ISSN 1842-6298 Volume **1** (2006), 51 – 60

SOME ABSOLUTELY CONTINUOUS REPRESENTATIONS OF FUNCTION ALGEBRAS

Adina Juratoni

Abstract. In this paper we study some absolutely continuous representations of function algebras, which are weak ρ -spectral in the sense of [5] and [6], for a scalar $\rho > 0$. Precisely we investigate certain conditions for the existence of a spectral ρ -dilation of such representation. Among others we obtain different results which generalize the corresponding theorems of D. Gaşpar [3].

1 Preliminaries

Let X be a compact Hausdorff space, C(X) (respectively $C_{\mathbb{R}}(X)$) be the Banach algebra of all complex (real) valued continuous functions on X.

Let A be a function algebra on X (that is a closed subalgebra of C(X) containing the constants and separating the points of X) and \overline{A} be the set of the complex conjugates of the functions from A. Denote by M(A) the set of all nonzero complex homomorphisms of A and for $\gamma \in M(A)$ we put $A_{\gamma} = \ker \gamma$. Clearly, any $\gamma \in M(A)$ can be extended to a bounded linear functional on $A + \overline{A}$, also denoted by γ , which satisfies for $f, g \in A$:

$$\gamma\left(f+\overline{g}\right) = \gamma\left(f\right) + \overline{\gamma\left(g\right)}, \qquad \left|\gamma\left(f+\overline{g}\right)\right| \le 2\left\|f+\overline{g}\right\|.$$

Two homomorphisms $\gamma_0, \gamma_1 \in M(A)$ is called Gleason equivalent if

$$\|\gamma_0 - \gamma_1\| < 2.$$

The Gleason equivalence is a relation of equivalence in M(A), and the corresponding equivalence classes are called the Gleason parts of A([1], [9]).

If $\gamma \in M(A)$ we denote by M_{γ} the set of all representing measures for γ , that is a positive Borel measures on X satisfying

$$\gamma(f) = \int f dm$$
 $(f \in A).$

2000 Mathematics Subject Classification: 46J25, 47A20, 46J10 Keywords: Uniform algebra, representation, spectral dilation.

Denote by Bor(X) the family of all Borel sets of X, and M a set of positive Borel measures on X. A Borel measure ν on X is called M-absolutely continuous (M a.c.) if $\nu(\sigma) = 0$ for any M-null set $\sigma \in Bor(X)$ (that is with $\mu(\sigma) = 0$ for every $\mu \in M$). Also, on says that ν is M-singular (M s.) if ν is supported on a M-null set. It is known [1] that each Borel measure ν on X has a unique decomposition of the form

$$\nu = \nu_a + \nu_s$$

where ν_a is M a.c. and ν_s is M s. This decomposition is called the M - decomposition of ν . A measure ν is completely singular if it is M s. where $M = \bigcup_{\gamma \in \mathcal{M}(A)} M_{\gamma}$. We recall ([1]) that if γ_0 and γ_1 are Gleason equivalent, than the M_{γ_j} - decompositions of ν coincide for j = 0, 1. When γ_0 and γ_1 are in different Gleason parts, than the M_{γ_i} a.c. component of ν is $M_{\gamma_{i-1}}$ s., for j = 0, 1.

Let H be a complex Hilbert space, and B(H) be the Banach algebra of all bounded linear operators on H.

A representation of a function algebra A on H is a multiplicative linear map Φ of A into B(H) with $\Phi(1) = I$, the identity operator, and

$$\left\|\Phi\left(f\right)\right\| \le c \left\|f\right\| \qquad (f \in A),$$

for some constant c > 0. When c = 1, Φ is a contractive representation.

