ISSN 1842-6298 Volume **1** (2006), 23 – 32

ON THE LINKING ALGEBRA OF HILBERT MODULES AND MORITA EQUIVALENCE OF LOCALLY C*-ALGEBRAS

Maria Joiţa

Abstract. In this paper we introduce the notion of linking algebra of a Hilbert module over a locally C^* -algebra and we extend in the context of locally C^* -algebras a result of Brown, Green and Rieffel [Pacific J.,1977] which states that two C^* -algebras are strongly Morita equivalent if and only if they are isomorphic with two complementary full corners of a C^* -algebra.

1 Introduction and preliminaries

A locally C^* -algebra is a complete Hausdorff complex topological *-algebra A whose topology is determined by a directed family of C^* -seminorms in the sense that a net $\{a_i\}_{i\in I}$ converges to 0 if and only if the net $\{p(a_i)\}_{i\in I}$ converges to 0 for all continuous C^* -seminorm p on A. The term of locally C^* -algebra is due to Inoue [3].

Now, we recall some facts about locally C^* -algebras from [2], [3], [5] and [8].

For a given locally C^* -algebra A we denote by S(A) the set of all continuous C^* -seminorms on A. For $p \in S(A)$, the quotient *-algebra $A/\ker p$, denoted by A_p , where $\ker p = \{a \in A; p(a) = 0\}$ is a C^* -algebra in the C^* -norm induced by p. The canonical map from A to A_p is denoted by π_p . For $p, q \in S(A)$ with $p \ge q$, there is a surjective canonical map π_{pq} from A_p onto A_q such that $\pi_{pq}(\pi_p(a)) = \pi_q(a)$ for all $a \in A$. Then $\{A_p; \pi_{pq}\}_{p,q \in S(A), p \ge q}$ is an inverse system of C^* -algebras and $\lim_{t \to T} A_p$ is

a locally C^* -algebra which can be identified with A.

A Fréchet locally C^* -algebra is a locally C^* -algebra whose topology is determined by a countable family of C^* -seminorms.

A morphism of locally C^* -algebras is a continuous *-morphism from a locally C^* algebra A to another locally C^* -algebra B. An isomorphism of locally C^* -algebras

Keywords: locally $C^{\ast}\mbox{-algebras},$ strongly Morita equivalence, linking algebra.

²⁰⁰⁰ Mathematics Subject Classification: 46L08, 46L05

This research was partially supported by grant CEEX-code PR-D11-PT00-48/2005 and partially by CNCSIS grant A1065/2006 from the Romanian Ministry of Education and Research.

http://www.utgjiu.ro/math/sma

from A to B is a bijective map $\Phi : A \to B$ such that Φ and Φ^{-1} are morphisms of locally C^* -algebras.

Hilbert modules over locally C^* -algebras are generalizations of Hilbert C^* -modules by allowing the inner product to take values in a locally C^* -algebra rather than in a C^* -algebra. Here we recall some facts about Hilbert modules over locally C^* algebras from [5] and [8].

A pre-Hilbert A-module is a complex vector space E which is also a right A-module, compatible with the complex algebra structure, equipped with an A-valued inner product $\langle \cdot, \cdot \rangle : E \times E \to A$ which is \mathbb{C} -and A-linear in its second variable and satisfies the following relations:

- i. $\langle \xi, \eta \rangle^* = \langle \eta, \xi \rangle$ for every $\xi, \eta \in E$;
- ii. $\langle \xi, \xi \rangle \ge 0$ for every $\xi \in E$;
- iii. $\langle \xi, \xi \rangle = 0$ if and only if $\xi = 0$.

We say that E is a Hilbert A-module if E is complete with respect to the topology determined by the family of seminorms $\{\overline{p}_E\}_{p\in S(A)}$ where $\overline{p}_E(\xi) = \sqrt{p(\langle \xi, \xi \rangle)}, \xi \in E$.

We say that a Hilbert A -module E is full if the linear subspace $\langle E, E \rangle$ of A generated by $\{\langle \xi, \eta \rangle, \xi, \eta \in E\}$ is dense in A.

