
Surveys in Mathematics and its Applications

ISSN 1842-6298
Volume 1 (2006), 71 �98

GROUPOID C�-ALGEBRAS

M¼ad¼alina Roxana Buneci

Abstract. The purpose of this paper is to recall the main ingredients of the construction of
the C�-algebra of a groupoid (introduced by Renault in [19]) and to collect some results on the

independence of the C�-algebra on the choice of Haar system.

1 Introduction

The construction of the (full) C�-algebra of a locally compact Hausdor¤ groupoid
(due to Renault [19]) extends the case of a group. The space of continuous functions
with compact support on groupoid is made into a �-algebra and endowed with the
smallest C�-norm making its representations continuous. For this �-algebra the
multiplication is convolution. For de�ning the convolution on a locally compact
groupoid, one needs an analogue of Haar measure on locally compact groups. This
analogue is a system of measures, called Haar system, subject to suitable invariance
and smoothness conditions called respectively �left invariance� and �continuity�.
Unlike the case of locally compact group, Haar system on groupoid need not exists,
and if it does, it will not usually be unique. The purpose of this paper is to recall
the main ingredients of the construction of the C�-algebra of a groupoid (due to
Renault [19]) and to collect the results on the independence of the C�-algebra on
the choice of Haar system.

2 De�nitions and notation

2.1 The notion of groupoid

We include some de�nitions that can be found in several places (e.g. [19], [14]). A
groupoid is a set G endowed with a product map

(x; y) 7! xy
h
: G(2) ! G

i
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72 M¼ad¼alina Roxana Buneci

where G(2) is a subset of G � G called the set of composable pairs, and an inverse
map

x 7! x�1 [: G! G]

such that the following conditions hold:
(1) If (x; y) 2 G(2) and (y; z) 2 G(2), then (xy; z) 2 G(2), (x; yz) 2 G(2) and

(xy) z = x (yz).
(2)

�
x�1

��1
= x for all x 2 G.

(3) For all x 2 G,
�
x; x�1

�
2 G(2), and if (z; x) 2 G(2), then (zx)x�1 = z.

(4) For all x 2 G,
�
x�1; x

�
2 G(2), and if (x; y) 2 G(2), then x�1 (xy) = y.

The maps r and d on G, de�ned by the formulae r (x) = xx�1 and d (x) = x�1x,
are called the range and the source (domain) maps. It follows easily from the
de�nition that they have a common image called the unit space of G, which is
denoted G(0). Its elements are units in the sense that xd (x) = r (x)x = x.

From a more abstract point of view, a groupoid is simply a category in which
every morphism is an isomorphism (that is, invertible).

It is useful to note that a pair (x; y) lies in G(2) precisely when d (x) = r (y), and
that the cancellation laws hold (e.g. xy = xz i¤ y = z):

The �bres of the range and the source maps are denoted Gu = r�1 (fug) and
Gv = d�1 (fvg), respectively. Also for u; v 2 G(0), Guv = Gu \ Gv More generally,
given the subsets A, B � G(0), we de�ne GA = r�1 (A), GB = d�1 (B) and GAB =
r�1 (A)\d�1 (B). GAA becomes a groupoid (called the reduction of G to A) with the
unit space A, if we de�ne

�
GAA
�(2)

= G(2) \
�
GAA �GAA

�
.

For each unit u, Guu = fx : r (x) = d (x) = ug is a group, called isotropy group at
u. The group bundle

fx 2 G : r (x) = d (x)g

is denoted G0, and is called the isotropy group bundle of G.
If A and B are subsets of G, one may form the following subsets of G:

A�1 =
�
x 2 G : x�1 2 A

	
AB =

n
xy : (x; y) 2 G(2) \ (A�B)

o
The relation u � v i¤ Guv 6= ; is an equivalence relation on G(0). Its equivalence

classes are called orbits and the orbit of a unit u is denoted [u]. A subset A of G(0)

is said saturated if it contains the orbits of its elements. For any subset A of �(0),
we denote by [A] the union of the orbits [u] for all u 2 A. The quotient space for
the equivalence relation induced on G(0) (u � v i¤ Guv 6= ;) is called the orbit space
of G and denoted G(0)=G. The graph of this equivalence relation will be denoted in
this paper by

R = f(r (x) ; d (x)) ; x 2 Gg
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Groupoid C�-algebras 73

A groupoid is said transitive if and only if it has a single orbit, or equivalently if
the map � : G! G(0) �G(0), de�ned by

� (x) = (r (x) ; d (x)) for all x 2 G,

is surjective. Generally, for each orbit [u] of a groupoid G, the reduction of G to
[u], Gj[u], is a transitive groupoid called transitivity component of G. It is easy to
see that (algebraically) G is the disjoint union of its transitivity components. A
groupoid is said principal if the map � (de�ned above) is injective.

By a homomorphism of groupoids we mean a map ' : G ! � (with G, �
groupoids) satisfying the following condition:

if (x; y) 2 G(2), then ('(x); '(y)) 2 �(2) and '(xy) = '(x)'(y)
It follows that '(x�1) = ('(x))�1 and '(G(0)) � �(0).

2.2 Borel groupoids and topological groupoids

We shall state some conventions and facts about measure theory (see [2], Chapter
3).

By a Borel space (X;B (X)) we mean a space X, together with a �-algebra
B (X) of subsets of X, called Borel sets. A subspace of a Borel space (X;B (X)) is
a subset S � X endowed with the relative Borel structure, namely the �-algebra of
all subsets of S of the form S \ E, where E is a Borel subset of X. (X;B (X)) is
called countably separated if there is a sequence (En)n of sets in B (X) separating
the points of X: i.e., for every pair of distinct points of X there is n 2 N such that
En contains one point but not both.

A function from one Borel space into another is called Borel if the inverse image
of every Borel set is Borel. A one-one onto function Borel in both directions is called
Borel isomorphism.

The Borel sets of a topological space are taken to be the �-algebra generated
by the open sets. (X;B (X)) is called standard if it is Borel isomorphic to a Borel
subset of a complete separable metric space. (X;B (X)) is called analytic if it is
countably separated and if it is the image of a Borel function from a standard space.
The locally compact Hausdor¤ second countable spaces are analytic.

By a measure � on a Borel space (X;B (X)) we always mean a map � : B (X)!
R which satis�es the following conditions:

1. � is positive (� (A) � 0 for all A 2 B (X))

2. � (;) = 0

3. � is countable additive (i.e. �
� 1S
n=1

An

�
=

1P
n=1

� (An) for all sequences fAngn
of mutually disjoint sets An 2 B (X))
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74 M¼ad¼alina Roxana Buneci

Let (X;B (X)) be a Borel space. By a �nite measure on X we mean a measure
� with � (X) < 1 and by a probability measure a measure with value 1 on X.
We denote by "x the unit point mass at x 2 X, i.e. the probability measure on
(X;B (X)) such "x (A) = 1 if x 2 A and "x (A) = 0 if x =2 A for any A 2 B (X).
The measure � is �-�nite if there is a sequence fAngn with An 2 B (X) for all n,
such that

1S
n=1

An = X and � (An) <1 for all n. A subset of X or a function on X

is called �-measurable (for a �-�nite measure �) if it is measurable with respect to
the completion of � which is again denoted �. The complement of a ��null set (a
set A is ��null if � (A) = 0) is called ��conull.

If (X;B (X)) and � is a �-�nite measure on (X;B (X)), then there is a Borel
subset X0 of X such that � (X �X0) = 0 and such that X0 is a standard space
in its relative Borel structure. Analytic subsets of a countably separated space are
universally measurable (i.e. �-measurable for all �nite measures �).

