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A FUNCTIONAL CALCULUS FOR QUOTIENT
BOUNDED OPERATORS

Sorin Mirel Stoian

Abstract. If (X,P) is a sequentially locally convex space, then a quotient bounded operator
T € Qp(X) is regular (in the sense of Waelbroeck) if and only if it is a bounded element (in the
sense of Allan) of algebra Q»(X). The classic functional calculus for bounded operators on Banach

space is generalized for bounded elements of algebra Q»(X).

1 Introduction

It is well-known that if X is a Banach space and £(X) is Banach algebra of bounded
operators on X, then formula

f(T) = %!f(Z)R(Z,T) dz,

( where f is an analytic function on some neighborhood of ¢(T'), I" is a closed
rectifiable Jordan curve whose interior domain D is such that o(T") C D, and f is
analytic on D and continuous on D UT") defines a homomorphism f — f(T") from
the set of all analytic functions on some neighborhood of ¢(T) into L(X), with very
useful properties.

Through this paper all locally convex spaces will be assumed Hausdorff, over
complex field C, and all operators will be linear. If X and Y are topological vector
spaces we denote by L(X,Y) (L£(X,Y)) the algebra of linear operators (continuous
operators) from X to Y.

Any family P of seminorms which generate the topology of locally convex space
X (in the sense that the topology of X is the coarsest with respect to which all
seminorms of P are continuous) will be called a calibration on X. A calibration P
is characterized by the property that the collection of all sets
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S(pe)={xeX|p(z)<e},(peP,e>0),

constitute a neighborhoods sub-base at 0. A calibration on X will be principal
if it is directed. The set of all calibrations for X is denoted by C(X) and the set of
all principal calibration by Cy(X).

If (X, P) is alocally convex algebra and each seminorms p € P is submultiplica-
tive then (X, P) is locally multiplicative convex algebra or l.m.c.-algebra.

Any family of seminorms on a linear space is partially ordered by relation ,, <”,
where

p<qgep() <qz), (V)zeX.
A family of seminorms is preordered by relation ,, <”, where
p < q & there exists some r > 0 such that p () < rq(z), for all z € X.
If p < q and g < p, we write p =~ q.

Definition 1. Two families Py and Py of seminorms on a linear space are called
Q-equivalent ( denoted Py = Po) provided:

1. for each p1 € Py there exists po € Py such that p1 = po;
2. for each pa € Py there exists p1 € P1 such that ps =~ p1.

It is obvious that two @-equivalent and separating families of seminorms on a
linear space generate the same locally convex topology.

Definition 2. If (X, P), (Y, Q) are locally convex spaces, then for each p,q € P the
application mpq : L(X,Y) — R U {oo}, defined by
Mmpe(T) = sup q;?;s), M)T € L(X,Y).
p(x)#0
is called the mized operator seminorm of T associated withp andq. When X =Y

and p = q we use notation p = my,,.

Lemma 3 ([9]). If (X,P), (Y, Q) are locally convex spaces and T' € L(X,Y), then

1. mpg(T) = sup q(Tz) = sup q(Txz),(¥V)pe P, (V)qe Q;
p(x)=1 p(x)<1

2. q(Tz) <myy (T)p(z), (V)z € X, whenever my,(T) < oco.
3. mpg(T) =inf {M > 0|q(Tz) < Mp(z),(V)x € X}, whenever mp,(T") < 0.

Definition 4. An operator T on a locally convex space X is quotient bounded with
respect to a calibration P € C(X) if for every seminorm p € P there exists some
cp > 0 such that

p(Tz) < cpp(z),(V)z € X.
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The class of quotient bounded operators with respect to a calibration P € C(X)
is denoted by Qp(X). If X is a locally convex space and P € C(X), then for every
p € P the application p : Qp(X) — R defined by

p(T) =inf{r>0|p(Tz) <rp(x),(V)ze X},

is a submultiplicative seminorm on Qp(X), satisfying p(I) = 1. We denote by P
the family { P | p€ P }.

Lemma 5 ([8]). If X is a sequentially complete convex space, then Qp(X) is a
sequentially complete m-convex algebra for all P € C(X).

Definition 6. Let X be a locally conver space and T € Qp(X). We say that
A € p(Qp,T) if the inverse of \I — T exists and (M —T)~' € Qp(X). Spectral sets
o(Qp,T) are defined to be complements of resolvent sets p(Qp,T).

Let (X,P) be a locally convex space and T' € Qp(X). We have said that T’
is bounded element of the algebra Qp(X) if it is bounded element in the sens of
G.R.Allan [1], i.e. some scalar multiple of it generates a bounded semigroup. The
class of bounded element of Qp(X) is denoted by (Qp(X))o.