Let *E* be a Hilbert *A*-module. For $p \in S(A)$, ker $\overline{p}_E = \{\xi \in E; \overline{p}_E(\xi) = 0\}$ is a closed submodule of *E* and the quotient linear space $E/\ker \overline{p}_E$, denoted by E_p , is a Hilbert A_p -module with $(\xi + \ker \overline{p}_E)\pi_p(a) = \xi a + \ker \overline{p}_E$ and $\langle \xi + \ker \overline{p}_E, \eta + \ker \overline{p}_E \rangle = \pi_p(\langle \xi, \eta \rangle)$. The canonical map from *E* onto E_p is denoted by σ_p^E . For $p, q \in S(A), p \ge q$ there is a canonical surjective morphism of vector spaces σ_{pq}^E from E_p onto E_q such that $\sigma_{pq}^E(\sigma_p^E(\xi)) = \sigma_q^E(\xi), \xi \in E$. Then $\{E_p; A_p; \sigma_{pq}^E, \pi_{pq}\}_{p,q \in S(A), p \ge q}$ is an inverse system of Hilbert *C*^{*}-modules in the following sense: $\sigma_{pq}^E(\xi_p a_p) = \sigma_{pq}^E(\xi_p)\pi_{pq}(a_p), \xi_p \in E_p, a_p \in A_p; \langle \sigma_{pq}^E(\xi_p), \sigma_{pq}^E(\eta_p) \rangle = \pi_{pq}(\langle \xi_p, \eta_p \rangle), \xi_p, \eta_p \in E_p; \sigma_{pp}^E(\xi_p) = \xi_p, \xi_p \in E_p$ and $\sigma_{qr}^E \circ \sigma_{pq}^E = \sigma_{pr}^E$ if $p \ge q \ge r$, and $\lim_{t \to p} E_p$ is a Hilbert *A*-module which can be

identified with E.

Let E and F be Hilbert A-modules. The set $L_A(E, F)$ of all adjointable A-module morphisms from E into F becomes a locally convex space with topology defined by the family of seminorms $\{\tilde{p}_{L_A(E,F)}\}_{p\in S(A)}$, where $\tilde{p}_{L_A(E,F)}(T) = \|(\pi_p)_*(T)\|_{L_{A_p}(E_p,F_p)}, T \in L_A(E,F)$ and $(\pi_p)_*(T)(\xi + \ker \bar{p}_E) = T\xi + \ker \bar{p}_F, \xi \in E$. Moreover, $\{L_{A_p}(E_p,F_p); (\pi_{pq})_*\}_{p,q\in S(A),p\geq q}$, where $(\pi_{pq})_* : L_{A_p}(E_p,F_p) \to L_{A_q}(E_q,F_q), (\pi_{pq})_*(T_p)(\sigma_q^E(\xi)) = \sigma_{pq}^F(T_p(\sigma_p^E(\xi)))$, is an inverse system of Banach spaces, and $\lim_{f \to p} L_{A_p}(E_p,F_p)$ can be identified with $L_A(E,F)$. Thus topologized,

 $L_A(E, E)$ becomes a locally C^{*}-algebra, and we write $L_A(E)$ for $L_A(E, E)$.

We say that the Hilbert A-modules E and F are unitarily equivalent if there is a unitary element U in $L_A(E, F)$ (namely, $U^*U = \mathrm{id}_E$ and $UU^* = \mathrm{id}_F$).

http://www.utgjiu.ro/math/sma

For $\xi \in E$ and $\eta \in F$ we consider the rank one homomorphism $\theta_{\eta,\xi}$ from E into F defined by $\theta_{\eta,\xi}(\zeta) = \eta \langle \xi, \zeta \rangle$. Clearly, $\theta_{\eta,\xi} \in L_A(E,F)$ and $\theta^*_{\eta,\xi} = \theta_{\xi,\eta}$. We denote by $K_A(E,F)$ the closed linear subspace of $L_A(E,F)$ spanned by $\{\theta_{\eta,\xi}; \xi \in E, \eta \in F\}$, and we write $K_A(E)$ for $K_A(E,E)$. Moreover, $K_A(E,F)$ may be identified with $\lim_{\xi \to F} K_{A_p}(E_p,F_p)$.