The measures � and � on a Borel space (X;B (X)) are called equivalent measures
(and we write � � �) if they have the same null sets (i.e. � (A) = 0 i¤ � (A) = 0).
Every measure class [�] = f� : � � �g of a �-�nite measure � 6= 0 contains a
probability measure. If (X;B (X)) and (Y;B (Y )) are Borel space, p : X ! Y a
Borel function and � a �nite measure on (X;B (X)), then by p� (�) we denote the
�nite measure on (Y;B (Y )) de�ned by p� (�) (A) = �

�
p�1 (A)

�
for all A 2 B (Y ),

and we call it the image of � by p. We shall not mention explicitly the Borel sets
when they result from the context (for instance, in the case of a topological space
we shall always consider the �-algebra generated by the open sets).

If X is a topological space, then by a Borel measure � on X we mean a measure
with the property that � (K) <1 for all compact subsets of X. If X is a topological
space which is �-compact (i.e. there is sequence fKngn of compact subsets Kn of X
such that X =

1S
n=1

Kn), then any Borel measure on X is �-�nite. A measure � on

X is called regular measure if for each A 2 B (X) (with � (A) <1) and each " > 0
there are a compact subset K of X and an open subset G of X with K � A � G
such that for all sets A0 2 B (X) with A0 � G�K, we have � (A0) < ".

If X is a locally compact Hausdor¤ space, we denote by Cc (X) the space of
complex-valuated continuous functions with compact support on X. A Radon mea-
sure on X is a linear map L : Cc (X) ! E (where E is a Banach space) which is
continuos with respect to the inductive limit topology on Cc (X). If E = C (the
space of complex numbers), then a Radon measure L is called positive if L (f) � 0
for all f 2 Cc (X), f � 0. Any linear map L : Cc (X) ! C which is positive (i.e.
L (f) � 0 for all f 2 Cc (X), f � 0) is in fact a positive Radon measure. According
to Riesz-Kakutani Theorem there is a bijective correspondence between the positive
Radon measures on X (i.e. linear positive maps L : Cc (X) ! C) and the Borel
regular (positive) measures on X (the bijection is given by L (f) =

R
f (x) d� (x) for

all real function f 2 Cc (X); in the sequel we shall identify L with �).
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Groupoid C�-algebras 75

Mostly, in this paper we shall work with locally compact Hausdor¤ spaces which
are �-compact. These kind of spaces are paracompact and consequently, normal. In
particular, every Hausdor¤ locally compact second countable space is paracompact.

A Borel groupoid is a groupoid G such that G(2) is a Borel set in the prod-
uct structure on G � G, and the functions (x; y) 7! xy

�
: G(2) ! G

�
and x 7!

x�1 [: G! G] are Borel functions. G is an analytic groupoid if its Borel structure
is analytic.

A topological groupoid consists of a groupoid G and a topology compatible with
the groupoid structure. This means that:

1. x 7! x�1 [: G! G] is continuous.

2. (x; y) 7! xy
�
: G(2) ! G

�
is continuous where G(2) has the induced topology

from G�G.

Obviously, ifG is a topological groupoid, then the inverse map x 7! x�1 [: G! G]
is a homeomorphism and the maps r and d are continuous. Moreover, the maps r
and d are identi�cation maps, since they have the inclusion G(0) ,! G as a right
inverse. If G is Hausdor¤ then G(0) is closed in G, being the image of the map
x 7! xx�1 [: G! G] whose square is itself. If u is a unit then x 7! x�1 is a home-
omorphism from Gu to Gu. If u � v are two equivalent units and x is such that
r (x) = u and d (x) = v then y 7! xy is a homeomorphism from Gv to Gu, y 7! yx is
a homeomorphism from Gu to Gv and y 7! xyx�1 is an isomorphism of topological
groups from Gvv to G

u
u.

We are concerned with topological groupoids whose topology is Hausdor¤ and
locally compact. We call them locally compact Hausdor¤ groupoids. It was shown
in [17] that measured groupoids (in the sense of De�nition 2.3./p. 6 [10]) may be
assume to have locally compact topologies, with no loss in generality.

A subset A of a locally compact groupoid G is called r-(relatively) compact
i¤ A \ r�1 (K) is (relatively) compact for each compact subset K of G(0). Simi-
larly, one may de�ne d-(relatively) compact subsets of G. A subset of G which
is r-(relatively) compact and d-(relatively) compact is said conditionally-(relatively)
compact. If the unit space G(0) is paracompact, then there exists a fundamental
system of conditionally-(relatively) compact neighborhoods of G(0) (see the proof of
Proposition II.1.9/p.56 [19]). Let us also recall that a groupoid is proper i¤ the map
G 3 x 7! (r(x); d(x))

�
: G! G(0) �G(0)

�
is proper (in the realm of locally compact

Hausdor¤ spaces it means that inverse images of compact sets are compact).
A locally transitive groupoid is a topological groupoid G which satis�es the con-

dition that the map ru is open, where ru : Gu ! G(0) is de�ned by

ru (x) = r (x) for all x 2 Gu.

If G is a locally transitive groupoid, then its orbits [u] = ru (Gu) are open subsets
of G(0) and consequently, each unit u has an open neighborhood U = [u] in G(0)
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76 M¼ad¼alina Roxana Buneci

such that for any v 2 U there is x 2 G such that r (x) = u and d (x) = v. Also if
G is a locally transitive groupoid, then G is topologically, as well as algebraically,
the disjoint union of its transitivity components. According to a result of Muhly,
Renault and Williams ([13], p. 7-8), if G is a locally compact Hausdor¤ transitive
groupoid whose topology is second countable, then the map ru is open for one (and
hence for all) u 2 G(0). Therefore any locally compact Hausdor¤ second countable
groupoid having open orbits is locally transitive.

A locally compact Hausdor¤ groupoid G is r-discrete if its unit space G(0) is
an open subset of G (De�nition I.2. 6/p.18 [19]). If G is an r-discrete groupoid,
then for any u 2 G(0), Gu and Gu are discrete spaces (indeed, let x 2 Gu and let
v = d (x); since fvg = G(0) \Gv, it follows that fvg is an open set in Gv, and since
y 7! xy is a homeomorphism from Gv to Gu, it follows that fxg is open in Gu).

2.3 Examples of structures which �t naturally into the study of
groupoids

1. Groups: A group G is a groupoid with G(2) = G�G and G(0) = feg (the unit
element).

2. Group bundles: Let fGugu2U be a family of groups indexed by a set U . The
disjoint union of the family fGugu2U is a groupoid. Here, two elements may be
compose if and only if they belong to the same group Gu and the inverse of an
element x 2 Gu is its inverse in the group Gu (therefore r (x) = d (x) = eu the
unit element of Gu). Generally, a groupoid G is group bundle if d (x) = r (x)
for each x 2 G. If the groupoid G is a group bundle, then G = G0 (the isotropy
group bundle of G).

3. Spaces. A space X is a groupoid letting

X(2) = diag (X) = f(x; x) ; x 2 Gg

and de�ning the operations by xx = x, and x�1 = x.

4. Transformation groups. Let � be a group acting on a set X such that for
x 2 X and g 2 �, xg denotes the transform of x by g. Let G = X � �,
G(2) = f((x; g) ; (y; h)) : y = xgg. With the product (x; g) (xg; h) = (x; gh)
and the inverse (x; g)�1 =

�
xg; g�1

�
G becomes a groupoid. The unit space of

G may be identi�ed with X. If � is a locally compact Hausdor¤ group acting
continuous on a locally compact Hausdor¤ space X, then X � �, with the
product topology, is a locally compact Hausdor¤ groupoid.

5. Equivalence relations. Let E � X�X be an equivalence relation on the set X.
Let E(2) = f((x1; y1) ; (x2; y2)) 2 E � E : y1 = x2g. With product (x; y) (y; z) =
(x; z) and (x; y)�1 = (y; x), E is a principal groupoid. E(0) may be identi�ed
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Groupoid C�-algebras 77

with X. Two extreme cases deserve to be single out. If E = X � X, then E
is called the trivial groupoid on X, while if E = diag (X), then E is called the
co-trivial groupoid on X (and may be identi�ed with the groupoid in example
3).