If Φ is a representations of A on H, then by Hahn - Banach and Riesz - Kakutani theorems it follows that, for each $x, y \in H$ there exists a measure $\mu_{x,y}$ on X such that $\|\mu_{x,y}\| \leq c \|x\| \|y\|$ and

(1)
$$\langle \Phi(f) x, y \rangle = \int f d\mu_{x,y} \qquad (f \in A).$$

Such measures $\mu_{x,y}$ $(x, y \in \mathcal{H})$ are called elementary measures for Φ . Also, if $M \subset M_{\gamma}$ for some $\gamma \in M(A)$, one says that Φ is M - absolutely continuous (M a.c.), respectively Φ is M - singular (M s.), if there exist M a.c., respectively M s. elementary measures $\mu_{x,y}$ of Φ for any $x, y \in H$. When Φ is M_{γ} s. for every $\gamma \in M(A)$, Φ is called completely singular.

For $\rho > 0$, and $\gamma \in M(A)$ a contractive representation Φ of C(X) on a Hilbert space $K \supset H$ is called a γ - spectral ρ - dilation of a representation Φ of A on H if

(2)
$$\Phi(f) = \rho P_{\mathcal{H}} \Phi(f) | \mathcal{H} \qquad (f \in A_{\gamma}),$$

where $P_{\mathcal{H}}$ is the orthogonal projection of K on H. When $\rho = 1$, such a representation $\widetilde{\Phi}$ is called a spectral dilation of Φ (that is $\widetilde{\Phi}$ is a φ - spectral 1 - dilation of Φ , for any $\varphi \in M(A)$).

According to [2], one says that a representation Φ of A on H is of class $C_{\rho}(A_{\gamma}, \mathcal{H})$ if Φ has a γ - spectral ρ - dilation. Clearly, if Φ is of class $C_{\rho}(A_{\gamma}, \mathcal{H})$ then

(3)
$$\|\Phi(f)\| \le \|\rho f + (1-\rho)\gamma(f)\|$$
 $(f \in A),$

but the converse assertion is not true, in general (even if $\rho = 1$). D. Gaşpar

Surveys in Mathematics and its Applications 1 (2006), 51 - 60

([2] and [3]) obtains certain conditions under which (3) assures the existence of a γ - spectral ρ - dilation for Φ . This happens for instance, if A is a Dirichlet algebra on X (that is $A + \overline{A}$ is dense in C(X)), or more general, when γ has a unique representing measure m and Φ is m a.c. Also, T. Nakazi [7], [8] gives other equivalent conditions with the existence of a γ - spectral ρ - dilation, if A is a hypo - Dirichlet algebra (that is $A + \overline{A}$ has finite codimension in C(X)).

In this paper we generalize some results of D. Gaşpar [3] by investigating a weakly condition than (3), namely the condition

(4)
$$w\left(\Phi\left(f\right)\right) \le \left\|\rho f + (1-\rho)\gamma\left(f\right)\right\| \qquad (f \in A)\,,$$

here w(T) is the numerical radius for $T \in B(H)$.

A representation Φ of A on H satisfying (4) is called weak ρ - spectral with respect to γ . When Φ satisfies (3) it simply called spectral with respect to γ .

In [5] and [6] were given different characterizations for that a representation Φ to be weak ρ - spectral with respect to γ . This happens if and only if for any $x \in H$ there exists a positive measure μ_x on X with $\mu_x(X) = ||x||^2$ such that

(5)
$$\langle \Phi(f) x, x \rangle = \int \left(\rho f + (1-\rho)\gamma(f)\right) d\mu_x \qquad (f \in A).$$

Such a measure μ_x is called a weak ρ - spectral measure attached to x by Φ and γ .

The aim of this paper is to further investigate the weak ρ - spectral representations for the weak^{*}- Dirichlet function algebras. Recall [10] that m is a probability measure on X and $A \subset L^{\infty}(m)$ is a subalgebra, then A is called a weak^{*}- Dirichlet algebra in $L^{\infty}(m)$ if m is multiplicative on A and $A + \overline{A}$ is weak^{*} dense in $L^{\infty}(m)$.

2 Representations with Spectral ρ -Dilations

In this section we refer to some weak ρ - spectral representations which have spectral ρ - dilations. In fact we generalize certain results concerning the ρ - spectral representations in the case of unique representing measure ([3]).