Proposition 7 ([5]). Let X is a locally convex space and P € C(X).

1. Qp(X) is a unital subalgebra of the algebra of continuous linear operators on
X

2. Qp(X) is a unitary l.m.c.-algebra with respect to the topology determined by
P

3. If P' € C(X) such that P ~ P', then Qp(X) = Qp(X) and P~ P’

4. The topology generated by P on Qp(X)is finer than the topology of uniform
convergence on bounded subsets of X

Definition 8. If (X,P) is a locally convex space and T € Qp(X) we denote by
rp(T') the radius of boundness of operator T in Qp(X), i.e.

rp(T) = inf{a >0 | o 'T generates a bounded semigroup in Qp(X)}.
We have said that rp(T') is the P-spectral radius of the operator T'.

Proposition 9 ([8]). Let X be a sequentially complete locally convex space and
PeC(X). If T € Qp(X), then | o(Qp,T) |=rp(T).
Definition 10. Let P be a calibration on X. A linear operator T : X — X is

universally bounded on (X, P) if exists a constant cy > 0 such that

p(Tz) < cop(x),(V)z € X.
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Denote by Bp(X) the collection of all universally bounded operators on (X, P).
It is obvious that Qp(X) C Bp(X) C L(X).

Lemma 11. If P a calibration on X, then Bp(X) is a unital normed algebra with
respect to the norm ||e||5 defined by

|T|p =inf{M >0 | p(Tz) < Mp(x),(¥)z € X,(V) pe P}
Corollary 12. If P € C(X), then for each T € Bp(X) we have
1Tl p = sup{myp(T) | p € P}, (V) T € Bp(X).
Proposition 13 ([5]). Let X be a locally convex space and P € C(X). Then:
1. Bp(X) is a subalgebra of L(X);
2. (Bp(X),|le|lp) is unitary normed algebra;
3. for each P’ € C(X) with the property P ~ P’, we have

Bp(X) = Bp/(X) and [|e|p = [|e]|p: .
Proposition 14 ([2]). Let X be a locally convex space and P € C(X). Then:

1. the topology given by the norm ||e|| » on the algebra Bp(X) is finer than the
topology of uniform convergence;

2. if (T)n is a Cauchy sequences in (Bp(X), ||e|p) which converges to an oper-
ator T', we have T € Bp(X);

3. the algebra (Bp(X),||e||p) is complete if X is sequentially complete.

Proposition 15 ([5]). Let (X, P) be a locally convex space. An operator T € Qp(X)
is bounded in the algebra Qp(X) if and only if there exists some calibration P’ €
C(X) such that P =~ P' and T € Bp/(X).

Definition 16. Let (X, P) be a locally convex space and T € Bp(X). We said that
a € C is in resolvent set p(Bp,T) if there exists (ol —T)~! € Bp(X). The spectral
set o(Bp,T) will be the complementary set of p(Bp,T).

Remark 17. [t is obvious that we have the following inclusions
o(T) C o(Qp,T) C o(Bp,T).

Proposition 18. Proposition If (X, P is a locally convex space and T € Bp(X),
then the set o(Bp,T) is compact.
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Proposition 19. Let (X, P) be a locally convex space. Then an operator T € Qp(X)
is reqular if and only if T € (Qp(X))o.

Proof. Assume that T € Qp(X) is bounded element of Qp(X). It folows from
proposition (15) that there is some calibration P’ € C(X) such that P ~ P '’ and
T € Bp /(X). Moreover, Qp(X)=Qp/ (X).
[e.e]

If | A [> 2||T]|p, then Neumann series ) %converges in Bp /(X) and its sum

n=0

is R(\,T). This means that the operator A\l — T is invertible in Qp(X) for all
| A |> 2||T" || 5/. Moreover, for each € > 0 there exists an index n. € N such that

n

Tk
ROT) =) <
k=0

<€, (Y)n > ne,
’P !

which implies that for each n > n. we have

<
P/

Ne Tk
IRADllp < ||ROT) =3 S5
k=0

Ne Tk
>k

k=0

_|_
20

e

<e+\)\|flz

k=0

Tk I _
| <t CITlp ) Do F<e+ (Il )7
P k=0

Since € > 0 is arbitrarily chosen, we have that
IR D)l <(ITlp )7 () [ A > 2] Tllp
From definition of norm || ||, it follows that
pRAT) <(ITlp N7
for any p € P’ and for each | A |[> 2||T||» ,, which means that the set
{BAT) A= 20Tp /3

is bounded in @p(X). Therefore, T is regular.
Now suppose that T' € Qp(X) is regular, but it is not bounded in Q»(X). By
proposition (9) this means that

| o(Qp,T) |=rp(T) = 0,

which contradicts the assumption we have made. Therefore, T" is bounded element
of Qp(X). O
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2 A functional calculus

In this section we assume that X will be sequentially complete locally convex
space. We show that we can develop a functional for bounded elements of algebra

Qp(X), where P € C(X).