If G is any groupoid, then

R = f(r (x) ; d (x)) ; x 2 Gg

is an equivalence relation on G(0). The groupoid de�ned by this equivalence
relation is called the principal groupoid associated with G.

Any locally compact principal groupoid can be viewed as an equivalence re-
lation on a locally compact space X having its graph E � X � X endowed
with a locally compact topology compatible with the groupoid structure. This
topology can be �ner than the product topology induced from X�X. We shall
endow the principal groupoid associated with a groupoid G with the quotient
topology induced from G by the map

� : G! R; � (x) = (r (x) ; d (x))

This topology consists of the sets whose inverse images by � in G are open.

2.4 Haar systems

For developing an algebraic theory of functions on a locally compact groupoid, one
needs an analogue of Haar measure on locally compact groups. Several generaliza-
tions of the Haar measure to the setting of groupoids were taken into considerations
in the literature (see [27], [23], [10], [9], [19]). We use the de�nition adopted by
Renault in [19]. The analogue of Haar measure in the setting of groupoids is a sys-
tem of measures, called Haar system, subject to suitable invariance and smoothness
conditions called respectively "left invariance" and "continuity". More precisely, a
(left) Haar system on a locally compact Hausdor¤ groupoid G is a family of positive
Radon measures (or equivalently, Borel regular measures) on G, � =

�
�u; u 2 G(0)

	
,

such that
1) For all u 2 G(0), supp(�u) = Gu.
2) For all f 2 Cc (G),

u 7!
Z
f (x) d�u (x)

h
: G(0) ! C

i
is continuous.

3) For all f 2 Cc (G) and all x 2 G,Z
f (y) d�r(x) (y) =

Z
f (xy) d�d(x) (y)
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Unlike the case for locally compact groups, Haar systems on groupoids need not
exist. Also, when a Haar system does exist, it need not be unique. The continuity
assumption 2) has topological consequences for G. It entails that the range map
r : G ! G(0), and hence the domain map d : G ! G(0) is an open (Proposition
I.4 [26]. We shall see later that (according to a result of Seda [25]) the continuity
assumption 2) is essential for construction of the C�-algebra of G in the sense of
Renault [19].

A. K. Seda has established su¢ cient conditions for the existence of Haar systems.
He has proved that if a locally compact Hausdor¤ groupoid G is locally transitive,
then the continuity assumption 2) follows from the left invariance assumption 3)
(Theorem 2/p. 430 [24]). Thus he has proved that locally transitive locally compact
Hausdor¤ groupoids admit Haar system. At the opposite case of totally intransitive
groupoids, Renault has established necessary and su¢ cient conditions. More pre-
cisely, Renault has proved that a locally compact Hausdor¤ groupoid G which is a
group bundle (a groupoid with the property that r (x) = d (x) for all x) admits a
Haar system if and only if r is open (Lemma 1.3/p. 6 [20]). In [5] we have consid-
ered a locally compact Hausdor¤ groupoid G having paracompact unit space and
a family of positive Radon measures on G,

�
�u; u 2 G(0)

	
, satisfying condition 1)

and 3) in the de�nition of Haar system and for each f 2 Cc (G) we have denoted by
Ff : G! R the map de�ned by

Ff (x) =

Z
f (y) d�d(x) (y)�

Z
f (y) d�r(x) (y) (8) x 2 G

We have established that Ff is a groupoid homomorphism continuous at every
unit u 2 G(0). We also proved that if G has open range map, if Ff is continuous
on G for all f 2 Cc (G) and if there is a function h : G ! [0; 1], universally mea-
surable on each transitivity component Gj[u], with �u (h) = 1 for all u 2 G(0), then�
�u; u 2 G(0)

	
is a Haar system (Theorem 4 [5]).This result generalizes Lemma 1.3

[20] (for group bundle Ff = 0) and Theorem 2/page 430 [24] (for locally transitive
locally compact Hausdor¤ groupoids, if a groupoid homomorphism F is continuous
at every unit, then F is continuous everywhere).

Also for the case of r-discrete groupoids Renault has established necessary and
su¢ cient conditions for the existence of Haar systems. If G is an r-discrete groupoid,
then G admits a Haar system if and only if r (and hence d) is a local homeomor-
phism. A Haar system on an r-discrete groupoid is essentially the counting measures
system -each measure in the Haar system is multiple of counting measure on the
corresponding �ber. (Lemma I.2.7/p. 18 and Proposition I.2.8/p. 19 [19]).

If � =
�
�u; u 2 G(0)

	
is a (left) Haar system on G, then for each u 2 G(0) we

denote by �u the image of �u by the inverse map x! x�1:Z
f (x) d�u (x) =

Z
f
�
x�1

�
d� (x) , for all f 2 Cc (G)
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Then
�
�u; u 2 G(0)

	
is a right Haar system on G, that is a family of positive

Radon measures on G such that
1) For all u 2 G(0), supp(�u) = Gu.
2) For all f 2 Cc (G),

u 7!
Z
f (x) d�u (x)

h
: G(0) ! C

i
is continuous.

3) For all f 2 Cc (G) and all x 2 G,Z
f (y) d�d(x) (y) =

Z
f (yx) d�r(x) (y)

We shall work only with left Haar systems.

Examples

1. If G is locally compact Hausdor¤ group, then G (as a groupoid) admits an
essentially unique (left) Haar system f�g where � is a Haar measure on G.

2. If � is a locally compact Hausdor¤ group acting continuous on a locally com-
pact Hausdor¤ space X, then X � � (as a groupoid) admits a distinguished
(left) Haar system f"x � �; x 2 Xg where � is a Haar measure on � and "x is
the unit point mass at x.

3. If X is a locally compact Hausdor¤ space and if � is a positive Radon measure
on X with full support (i.e.supp (�) = X), then f"x � �; x 2 Xg is a Haar
system on X � X (as a trivial groupoid) where "x is the unit point mass at
x. Conversely, any Haar system on X �X may be written in this form (for
a positive Radon measure �).

4. If X is a locally compact Hausdor¤ space, then f"x; x 2 Xg is a Haar system
on X (as a co-trivial groupoid, Examples 3 Subsection 2.3).

Let � =
�
�u; u 2 G(0)

	
be a Haar system on a locally compact Hausdor¤

groupoid G.
If � is a positive Radon measure on G(0), then the measure �� =

R
�ud� (u),

de�ned by Z
f (y) d�� (y) =

Z �Z
f (y) d�u (y)

�
d� (u) , f 2 Cc (G)

is called the measure on G induced by �. The image of �� by the inverse map
x ! x�1 is denoted (��)�1. The measure � is said to be quasi-invariant (with
respect to �) if its induced measure �� is equivalent to its inverse, (��)�1. A measure
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belongings to the class of a quasi-invariant measure is also quasi-invariant. We say
that the class is invariant. If G is �-compact and � is a positive Radon measure
on G(0), the we can choose a probability measure �� in the class of ��. Then ��

is quasi-invariant, and � is quasi-invariant if and only if � � d� (�
�) (Proposition

3.6/p.24 [19]).
If � is a quasi-invariant measure on G(0) and �� is the measure induced on G,

then the Radon-Nikodym derivative � = d��

d(��)�1
is called the modular function of

�.
For a positive Radon measure on G(0) � , let us denote by �2;� the measure on

G(2) de�ned byZ
f (x; y) d�2;� (x; y) =

Z �Z Z
f (x; y) d�u (x) d�

u (y)

�
d� (u) , f 2 Cc

�
G(2)

�
.

According to Proposition I.3.3/p.23 [19], if � is a quasi-invariant measure and if �
is its modular function then

1. �(xy) = � (x)� (y) for �2�-a.a. (x; y) 2 G(2)

2. �
�
x�1

�
= �(x)�1for ��-a.a. x 2 G.