We begin with the following

Theorem 1. Let A be a function algebra on X which is weak^{*} – Dirichlet in $L^{\infty}(m)$ for some representing measure m for $\gamma \in M(A)$. If Φ is a representing of A on H such that for any $x \in H$ there exists a m a.c. weak ρ - spectral measure attached to x by Φ and γ , then Φ has a γ - spectral ρ - dilation. Moreover, in this case there exists a unique B(H) - valued and m a.c. semispectral measure F on X satisfying

(6)
$$<\Phi(f)x, y> = \int (\rho f(\xi) + (1-\rho)\gamma(f)) d(F(\xi)x, y)$$

for $f \in A$ and $x, y \in H$.

Proof. Let Φ a representation of A on H and we suppose that for $x \in H$ there exists a m a.c. measure $\mu_x \ge 0$ with $\mu_x(X) = ||x||^2$ and

$$\Phi(f) x, x \ge \int \left(\rho f + (1-\rho) \gamma(f)\right) d\mu_x \qquad (f \in A).$$

For $f \in A$ and $x, y \in H$ we have

$$\begin{split} &\int \left(\rho f + (1-\rho)\,\gamma\,(f)\right) d\left(\mu_{x+y} + \mu_{x-y}\right) \\ = &< \Phi\,(f)\,(x+y), x+y > + < \Phi\,(f)\,(x-y), x-y > \\ = &2\,(<\Phi\,(f)\,x, x > + < \Phi\,(f)\,y, y >) \\ = &2\,\int \left(\rho f + (1-\rho)\,\gamma\,(f)\right) d\left(\mu_x + \mu_y\right), \end{split}$$

or equivalently

$$\rho \int f d \left(\mu_{x+y} + \mu_{x-y} \right) + (1-\rho) \gamma \left(f \right) \left(\|x+y\|^2 + \|x-y\|^2 \right)$$

= $2\rho \int f d \left(\mu_x + \mu_x \right) + (1-\rho) \gamma \left(f \right) \left[2 \left(\|x\|^2 + \|y\|^2 \right) \right].$

This yields for each $x, y \in H$,

$$\int fd\left(\mu_{x+y} + \mu_{x-y}\right) = \int fd\left(2\mu_x + 2\mu_y\right) \qquad (f \in A)\,,$$

and since the measures $\mu_{x+y} + \mu_{x-y}$ and $\mu_x + \mu_y$ are *m* a.c., by Gleason - Whitney theorem [10] it follows that

$$\mu_{x+y} + \mu_{x-y} = 2\left(\mu_x + \mu_y\right) \qquad (x, y \in \mathcal{H}).$$

Now, if we define the measure

$$\mu_{x,y} = \frac{1}{4} \left[\mu_{x+y} - \mu_{x-y} + i \left(\mu_{x+iy} - \mu_{x-iy} \right) \right],$$

then it is known ([9]) that the B(H) valued measure F on X defined by

$$\langle F(\sigma) x, y \rangle = \mu_{x,y}(\sigma)$$

for $\sigma \in Bor(X)$ and $x, y \in H$ is a semispectral measure which clearly satisfies

$$<\Phi\left(f\right)x,y>=\int\left(\rho f\left(\xi\right)+\left(1-\rho\right)\gamma\left(f\right)\right)d\left(F\left(\xi\right)x,y\right)\qquad\left(f\in A\right).$$

Next by Naimark dilation theorem (see [9]) there exists a contractive representation $\widetilde{\Phi}$ of C(X) on a Hilbert space $K \supset H$ such that

$$\langle \widetilde{\Phi}(g) x, y \rangle = \int g(\xi) d(F(\xi) x, y) \qquad (g \in C(X), x, y \in \mathcal{H}).$$

Thus for $f \in A_{\gamma}$ and $x, y \in H$ one infers

$$<\Phi\left(f
ight)x,y>=
ho\int f(\xi)d\left(F\left(\xi
ight)x,x
ight)=
ho<\widetilde{\Phi}\left(f
ight)x,y>,$$

whence we get

$$\Phi(f) = \rho P_{\mathcal{H}} \widetilde{\Phi}(f) | \mathcal{H} \qquad (f \in A_{\gamma}).$$

Hence $\widetilde{\Phi}$ is a γ - spectral ρ - dilation of Φ .

