t1R

t1�1
hT (r; s)(I)P2x; P2xi � k1 hT (t+ 1; s)(I)P2x; P2xi. Since

t1Z
t1�1

hT (r; s)(I)P2x; P2xi dr �
t+1Z
p

hT (r; s)(I)P2x; P2xi dr < k1 hT (t+ 1; s)(I)P2x; P2xi :

it follows
k1 hT (t+ 1; s)(I)P2x; P2xi < k1 hT (t+ 1; s)(I)P2x; P2xi

that is absurd. Thus the hypothesis that t1 > t is false and the conclusion follows.
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