Property 1 means that � is a ��-a.e. homomorphism. If the locally compact
Hausdor¤ groupoid G is second countable, then there is a �-conull Borel subset U
of G(0) and a Borel function �0 : G! R such that �0 = � a.e. and the restriction
of �0 to GjU is a homomorphism (this is a consequence of the proofs of Theorem
5.1 and Lemma 5.2 [16]).

2.5 The decomposition of a Haar system over the principal groupoid

Let us present some results on the structure of the Haar systems, as developed by
J. Renault in Section 1 of [20] and also by A. Ramsay and M.E. Walter in Section
2 of [18].

In Section 1 of [20] Jean Renault constructed a Borel Haar system for G0. One
way to do this is to choose a function F0 continuous with conditionally compact
support which is nonnegative and equal to 1 at each u 2 G(0): Then for each u 2 G(0)
choose a left Haar measure �uu on G

u
u so the integral of F0 with respect to �

u
u is 1:

Renault de�ned �uv = x�
v
v if x 2 Guv (where x�vv (f) =

R
f (xy) d�vv (y) as usual).

If z is another element in Guv , then x
�1z 2 Gvv, and since �vv is a left Haar measure

on Gvv, it follows that �
u
v is independent of the choice of x. If K is a compact subset

of G, then sup
u;v
�uv (K) < 1. Renault also de�ned a 1-cocycle � on G such that for

every u 2 G(0), �jGuu is the modular function for �
u
u. � and �

�1 = 1=� are bounded
on compact sets in G. If the restriction of the range map to G0 is an open map, then
� is a continuos function.

******************************************************************************
Surveys in Mathematics and its Applications 1 (2006), 71 �98

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v01/v01.html
http://www.utgjiu.ro/math/sma


Groupoid C�-algebras 81

Let
R = (r; d) (G) = f(r (x) ; d (x)) ; x 2 Gg

be the graph of the equivalence relation induced on G(0). This R is the image of G
under the homomorphism (r; d), so it is a �-compact groupoid. With this apparatus
in place, Renault described a decomposition of the Haar system

�
�u; u 2 G(0)

	
for G

over the equivalence relation R (the principal groupoid associated to G). He proved
that there is a unique Borel Haar system � for R with the property that

�u =

Z
�std�

u (s; t) for all u 2 G(0).

In Section 2 of [18] A. Ramsay and M.E. Walter proved that

sup
u
�u ((r; d) (K)) <1, for all compact K � G

For each u 2 G(0) the measure �u is concentrated on fug � [u]. Therefore there
is a measure �u concentrated on [u] such that �u = "u � �u, where "u is the unit
point mass at u. Since

�
�u; u 2 G(0)

	
is a Haar system, we have �u = �v for all

(u; v) 2 R, and the function
u 7!

Z
f (s)�u (s)

is Borel for all f � 0 Borel on G(0). For each u the measure �u is quasi-invariant
(see Section 2 of [18]). Therefore �u is equivalent to d� (vu) [16, Lemma 4.5/p. 277].

If � is a quasi-invariant measure for
�
�u; u 2 G(0)

	
, then � is a quasi-invariant

measure for
�
�u; u 2 G(0)

	
. Also if �R is the modular function associated to�

�u; u 2 G(0)
	
and �, then � = ��R � (r; d) can serve as the modular function

associated to
�
�u; u 2 G(0)

	
and �.

Since �u = �v for all (u; v) 2 R, the system of measures f�ugu may be indexed
by the elements of the orbit space G(0)=G.

De�nition 1. We shall call the pair of systems of measures�
f�uvg(u;v)2R ;

�
� _u
	
_u2G(0)=G

�
(described above) the decomposition of the Haar system

�
�u; u 2 G(0)

	
over the prin-

cipal groupoid associated to G. Also we shall call � the 1-cocycle associated to the
decomposition.

Let us note that up to trivial changes in normalization, the system of measures
f�uvg and the 1-cocycle in the preceding de�nition are unique. They do not depend
on the Haar system, but only on the continuous function F0.

Another decomposition of the Haar system
�
�u; u 2 G(0)

	
can be founded in

[6] for the particular case when R is closed in the product topology coming from
G(0) � G(0). That decomposition starts from the further decomposition of a Haar
system established in [10].
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2.6 Groupoid representations

While groups are represented on Hilbert spaces, groupoids are represented on Hilbert
bundles. Let us recall the notion of Borel Hilbert bundle.

Let H = fH (s)gs2S be a family of Hilbert spaces indexed by a set S. Let us
form the disjoint union

S � H = f(s; �) : � 2 H (s)g ,

and let p : S � H ! S be the natural projection, p (s; �) = s. A pair (S � H; p) is
called Hilbert bundle over S. For each s 2 S, the space H (s), which can be identi�ed
with p�1 (fsg) = fsg � H (s), is called the �bre over s. A section of the bundle is a
function f : S ! S � H such that p (f (s)) = s for all s 2 S. Given a section f , we
may write f (s) =

�
s; f̂ (s)

�
, for a uniquely determined element

f̂ 2
Y
s2S

H (s) =
(
� : S !

[
s2S

H (s) ; � (s) 2 H (s) for all s
)
,

and given an element f̂ 2
Q
s2S H (s) we may de�ne a section f (s) =

�
s; f̂ (s)

�
.

Because of this link between sections of S � H and elements of
Q
s2S H (s) we shall

often abuse notation and write f (s) instead of f̂ (s). A Borel Hilbert bundle is a
Hilbert bundle (S � H; p) where S � H is endowed with a Borel structure such that
the following axioms are satis�ed:

1. A subset E is Borel if and only if p�1 (E) is Borel.

2. There is a sequence ffngn of sections, called a fundamental sequence, such that

a) each function ~fn : S � H ! C, de�ned by ~fn (s; �) = (fn (s) ; �)H(s), is
Borel.

b) for each pair of fundamental sections, fn and fm, the function

s! (fn (s) ; fm (s))H(s)

is Borel.

c) the functions
n
~fn

o
n
and p separate the points of S � H.

If the Borel structure on S � H is analytic then the Hilbert bundle (S � H; p) is
called analytic Borel Hilbert bundle and if the Borel structure on S �H is standard
then the Hilbert bundle (S � H; p) is called standard Borel Hilbert.

If (S � H; p) is a Borel Hilbert bundle with the fundamental sequence ffngn, then
a section f : S ! S � H is Borel if and only if

s 7! hf (s) ; fn (s)iH(s) [: S ! C]
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is Borel for each n. We denote by B (S � H) the space of all Borel section of
(S � H; p). If � is a measure on S, then we denoteZ �

S
H (s) d� (s) =

�
f 2 B (S � H) :

Z
kf (s)k2H(s) d� (s) <1

�
and we call this space the direct integral of S � H or the space of square integrable
sections of S � H with respect to �. Obviously,

R �
S H (s) d� (s) is a Hilbert space:

hf; gi =
Z
hf (s) ; g (s)iH(s) d� (s) .

Let G be a locally compact Hausdor¤ groupoid and f�u; u 2 G(0)g be a Haar
system on G. Let G(0) � H be a Borel Hilbert bundle. We write Iso

�
G(0) � H

�
for

f(u; L; v) j L : H(v)! H(u) is a Hilbert space isomorphismg

endowed with the weakest Borel structure so that the maps

(u; L; v)! (Lfn (v) ; fm (u))

are Borel for every n and m, where (fn)n is fundamental sequence for G
(0) � H.