Obviously, the above semispectral measure F is m a.c. and the uniqueness property of F as a m a.c. semispectral measure satisfying (6) also follows from Gleason - Whitney theorem. This ends the proof.

As an application the following result can be obtained, which completes the [3, Theorem 2] of D. Gaşpar (the equivalence $(ii) \Leftrightarrow (i)$ below).

Theorem 2. Let A be a function algebra on X and $\gamma \in M(A)$ such that γ has a unique representing measure m. Then for a m a.c. representation Φ of A on H the following statements are equivalent:

- (i) Φ has a γ spectral ρ dilation;
- (ii) Φ is a ρ spectral with respect to γ ;
- (iii) Φ is weak ρ spectral with respect to γ .

Proof. Since the implications $(i) \Rightarrow (ii) \Rightarrow (iii)$ are trivial, it remains to prove the implication $(iii) \Rightarrow (i)$.

Suppose that the statement (*iii*) holds and let μ_x be a weak ρ - spectral attached to $x \in H$ by Φ and γ . As Φ is a *m* a.c. representation there exists a system $\{\nu_{x,y}\}_{x,y\in\mathcal{H}}$ of *m* a.c. elementary measures for Φ . If $\nu_x = \nu_{x,x}$ ($x \in \mathcal{H}$) then it follows that

$$\int f d \left(\nu_x - \rho \mu_x\right) = 0 \qquad (f \in A_\gamma),$$

that is $\nu_x - \rho \mu_x$ is orthogonal to A_γ . Now if $\mu_x = \mu_x^a + \mu_x^s$ is *m* decomposition of μ_x then by M. and F. Riesz theorem ([1] and [4]) one has that $\rho \ \mu_x^s$ is orthogonal to *A*, since $\mu_x^s \ge 0$ it results $\mu_x^s = 0$. Thus $\mu_x = \mu_x^a$ that is μ_x is *m* a.c. for any $x \in H$, and then by Theorem 1 the representation Φ has a γ - spectral ρ - dilation. This ends the proof.

From Theorem 1 we infer also the following

Corollary 3. Let A be a function algebra on X and $\xi \in X$ a peak point for A such that A is weak^{*} – Dirichlet in $L^{\infty}(m)$ for some $m \in M_{\xi}$. Suppose that the Gleason part of A containing ξ is reduced to $\{\xi\}$. Then any m a.c. representation Φ of A on H which is weak ρ - spectral with respect to ξ is a contractive spectral representation. Moreover, we have

$$\Phi(f) = f(\xi) I \qquad (f \in A) .$$

Proof. Let Φ as above and $\{\nu_{x,y}\}_{x,y\in\mathcal{H}}$ be a system of m a.c. measures for Φ , where we denote $\nu_x = \nu_{x,x}$. Let also $\{\mu_x\}$ be a system of weak ρ - spectral measures attached to the points $x \in H$ by Φ and ξ . If $\mu_x = \mu_x^a + \mu_x^s$ is the M_{ξ} decomposition of μ_x , then the M_{ξ} decomposition of $\nu_x - \rho\mu_x$ is

$$\nu_x - \rho \mu_x = (\nu_x - \rho \mu_x^a) - \rho \mu_x^s$$

because ν_x being m a.c. it is also M_{ξ} a.c. Since $\nu_x - \rho \mu_x$ is orthogonal to

$$A_{\xi} = \{ f \in A : f(\xi) = 0 \}$$

by M. and F. Riesz ([1] and [4]) we have that $\rho \mu_x^s$ is orthogonal to A, hence $\mu_x^s = 0$ because $\mu_x^s \ge 0$. Therefore $\mu_x = \mu_x^a$ is M_{ξ} a.c. and also the measure