Definition 20. Let (X, P) be a locally convex space. The Waelbroeck resolvent set
of an operator T € Qp(X), denoted by pyw (Qp,T), is the subset of elements of
Ao € Coo = CU {00}, for which there exists a neighborhood V€ V() such that:

1. the operator \I — T is invertible in Qp(X) for all X € V\{oo}
2. the set { (M —T ) 1| Xe V\{oo} } is bounded in Qp(X).

The Waelbroeck spectrum of T, denoted by ow (Qp,T), is the complementary set
of pw(Qp,T) in Cu. It is obvious that o(Qp,T) C ow (Qp,T).

Definition 21. Let (X,P) be a locally convex space. An operator T € Qp(X) is
reqular if oo ¢ ow(Qp,T), i.e. there exists some t > 0 such that:

1. the operator \XI — T is invertible in Qp(X), for all | X |>t
2. the set { R(A\,T) || A|> t} is bounded in Qp(X).

Let P € C(X) be arbitrary chosen and D C C' a relatively compact open set.

Lemma 22. Let p € P then the application | f |, p: O(D,Qp(X)) — R given by,

| [ lp.o= sggp(f (2)), (V) f € O(D, Qp (X)),

is a submultiplicative seminorm on O(D,Qp(X)).

If we denote by op p the topology defined by the family { | f [, p | p € P} on
O(D,Qp(X)), then (O(D,Qp(X)),0op p) is a Lm.c.-algebra.
Let K C C be a compact set arbitrary chosen. We define the set

O(K,Qp(X)) =U{O(D,Qp(X))| D C C is relatively compact open }
We need the following lemma from complex analysis.

Lemma 23. For each compact set K C C and each relatively compact open set
D D K there exists some open set G such that:

1. KcGcGcCD;

2. G has a finite number of conex components (G;)
pairwise disjoint;

i—17» the closure of which are
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3. the boundary 0G; of G;,i = 1,n, consists of a finite positive number of closed
rectifiable Jordan curves (Fij)j:m, no two of which intersect;

4. KNTj = ®, for each i = 1,n and every j = 1,m,.

Definition 24. Let K and D be like in the previous lemma. An open set G is called
Cauchy domain for pair (K, D) if it has the properties 1-4 of the previous lemma.
The boundary

'=u,_

U

Jj=1m; Fij

of G is called Cauchy boundary for pair (K, D).

1n

Using some results from I. Colojoara [3] we can develop a functional calculus for
bounded elements of locally m-convex algebra Qp(X).

Theorem 25. If P € Co(X) and T € (Qp (X))o, then for each relatively compact
open set D D ow (Qp,T), the application Frp : O(D) — Qp(X) defined by

Pro(f) = 5 [ FEIRED)ds () ] € OD)
r

where T is a Cauchy boundary for pair (ow (Qp,T),D) , is a unitary continuous
homomorphism. Moreover,

FT,D (Z) = T,

where z is the identity function.

Like in the Banach case we make the following notation f(T') = Fr p (f).
The following theorem represents the analogous of spectral mapping theorem for
Banach spaces.

Theorem 26. If P € Co(X), T € (Qp(X) )o and f is a holomorphic function on
an open set D D ow (Qp,T), then

ow(Qp, f(T)) = flow(Qp,T)).

Theorem 27. Assume that P € Co(X) and T € (Qp(X))o. If f is holomorphic
function on the open set D O ow (Qp,T) and g € O(Dy), such that Dy O f(D),

then (g o f)(T) = g(f(T)).
Lemma 28. Assume that P € Co(X) and T € (Qp(X))o. If f is holomorphic

k=00
function on the open set D O ow (Qp,T) and f (N\) = 3. axA¥ on D, then f (T) =
k=0
k=00
S oap T
k=0
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k=00
Corollary 29. If P € Co(X) and T € (Qp(X))o, then expT = Tk—lf
k=0

Theorem 30. Let P € Co(X) and T € (Qp(X))o. If D is an open relatively
compact set which contains the set ow (Qp,T), f € O(D) and S € (Qp(X))o, such
that rp(S) <dist(ow (Qp,T),C\D), and TS = ST, then we have

1. UW(Q'PaT+S) CD;

2. f(T+8) =y {8Dg
n>0
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