Iso
�
G(0) � H

�
is a groupoid in the operations:

(u; L1; v) (v; L2; w) = (u; L1L2; w)

(u; L; v)�1 =
�
v; L�1; u

�
A unitary representation of G (De�nition 3.20/p.68 [14]) consists of a triple�

�;G(0) � H; L
�
where � is a quasi-invariant measure on G(0), G(0) � H is a Borel

Hilbert bundle, and L is a Borel map

L : GjU ! Iso
�
G(0) � HjU

�
where U is a �-conull subset of G(0) and G(0) � HjU is the restriction of G(0) � H to
U , such that

1. L (x) =
�
d (x) ; L̂ (x) ; r (x)

�
and L̂ (x) : H(d (x)) ! H(r (x)) is a Hilbert

space isomorphism for �� =
R
�ud� (u)-a.a. x 2 GjU .

2. L̂ (u) = Iu, the identity operator on H(u), for �-a.a. u 2 U .

3. L̂ (x) L̂ (y) = L̂ (xy) for �2� =
R
(�u � �u) d� (u)-a.e. (x; y) 2 G(2).

4. L̂
�
x�1

�
= L̂ (x)�1 for �� =

R
�ud� (u)-a.a. x:
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In other words L is a.e. groupoid homomorphism from G to Iso
�
G(0) � H

�
.

If (G(0) � H; L; �) is a representation of the groupoid G, we abuse notation and
write L (x) instead of L̂ (x) (L (x) =

�
d (x) ; L̂ (x) ; r (x)

�
). For any representation

(G(0) � H; L; �) of a locally compact Hausdor¤ second countable groupoid G on an
analytic Borel Hilbert bundle G(0) � H, there is a Borel homomorphism L0 : G !
Iso

�
G(0) � H

�
that preserves the unit space G(0) in the sense that

L0 (x) =
�
d (x) ; L̂0 (x) ; r (x)

�
,

where L̂0 (x) : H(d (x)) ! H(r (x)) is a Hilbert space isomorphism, such that L0
agrees with L a.e.-�� =

R
�ud� (u).

3 Groupoid C*-algebras

3.1 Convolution algebras

Let � =
�
�u; u 2 G(0)

	
be a Haar system on the locally compact Hausdor¤ groupoid

G. For f , g 2 Cc (G) the convolution is de�ned by:

f � g (x) =

Z
f (xy) g

�
y�1

�
d�d(x) (y)

=

Z
f (y) g

�
y�1x

�
d�r(x) (y)

and the involution by
f� (x) = f (x�1).

Under these operations, Cc (G) becomes a topological �-algebra (Proposition II.1.1/p.
48 [19]).

A.K.Seda has proved in [25] that if we consider a system of positive Radon
measures

�
�u; u 2 G(0)

	
satisfying the conditions 1) and 3) ("left invariance") in

the de�nition of the Haar system and if we require that f � g 2 Cc (G) for every
f , g 2 Cc (G), then

�
�u; u 2 G(0)

	
should satisfy condition 2) ("continuity") in the

de�nition of the Haar system.
Let us note that the involutive algebraic structure on Cc (G) de�ned above de-

pends on the Haar system � =
�
�u; u 2 G(0)

	
. When it will be necessary to emphasis

the role of � in this structure, we shall write Cc (G; �).
Muhly, Renault and Williams proved that if G has paracompact unit space, then

Cc (G; �) has a two-sided approximate identity with respect to the inductive limit
topology (Corollary 2.11/p.12 [13]). In order to prove that they constructed for
each triple (K;U; ") consisting of a compact subset K of G(0), an open d-relatively
compact neighborhood U of G(0) and a positive number a nonnegative function
eK;U;" 2 Cc (G) such that
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1. eK;U;" = e�K;U;"

2. supp(eK;U;") � U

3.
��R eK;U;" (x) d�u (x)� 1�� � " for all u 2 K.

Then the family feK;U;"g, where the set f(K;U; ")g is directed by increasing K,
decreasing U , and decreasing " is a two-sided approximate identity in Cc (G; �).

For each f 2 Cc (G), let us denote by kfkI the maximum of sup
u

R
jf (x)j d�u (x)

and sup
u

R
jf (x)j d�u (x). A straightforward computation shows that k�kI is a norm

on Cc (G) and

kfkI = kf�kI
kf � gkI � kfkI kgkI

for all f; g 2 Cc (G).
Let us denote by Bc (G) the space of complex-valuated Borel bounded functions

with compact support onG and BI (G) the space of complex-valuated Borel functions
f : G ! C with kfkI < 1. Under convolution and involution de�ned at the
beginning of this subsection, Bc (G) and BI (G) become �-algebras.

Examples

1. If G is locally compact Hausdor¤ group, then G (as a groupoid) admits an
essentially unique (left) Haar system f�g where � is a Haar measure on G.
The convolution of f , g 2 Cc (G) (G is seen as a groupoid) is given by:

f � g (x) =
Z
f (xy) g

�
y�1

�
d� (y) (usual convolution on G)

and the involution by

f� (x) = f (x�1) .

The involution de�ned above is slightly di¤erent from the usual involution on
groups. In fact if � is the modular function of the Haar measure �, then
f 7! �1=2f is �-isomorphism from Cc (G) for G seen as a groupoid to Cc (G)
for G seen as a group.

2. If � is a locally compact Hausdor¤ group, endowed with a Haar measure �,
acting continuous on a locally compact Hausdor¤ space X, f"x � �; x 2 Xg is
Haar system onX�� (seen as the groupoid described in Examples 4 Subsection
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2.3). The convolution of f , g 2 Cc (X � �) is given by:

f � g (x; 
) =

Z
f
�
(x; 
)

�
y; 
0

��
g
��
y; 
0

��1�
d ("x
 � �)

�
y; 
0

�
=

Z
f
�
x; 

0

�
g
�
x

0; 
0�1

�
d�
�

0
�

=

Z
f
�
x; 
0

�
g
�
x
0; 
0�1


�
d�
�

0
�

and the involution by
f� (x; 
) = f (x
; 
�1).

3. If X is a locally compact Hausdor¤ space and if � is a positive Radon measure
on X with full support (i.e.supp (�) = X), then f"x � �; x 2 Xg is a Haar
system on X�X (as a trivial groupoid). The convolution of f , g 2 Cc (X �X)
is given by:

f � g (x; y) =

Z
f ((x; y) (t; z)) g

�
(t; z)�1

�
d ("y � �) (t; z)

=

Z
f (x; z) g (z; y) d� (z)

and the involution by
f� (x; y) = f (y; x).

4. If X is a locally compact Hausdor¤ space, then f"x; x 2 Xg is a Haar system
on X (seen as a co-trivial groupoid identi�ed with the groupoid described in
Examples 3 Subsection 2.3). The convolution of f , g 2 Cc (G) is given by:

f � g (x) =

Z
f (xy) g

�
y�1

�
d"x (y)

= f (xx) g
�
x�1

�
= f (x) g (x)

and the involution by
f� (x) = f (x).

Let � =
�
�u; u 2 G(0)

	
be a Haar system on the locally compact Hausdor¤

groupoid G. A representation of Cc (G; �) is a �-homomorphism L from the topo-
logical �-algebra Cc (G,�) into B (H), for some Hilbert space H, that is continuous
with respect to the inductive limit topology on Cc (G) and the weak operator topol-
ogy on B (H). The representation L is said non-degenerate if the linear span of

fL (g) � : g 2 Cc (�) ; � 2 Hg

******************************************************************************
Surveys in Mathematics and its Applications 1 (2006), 71 �98

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v01/v01.html
http://www.utgjiu.ro/math/sma


Groupoid C�-algebras 87

is dense in H.
Every representation

�
�;G(0) � H; L

�
[14, De�nition 3.20/p.68] of G can be in-

tegrated into a non-degenerate representation, still denoted by L, of Cc (G; �). The
relation between the two representation is:

hL (f) �1; �2i =
Z
f (x) hL (x) �1 (d (x)) ; �2 (r (x))i��

1
2 (x) d�u (x) d� (u)

where f 2 Cc (G), �1; �2 2
R �
G(0) H (u) d� (u) and � is the modular function of �.