$$\nu_x - \rho \mu_x - (1 - \rho) \|x\|^2 m$$

is M_{ξ} a.c. Since this measure is orthogonal to A and by hypothesis ξ is a peak point and $\{\xi\}$ is a Gleason part for A, from a result in [4] it follows that

$$\nu_x - \rho \mu_x - (1 - \rho) \|x\|^2 m = 0$$

But this implies that μ_x is m a.c., for any $x \in H$ and by Theorem 1 there exists a m a.c. semispectral measure F on X satisfying

$$<\Phi\left(f
ight)x,y>=\int\left(
ho f\left(\eta
ight)+\left(1-
ho
ight)f\left(\xi
ight)
ight)d\left(F\left(\eta
ight)x,y
ight)$$

Surveys in Mathematics and its Applications 1 (2006), 51 – 60 http://www.utgjiu.ro/math/sma for $f \in A$ and $x, y \in H$. Since ξ is a peak point and F is m a.c. one infers that

$$< \Phi(f) x, y > = (\rho f(\xi) + (1 - \rho) f(\xi)) < F(\{\xi\}) x, y >$$

= $< f(\xi) F(\{\xi\}) x, y >$

and so $\Phi(f) = f(\xi) F(\{\xi\}), f \in A$. In particular it follows that $F(\{\xi\}) = I$ and consequently $\Phi(f) = f(\xi) I$, for $f \in A$. The proof is finished.

Note that this corollary is a generalized version of the [3, Corollary 1] because our algebra A is supposed to be weak^{*}- Dirichlet in $L^{\infty}(m)$ and so that m is not necessary the unique representing for the peak point ξ for A. Also, we only assume that the representation Φ is weak ρ - spectral with respect to ξ , a weaker condition than in [3], where Φ is ρ -spectral with respect to ξ . An example for which the above corollary can be applied is the following.

Example. Let $A_1(\mathbb{T})$ be the algebra of all continuous functions on the unit circle T which have analytic extensions \tilde{f} to the open unit disc such that $\tilde{f}(0) = f(1)$. Then $A_1(\mathbb{T})$ is a function algebra on T which is weak^{*} – Dirichlet in $L^{\infty}(m_1)$ where m_1 is the Haar measure on T. Clearly, the measure m_1 , the Dyrac measure δ_1 which is supported in $\{1\}$ and also $\mu = \frac{1}{2}(m_1 + \delta_1)$ are representing measures for the homomorphism of evaluation at 1. But any point $\lambda \in T$ is a peak point for $A_1(\mathbb{T})$ and the evaluation e_{λ} at $\lambda \neq 1$ has a unique representing measure m_{λ} relative to $A_1(\mathbb{T})$. Also, $\{e_{\lambda}\}$ forms a Gleason part of $A_1(\mathbb{T})$ for every $\lambda \in T$. Thus by Corollary 3 it follows that the only m_{λ} a.c. representation of $A_1(\mathbb{T})$ on H which is weak ρ - spectral with respect to e_{λ} is Φ_{λ} given by $\Phi_{\lambda}(f) = f(\lambda)I$, $f \in A_1(\mathbb{T})$, for any $\lambda \in T$.

Now we obtain in our context the following version of [3, Theorem 3].

Theorem 4. Let A be a function algebra on X which is weak^{*} – Dirichlet in $L^{\infty}(m)$ for some $m \in M_{\gamma}$ and $\gamma \in M(A)$. Suppose $\gamma' \in M(A)$ such that γ' is not in the same Gleason part with γ . Then any m a.c. representation Φ of A on H which is weak ρ - spectral with respect to γ' is a contractive and dilatable representation.