Conversely, if G is second countable then, every non-degenerate representation
of Cc (G; �) is obtained in this fashion (see Section 3 [11], Proposition II.1.17/p.
52[19], or Proposition 3.23/p. 70, Theorem 3.29/p. 74 [14]).

Using the correspondence of groupoid representations and representations of
Cc (G; �), it can be proved that if f 2 Cc (G) and L is a representation of Cc (G; �),
then

kL (f)k � kfkI .

3.2 The full and the reduced C�-algebras associated to a locally
compact Hausdor¤ groupoid

In this subsection we recall the construction of the full and reduced C�-algebras
associated to a locally compact second countable groupoid (due to Renault [19]).

Let � =
�
�u; u 2 G(0)

	
be a Haar system on the locally compact Hausdor¤

second countable groupoid G. For each f 2 Cc (G) let us de�ne the full norm of f
by

kfkfull = sup
L
kL (f)k

where L runs over all non-degenerate representations of Cc (G; �).
Let us single out a special class of representations of Cc (G; �) that serve as

analogues of the regular representation of a group. If � quasi-invariant measure and
�� =

R
�ud� (u), then for every f 2 Cc (G), we denote by Ind� (f) the operator on

L2
�
G; (��)�1

�
de�ned by formula

Ind� (f) � (x) = f � � (x)

and for every u 2 G(0) and f 2 Cc (G) we denote by Indu (f) the operator on
L2 (G; �u) de�ned by formula

Indu (f) � (x) = f � � (x) =
Z
f (xy) �

�
y�1

�
d�u (y)

Then f 7! Ind� (f) and f 7! Indu (f) (u 2 G(0)) are non-degenerate representations
of Cc (G; �).
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For each f 2 Cc (G) let us de�ne

kfkred = sup
u2G(0)

kIndu (f)k

(the reduced norm of f)
If � is a quasi invariant measure with supp (�) = G(0), then

kfkred = kInd� (f)k .

([14] p.50).
It is not hard to see that k�kfull and k�kred are C�-norms and k�kfull � k�kred.
The full C�algebra C� (G; �) ([19]) and the reduced C�algebra C�red (G; v) are

de�ned respectively as the completion of the algebra Cc (G; �) for the full norm
k�kfull, and the reduced norm k�kred. According to Proposition 6.1.8/p.146 [1], if
(G; �) is measurewise amenable (De�nition 3.3.1/p. 82 [1]), then C�full (G; v) =
C�red (G; v).

Examples

1. If G is locally compact Hausdor¤ group, endowed with a Haar measure �, and
if � is the modular function of �, then f 7! �1=2f [: Cc (G)! Cc (G)] can be
extended to �-isomorphism from C� (G) (respectively C�red (G)) for G seen as
a groupoid to C� (G)(respectively C�red (G)) for G seen as a group G.

2. If X is a locally compact Hausdor¤ space and if � is a positive Radon mea-
sure on X with full support (i.e. supp (�) = X), then � = f"x � �; x 2 Xg
is a Haar system on X �X (as a trivial groupoid). Then C�full (X �X; v) =
C�red (X �X; v) = K

�
L2 (X;�)

�
(the algebra of compact operators on L2 (X;�))

(Proposition 2.37/p.51 and Corollary 3.30/p. 84 [14]).

3. If X is a locally compact Hausdor¤ space, then � = f"x; x 2 Xg is a Haar sys-
tem on X (seen as a co-trivial groupoid identi�ed with the groupoid described
in Examples 3 Subsection 2.3). Then C�full (X; v) = C

�
red (X; v) = C0 (X) (the

algebra of complex-valued continuous functions on X vanishing at in�nity).

4 Morita equivalent groupoids and stronglyMorita equiv-
alent C�-algebras

De�nition 2. Let � be a groupoid and X be a set. We say � acts (to the left) on
X if there is a surjective map � : X ! �(0) ( called a momentum map) and a map
(
; x) 7! 
 � x from

� �� X = f(
; x) : d (
) = � (x) g
to X, called (left) action, such that:
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1. � (
 � x) = r (
) for all (
; x) 2 � �� X.

2. � (x) � x = x for all x 2 X.

3. If (
2; 
1) 2 �(2) and (
1; x) 2 � �� X, then (
2
1) � x = 
2 � (
1 � x).

If � is a topological groupoid and X is a topological space, then we say that a left
action is continuous if the map � is continuous and open and the map (
; x) 7! 
 �x
is continuous, where � �� X is endowed with the relative product topology coming
from ��X.

The action is called free if (
; x) 2 � �� X and 
 � x = x implies 
 2 �(0).
The continuous action is called proper if the map (
; x) 7! (
 � x; x) from � ��X

to X � X is proper (i.e. the inverse image of each compact subset of X � X is a
compact subset of � �� X).

In the same manner, we de�ne a right action of � on X, using a continuous map
� : X ! �(0) and a map (x; 
) 7! x � 
 from

X �� � = f(x; 
) : � (x) = r (
) g

to X.
The simplest example of proper and free action is the case when the locally

compact Hausdor¤ groupoid � acts upon itself by either right or left translation
(multiplication).

De�nition 3. Let �1;�2 be two groupoids and X be set. Let us assume that �1 acts
to the left on X with momentum map � : X ! �

(0)
1 , and that �2 acts to the right on

X with momentum map � : X ! �
(0)
2 . We say that the actions commute if

1. � (x � 
2) = � (x) for all (x; 
2) 2 X ���2 and � (
1 � x) = � (x) for all (
1; x) 2
�1 �� X:

2. 
1 � (x � 
2) = (
1 � x) � 
2 for all (
1; x) 2 �1 �� X, (x; 
2) 2 X �� �2.

De�nition 4. Let �1;�2 be two locally compact Hausdor¤ groupoids having open
range maps. The locally compact Hausdor¤ space X is said a (�1;�2)-Morita
equivalence if the following conditions are satis�ed:

1. �1 acts to the left on X with momentum map � : X ! �
(0)
1 and the action is

continuous free and proper.

2. �2 acts to the right on X with momentum map � : X ! �
(0)
2 and and the

action is continuous free and proper

3. The actions commute.
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4. If � (s) = � (t), then there is x 2 �2 such that s � x = t.

5. If � (s) = � (t), then there is 
 2 �1 such that 
 � s = t.

The groupoids �1;�2 are called Morita equivalent.
The notion of Morita equivalence de�ned above is an equivalence relation on

locally compact Hausdor¤ groupoids having open range maps (see [13]).

Examples

1. Any locally compact groupoid � having open range map is a (�;�)-Morita
equivalence (Examples 5.33.1 [14])

2. If �1, �2 are locally compact Hausdor¤ groupoids having open range maps,
' : �1 ! �2 is an isomorphism and if ' is a homeomorphism then �1 is a
(�1;�2)-Morita equivalence (�1 acts to the left on �1 by multiplication and �2
acts to the right on �1 by y � x = y' (x))(Examples 5.33.2 [14]).

3. If G is a locally compact Hausdor¤ transitive groupoid which is second count-
able and u is a unit in G(0) then Gu is a (G;Guu)-Morita equivalence (Theorem
2.2A, Theorem 2.2B [13]). More generally, if � is a locally compact Hausdor¤
groupoid, F is a closed subset of �(0) and if the restrictions of r and d to �F
are open, then �F is a (�;�jF )-Morita equivalence.

4. If R is an equivalence relation on a locally compact Hausdor¤ space X, such
that R as a subset of X � X is a closed set, then X implements a Morita
equivalence between the groupoid R (see 5 in Subsection 2.3), and the groupoid
X=R (see 2 in Subsection 2.3) (Examples 5.33.5 [14]).

De�nition 5. Let A be a C�-algebra. A pre-Hilbert A-module is a right A-module
X (with a compatible C-vector space structure) equipped with a conjugate-bilinear
map (liner in the second variable) h�; �i A : X �X ! A satisfying:

1. hx; y � aiA = hx; yiA � a for all x; y 2 X, a 2 A.

2. hx; yi�A = hy; xiA for all x; y 2 X.

3. hx; xiA � 0 for all x 2 X.

4. hx; xiA = 0 only when x = 0.

The map h�; �iA is called A-valued inner product on X:
A left pre-Hilbert A-module is de�ned in the same way, except that X is required

to be a left A-module, the map A h�; �i : X �X ! A is required to be linear in the
�rst variable, and the �rst condition above is replaced by A ha � x; yi = a �A hx; yi
for all x; y 2 X, a 2 A ([15], [21]).
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It can be shown that kxk = khx; xik
1
2 de�nes a norm on X. If X is complete

with respect to this norm, it is called a Hilbert A-module. If not, all the structure
can be extended to its completion to turn it into a Hilbert A-module.

As a normed linear space, a right Hilbert A-module X carries an algebra of
bounded linear transformations. In the following we shall denote by B (X) the
collection of all bounded linear maps T : X ! X which are module maps (this means
that T (x � a) = T (x) �a for all x 2 X, a 2 A) and adjointable (this means that there
is another linear bounded operator T � on X such that hT (x) ; yiA = hx; T � (y)iA for
all x; y 2 X). It is easy to see that if X is Hilbert space and A = C (the space of
complex numbers), then B (X) is the algebra of linear bounded operators on X. The
algebra of linear bounded operators on a Hilbert X has a two-sided closed non-trivial
ideal K (X) (the compact operators). The analog of that ideal of compact operators
is given in the case of a right Hilbert A-module X by the closed linear span in B (X)
of all the "rank one" transformations on X, i.e. of all transformations of the form
x
 y� : X ! X de�ned by x
 y� (z) = x hy; ziA for all z 2 X, with x; y 2 X. The
closed linear span in B (X) of all transformations x
y� (with x; y 2 X) is denoted by
K (X), it is called the imprimitivity algebra of X and its elements are called compact
operators on X. If X is a left Hilbert A-module, then imprimitivity algebra K (X)
is the closed linear span of all transformations of the form x
 y� : X ! X de�ned
by x
 y� (z) =A hz; yix for all z 2 X, with x; y 2 X.

Proposition 6. If A is a C�-algebra and if X is a right Hilbert A-module, then B (X)
and K (X) are C�-algebras, with B (X) equal to the multiplier algebra of K (X).
Further, X becomes a left Hilbert C�-module over K (X), where the K (X)-valued
inner product is de�ned by the formula:

K(X) hx; yi = x
 y�, for all x; y 2 X,

and K (X) (X as a left Hilbert C�-module over K (X)) is naturally isomorphic to A
though the formula

x
 y� ! hx; yiA .

De�nition 7. Let A and B be C�-algebras. By an (A;B)-equivalence bimodule we
mean an A, B -bimodule X equipped with A and B-valued inner products with respect
to which X is a right Hilbert B-module and a left Hilbert A-module such that:

1. A hx; yi z = x hy; ziB for all x; y; z 2 X.

2. hax; axiB � kak
2 hx; xiB for all a 2 A, x 2 X and A hxb; xbi � kbk2A hx; xi for

all b 2 B, x 2 X.

3. hX;XiB spans a dense subset of B and A hX;Xi spans a dense subset of A.
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We call A and B strongly Morita equivalent if there is an (A;B)-equivalence
bimodule.

Strong Morita equivalence is an equivalence relation.
If A is a C�-algebra and if X is a Hilbert A-module, then A and K (X) are

strongly Morita equivalence.

Proposition 8. Let A and B be C�-algebras and X be an (A;B)-equivalence bi-
module. Then the map from K (X) (X as a right Hilbert C�-module over B) to A
de�ned by formula

Ax
 y� 7! hx; yi
is a C�-isomorphism. Similarly, the map from K (X) (X as a left Hilbert C�-module
over A) to A de�ned by formula

x
 y� 7! hx; yiB
is a C�-isomorphism.

Thus, two C�-algebras are strongly Morita equivalent if and only if one can be
realized as compact operators of a Hilbert C�-module over the other.

Theorem 9. If A and B are two stably isomorphic C�-algebras (in the sense that
A 
 K is isomorphic to B 
 K, where K is the algebra of compact operators on a
separable Hilbert space), then A and B are strongly Morita equivalent. Conversely, if
A and B have countable approximate identities, and if A and B are strongly Morita
equivalent, then A and B are stably isomorphic. ([3])

Using the correspondence of groupoid representations and representations of C�-
algebra, Muhly, Renault and Williams proved the following theorem:

Theorem 10. Let � and G be locally compact, second countable, Hausdor¤ groupoids
endowed with the Haar systems � and �, respectively. If � and G are Morita equiv-
alent, then C� (�; �) and C� (G; �) are strongly Morita equivalent. (Theorem 2.8/p.
10 [13]).

5 Results concerning the independence of the groupoid
C�-algebra of the Haar system

The de�nition of the groupoid C�-algebra depends on the choice of the Haar system
(the convolution is de�ned using a Haar system). In the group case, Haar measure is
essentially unique, but for groupoids, this is no longer the case. Due to Theorem 10,
di¤erent choices of Haar system produces strongly Morita equivalent C�-algebras.
This still leaves open the question: are the C�-algebras associated with two Haar
systems �-isomorphic. As Muhly, Renault and Williams proved, this is indeed the
case for transitive groupoid:
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Theorem 11. If the locally compact, second countable, Hausdor¤ groupoid G is
transitive, then the (full) C�-algebra of G is isomorphic to C� (H) 
 K

�
L2 (�)

�
,

where H is the isotropy group Gee at any unit e 2 G(0), � is an essentially unique
measure on G(0), C� (H) denotes the group C�-algebra of H, and K

�
L2 (�)

�
denotes

the compact operators on L2 (�). (Theorem 3.1/p.16 [13, Theorem 3.1, p. 16]).

Consequently, the (full) C�-algebras of a transitive locally compact, second
countable, Hausdor¤groupoid G associated with two Haar systems are �-isomorphic.
In order to prove that result Muhly, Renault and Williams �rstly established that
C� (G) and C� (H) are strong Morita equivalent via a (C� (H) ; C� (G)) -equivalence
bimodule module X1 (because G and H are Morita equivalent groupoids). As a
consequence the C�-algebra of G is the imprimitivity algebra of X1. Then they
needed another C� (H) module X2 (isomorphic to X1) whose imprimitivity algebra
is C� (H)
K

�
L2 (�)

�
for a suitable measure �.

We can obtain the isomorphism between the C�-algebra of G and C� (H) 

K
�
L2 (�)

�
more directly. If we endow G(0) �H � G(0) with the product topology,

and the operations

(u; x; v) (v; y; w) = (u; xy; w)

(u; x; v)�1 = (v; x; u)

then it becomes a locally compact second countable groupoid. The system of mea-
sures

�
"u � �e � �; u 2 G(0)

	
, where "u is the unit point mass at u, �e is the Haar

measure on H = Gee and � is a measure of full support on G
(0), is Haar system on

G(0)�H�G(0). It is not hard to prove that the C�-algebra of G(0)�H�G(0) endowed
with the Haar system

�
"u � �e � �; u 2 G(0)

	
is �-isomorphic to C� (H)
K

�
L2 (�)

�
.