Proof. We use the idea from the proof of [3, Theorem 3]. Let Φ be a representation of A on H for which there exist a system $\{\nu_{x,y}\}_{x,y\in\mathcal{H}}$ of m a.c. elementary measures and a weak ρ - spectral measure μ_x attached to every $x \in H$ by Φ and γ' . Putting $\nu_x = \nu_{x,x}, x \in H$ one has that $\nu_x - \rho\mu_x$ is orthogonal to $A_{\gamma'}$. If $\mu_x = \mu_x^a + \mu_x^s$ is the $M_{\gamma'}$ decomposition of μ_x , then by M. and F. Riesz theorem ([1] and [4]) it follows that $\nu_x - \rho\mu_x^s$ is orthogonal to A, since ν_x being m a.c. it is also M_{γ} a.c. and ν_x is $M_{\gamma'}$ s. because γ and γ' belong to different Gleason parts of A (by [1, Theorem vi.2.2]).

Let now $\mu_x^s = \mu_x^{sa} + \mu_x^{ss}$ be the M_{γ} decomposition of μ_x^s . Then applying also the M. and F. Riesz theorem we infer that the measures $\nu_x - \rho \mu_x^{sa}$ and $\rho \mu_x^{ss}$ are orthogonal to A, hence $\mu_x^{ss} = 0$ because $\mu_x^{ss} \ge 0$. Next, as ν_x is a Hahn - Banach extension to C(X) of the functional $f \to \langle \Phi(f)x, x \rangle$ on A, and since $\mu_x^{sa} \ge 0$ and $\int f d\nu_x = \rho \int f d\mu_x^{sa}$ we get

$$\begin{aligned} \|\nu_x\| &= \sup_{\substack{f \in A \\ \|f\|=1}} \left| \int f d\nu_x \right| = \rho \sup_{\substack{f \in A \\ \|f\|=1}} \left| \int f d\mu_x^{sa} \right| \le \rho \left\| \mu_x^{sa} \right\| \\ &= \rho \mu_x^{sa}(1) = \nu_x \left(1 \right) \le \left\| \nu_x \right\|, \end{aligned}$$

whence

$$\|\nu_x\| = \nu_x (1) = \rho \|\mu_x^{sa}\|.$$

This means that the measures ν_x are positive, for any $x \in H$.

Using the fact that $\nu_{x,y}$ are elementary measures for Φ we obtain for $x, x', y \in H$ and $\alpha, \beta \in C$ that

$$\int f d\nu_{\alpha x + \beta x', y} = \int f d \left(\alpha \nu_{x, y} + \beta \nu_{x', y} \right) \qquad (f \in A)$$

But this implies by Gleason - Whitney theorem ([10]) that

$$\nu_{\alpha x + \beta x', y} = \alpha \nu_{x, y} + \beta \nu_{x', y}$$

because the measures $\nu_{z,z'}$ are m a.c. for any $z, z' \in H$. Similarly, one infers that

$$\nu_{x',\alpha x+\beta y} = \overline{\alpha}\nu_{x',x} + \overline{\beta}\nu_{x',y}.$$

Thus, for $\sigma \in Bor(X)$ the functional $(x, y) \to \nu_{x,y}(\sigma)$ is linear in $x \in H$, antilinear in $y \in H$ and also we have

$$|\nu_{x,y}(\sigma)| \le ||\nu_{x,y}|| \le ||\Phi|| \, ||x|| \, ||y||$$

because $\nu_{x,y}$ is an elementary measure for Φ . Hence we can define the map $F: Bor(X) \to B(H)$ by

$$\langle F(\sigma)x, y \rangle = \nu_{x,y}(\sigma) \qquad (\sigma \in Bor(X), x, y \in \mathcal{H})$$

and it is immediate that F is a semispectral measure for Φ . Finally, by the Naimark theorem ([9]), it follows that Φ has a spectral dilation, necessarily a contractive one. Consequently, Φ is a contractive representation, and the proof is finished.

As an application we have the following result which generalized [3, Theorem 3] because our hypothesis on Φ is weaker than the assumption from [3].

Corollary 5. Let A be a function algebra on X and $\gamma, \gamma' \in M(A)$ belonging to different Gleason parts of A, such that γ has a unique representing measure. Then any M_{γ} a.c. representation of A on H which is weak ρ - spectral with respect to γ' is a contractive representation and it has a spectral dilation.