On the other hand since G is a locally compact, second countable, Hausdor¤ tran-
sitive groupoid, the restriction of the domain map to Ge is an open map (see [13]).
According to Mackey Lemma (Lemma 1.1 [12]), there is � : G(0) ! Ge a regu-
lar Borel cross section of d : Ge ! G(0). This means that d (� (u)) = u for all
u 2 G(0) and � (K) has compact closure in Ge for each compact set K in G(0). Then
� : G! G(0) �H �G(0) de�ned by

� (x) =
�
r (x) ; � (r (x))x� (d (x))�1 ; d (x)

�
is a Borel isomorphism which carries the Haar system of G into a Haar system of
G(0)�H�G(0) of the form

�
"u � �e � �; u 2 G(0)

	
, where "u is the unit point mass

at u 2 G(0), �e is a Haar measure on H = Gee, and � is a suitable Radon measure
on G(0) with full support:

Proposition 12. Let G be a locally compact second countable transitive groupoid.
Let e be a unit and � : G(0) ! Ge be a regular Borel cross section of d : Ge ! G(0).
Then � : G! G(0) �Gee �G(0) de�ned by

� (x) =
�
r (x) ; � (r (x))x� (d (x))�1 ; d (x)

�
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is a Borel isomorphism which carries Haar system of G into a Haar system of
G(0) � Gee � G(0) of the form

�
"u � �e � �; u 2 G(0)

	
, where "u is the unit point

mass at u 2 G(0), �e is a Haar measure on Gee, and � is a suitable Radon measure
on G(0).

Using the fact that any compactly supported Borel bounded function on a transi-
tive groupoid can be viewed as an element of the groupoid C�- algebra (Proposition
4/p. 82, Proposition 5/p. 86 [4]) and we can prove that the f 7! � � f extends to a
�-isomorphism from C�

�
G(0) �H �G(0)

�
to C� (G). Thus C� (G) is �-isomorphic

to C� (H)
K
�
L2 (�)

�
.

A locally compact groupoid G is proper if the map (r; d) : G ! G(0) � G(0) is
proper (i.e. the inverse map of each compact subset of G(0) �G(0) is compact). [1,
De�nition 2.1.9]. In the sequel by a groupoid with proper orbit space we shall mean
a groupoid G for which the orbit space is Hausdor¤ and the map

(r; d) : G! R; (r; d) (x) = (r (x) ; d (x))

is open, where R is endowed with the product topology induced from G(0) �G(0).
Applying Lemma 1.1 of [12] to the locally compact second countable spaces G(0)

and G(0)=G and to the continuous open surjection � : G(0) ! G(0)=G, it follows that
there is a Borel set F in G(0) such that:

1. F contains exactly one element in each orbit [u] = ��1 (� (u)).

2. For each compact subset K of G(0), F \ [K] = F \ ��1 (� (K)) has a compact
closure.

For each unit u let us de�ne e (u) to be the unique element in the orbit of u that is
contained in F , i.e. fe (u)g = F\[u]. For each Borel subset B of G(0), � is continuous
and one-to-one on B \ F and hence � (B \ F ) is Borel in G(0)=G. Therefore the
map e : G(0) ! G(0) is Borel (for each Borel subset B of G(0), e�1 (B) = [B \ F ] =
��1 (� (B \ F )) is Borel in G(0)). Also for each compact subset K of G(0), e (K) has
a compact closure because e (K) � F \ [K].

Since the orbit space G(0)=G is proper the map

(r; d) : G! R; (r; d) (x) = (r (x) ; d (x))

is open and R is closed in G(0) � G(0). Applying Lemma 1.1 of [12] to the locally
compact second countable spaces G and R and to the continuous open surjection
(r; d) : G ! R, it follows that there is a regular cross section �0 : R ! G. This
means that �0 is Borel, (r; d) (�0 (u; v)) = (u; v) for all (u; v) 2 R, and �0 (K) is
relatively compact in G for each compact subset K of R.

Let us de�ne � : G(0) ! GF by � (u) = �0 (e (u) ; u) for all u. It is easy to note
that � is a cross section for d : GF ! G(0) and � (K) is relatively compact in G for
all compact K � G(0). If F is closed, then � is regular.
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Replacing � by
v 7! � (e (v))�1 � (v)

we may assume that � (e (v)) = e (v) for all v. Let us de�ne q : G! GFF by

q (x) = � (r (x))x� (d (x))�1 ; x 2 G.

Let � =
�
�u : u 2 G(0)

	
be a Haar system on G and let

�
f�uvg ;

�
� _u
	�
be its

decompositions over the principal groupoid . Let � be the 1-cocycle associated to
the decomposition.

Let us denote by B� (G) the linear span of the functions of the form

x 7! g1 (r (x)) g (q (x)) g2 (d (x))

where g1; g2 are compactly supported bounded Borel functions on G(0) and g is a
bounded Borel function on GFF such that if S is the support of g, then the closure of
S is compact in G. B� (G) is a subspace of Bc (G), the space of compactly supported
bounded Borel functions on G.

If f1, f2 2 B� (G) are de�ned by

f1 (x) = g1 (r (x)) g (q (x)) g2 (d (x))

f2 (x) = h1 (r (x))h (q (x))h2 (d (x))

then
f1 � f2 (x) = g � h (q (x)) g1 (r (x))h2 (d (x))



g2; h1

�
�(r(x))

f�1 (x) = g2 (r (x))g
�
q (x)�1

�
g1 (d (x))

Thus B� (G) is closed under convolution and involution.
Let ! be the universal representation of C� (G; �) the usual (full) C�-algebra

associated to a Haar system � =
�
�u; u 2 G(0)

	
. Since every cyclic representation

of C� (G; �) is the integrated form of a representation of G, it follows that ! can
be also regarded as a representation of Bc (G), the space of compactly supported
bounded Borel functions on G. Arlan Ramsay and Martin E. Walter have used
the notation M� (G; �) for the operator norm closure of ! (Bc (G)). Since ! is an
�-isomorphism on C� (G; �), we can regarded C� (G; �) as a subalgebra ofM� (G; �).
In [7] we denoted by M�

� (G; �) the operator norm closure of ! (B� (G)).

Theorem 13. Let G be a locally compact second countable groupoid with proper orbit
space. Let

�
�ui ; u 2 G(0)

	
, i = 1; 2 be two Haar systems on G. Let F be a Borel

subset of G(0) containing only one element e (u) in each orbit [u]. Let � : G(0) ! GF

be a cross section for d : GF ! G(0) with � (e (v)) = e (v) for all v 2 G(0) and such
that � (K) is relatively compact in G for all compact K � G(0). Then the C�-algebras
M�
� (G; �1) and M

�
� (G; �2) are �-isomorphic (Theorem 9 [7]).
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Theorem 14. Let G be a locally compact second countable groupoid with proper
orbit space. Let

�
�u; u 2 G(0)

	
be a Haar systems on G. Let Fi, i = 1; 2, be two

Borel subsets of G(0) containing only one element ei (u) in each orbit [u]. For each
i = 1; 2, let �i : G(0) ! GFi be a cross section for dFi : G

Fi ! G(0), dFi (x) = d (x),
satisfying the conditions

1. �i (ei (v)) = ei (v) for all v 2 G(0)

2. �i (K) is relatively compact in G for all compact sets K � G(0) .

Then the C�-algebras M�
�1 (G; �) and M

�
�2 (G; �) are �-isomorphic. (Theorem 6

[8]).

ThusM�
� (G; �) is a C

�-algebra which does not depend on the choice of the Haar
system � and also does not depend on the choice of cross section �.

Theorem 15. Let G be a locally compact second countable locally transitive groupoid
endowed with a Haar system

�
�u; u 2 G(0)

	
. Let F be a subset of G(0) containing

only one element e (u) in each orbit [u]. Let � : G(0) ! GF be a regular cross section
of dF . Then

C� (G; �) =M� (G; �) =M�
� (G; �) .

(Proposition 18 [7])

Theorem 16. Let G be a locally compact second countable principal proper groupoid.
Let F be a Borel subset of G(0) meeting each orbit exactly once. Let � : G(0) ! GF

be a cross section for d : GF ! G such that � (K) is relatively compact in G for all
compact K � G(0). Let

�
�u; u 2 G(0)

	
be a Haar system on G. Then

C� (G; �) �M�
� (G; �) �M� (G; �) .

(Corollary 23 [7]).
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