Proof. If $M_{\gamma} = \{m\}$ then A is weak^{*}- Dirichlet in $L^{\infty}(m)$. So we can apply Theorem 4 to any m a.c. representation which is weak ρ - spectral with respect to γ' and the conclusion follows.

Finally, we prove the following

Theorem 6. Let A be a function algebra on X with the property that the only measure orthogonal to A which is singular to all representing measures for the homomorphisms in M(A) is the zero measure. Then every completely singular representation of A on H which is weak ρ - spectral with respect to some $\gamma \in M(A)$ is a spectral one.

Proof. Let Φ and γ as above, and for $x, y \in H$ let $\nu_{x,y}$ be a completely singular elementary measure for Φ . If μ_x is a weak ρ - spectral measure attached to $x \in H$ by Φ and γ then $\nu_x - \rho \mu_x$ is orthogonal to A_{γ} . So, if $\mu_x = \mu_x^a + \mu_x^s$ is the M_{γ} decomposition of μ_x , by M. and F. Riesz theorem one has that $\nu_x - \rho \mu_x^s$ is orthogonal to A because ν_x is also M_{γ} s. (being completely singular). Next, as in the proof of Theorem 4 we deduce that ν_x is a positive measure. Also, using the hypothesis on A we infer that the map $(x, y) \to \nu_{x,y}$ is linear in $x \in H$ and it is antilinear in $y \in H$. This leads (as in the proof of Theorem 1) to the fact Φ is a contractive representation which has a spectral dilation, and [3, Theorem 4] implies that Φ is even a spectral representation. This ends the proof.

References

- T. Gamelin, *Uniform Algebras*, Pretince-Hall, Englewood Cliffs, New Jersy, 1969. MR0410387 (53 #14137). Zbl 0213.40401.
- [2] D.Gaşpar, Spectral ρ-dilation for the representation of function algebras, Anal. Univ. Timişoara, ser. şt. mat. 3 (1970), 153-157. MR0326400(48 #4744). Zbl 0288.46048.
- [3] D.Gaşpar, On absolutely continuous representations of function algebras, Rev. Roum. Math. Puret et Appl. XVII, 1 (1972), 21-31. MR0303298(46 #2436). Zbl 0241.46054.

Surveys in Mathematics and its Applications 1 (2006), 51 – 60 http://www.utgjiu.ro/math/sma

- [4] I. Glicksberg, The abstract F. and M. Riesz theorem, J. Functional Anal.,1 (1967),109-122. MR0211264(35 #2146). Zbl 0155.18503.
- [5] A. Juratoni and N. Suciu, Spectral ρ- dilations for some representations of uniform algebra, Proceedings of 9th National Conference of the Roumanian Mathematical Society, Ed. Univ. Vest, 194-210.
- [6] A. Juratoni, On the weak ρ spectral representations of function algebras, to appear in Proc. of the 11th Symp. of Math. and Appl.
- [7] T. Nakazi, ρ dilations and hypo-Dirichlet algebras, Acta Sci. Math. (Szeged),
 56 (1992), 175-181. MR1204751(94b:47010). Zbl 0803.46061.
- [8] T. Nakazi, Some special bounded homomorphism of uniform algebras and dilations, Department of Mathematics, Hokkaido University, Sapporo 060, Japan, preprint, 1992, 1-9.
- [9] I. Suciu, Function Algebras, Noordhoff Intern. Publ. Leyden, The Netherlands, 1975. MR0370199(51 #6428).
- [10] T.P. Srinivasan and Ju-Kwei Wang, Weak* Dirichlet algebras, Function Algebras, Scott, Foresman and Co, 1966, 216-249. MR0198282(33 #6441).

Politehnica University of Timişoara, Romania. e-mail: adinajuratoni@yahoo.com

Surveys in Mathematics and its Applications 1 (2006), 51 – 60 http://www.utgjiu.ro/math/sma