Two locally C^* -algebras A and B are strongly Morita equivalent if there is a full Hilbert A -module E such that the locally C^{*}-algebras B and $K_A(E)$ are isomorphic [4]. In [4], we prove that the strong Morita equivalence is an equivalence relation on the set of all locally C^* -algebras. Also we prove that two Fréchet locally C^* -algebras A and B are strongly Morita equivalent if and only if they are stably isomorphic. This result extends in the context of locally C^* -algebras a well known result of Brown, Green and Rieffel [1, Theorem 1.2]. In this paper, we extend in the context of locally C^* -algebras another result of Brown, Green and Rieffel [1, Theorem 1.1] which states that two C^* -algebras A and B are strongly Morita equivalent if and only if there is a C^* -algebra C such that A and B are isomorphic with two complementary full corners in C, Theorem 9. For this, we introduce the notion of linking algebra of a Hilbert module E over a locally C^* -algebra A. Finally, using the fact that any Hilbert C^{*}-module E is non-degenerate as Hilbert module (that is, for any $\xi \in E$ there is $\eta \in E$ such that $\xi = \eta \langle \eta, \eta \rangle$, and taking into account that the linking algebra of E is in fact the inverse limit of the linking algebras of $E_p, p \in S(A)$, we prove that any Hilbert module E over a locally C^* -algebra A is non-degenerate as Hilbert module, Proposition 10.

2 The main results

Let A be a locally C^* -algebra. A multiplier of A is a pair (l, r), where l and r are linear maps from A to A such that l(ab) = l(a)b, r(ab) = ar(b) and al(b) = r(a)b for all a and b in A. The set M(A) of all multipliers of A is an algebra with involution; addition is defined as usual, multiplication is $(l_1, r_1) (l_2, r_2) = (l_1 l_2, r_1 r_2)$ and involution is $(l, r)^* = (r^*, l^*)$, where $r^*(a) = r(a^*)^*$ and $l^*(a) = l(a^*)^*$ for all $a \in A$. For each $p \in S(A)$, the map $p_{M(A)} : M(A) \to [0, \infty)$ defined by $p_{M(A)}(l, r) =$ $\sup\{p(l(a)); a \in A, p(a) \leq 1\}$ is a C^{*}-seminorm on M(A), and M(A) with the topology determined by the family of C^{*} -seminorms $\{p_{M(A)}\}_{p \in S(A)}$ is a locally C^{*}-algebra [8].

Let $p, q \in S(A)$ with $p \geq q$. Since the C^* -morphism $\pi_{pq} : A_p \to A_q$ is surjective, it extends to a unique morphism of W^* -algebras $\pi'_{pq} : A''_p \to A''_q$, where A''_p is the enveloping W^* -algebra of A_p . Moreover, $\pi''_{pq}(M(A_p)) \subseteq M(A_q)$, and $\{M(A_p); \pi''_{pq}|_{M(A_p)}\}_{p\geq q, p, q\in S(A)}$ is an inverse system of C^* -algebras. The locally C^* -algebras M(A) and $\lim M(A_p)$ are isomorphic [8].

p

http://www.utgjiu.ro/math/sma

Any locally C^* -algebra A is a Hilbert A -module with the inner product defined by $\langle a, b \rangle = a^*b$, $a, b \in A$, and the locally C^* -algebras M(A) and $L_A(A)$ are isomorphic [8].

Let C be a locally C^* -algebra.

Definition 1. A locally C^* -subalgebra A of C is called a corner if there is a projection $\mathcal{P} \in M(C)$ (that is, $\mathcal{P} = \mathcal{P}^*$ and $\mathcal{PP} = \mathcal{P}$) such that $A = \mathcal{P}C\mathcal{P}$.

Remark 2. If A is a corner in C, then $A_p = \pi_p''(\mathcal{P}) C_p \pi_p''(\mathcal{P})$ and so A_p is a corner in C_p for each $p \in S(C)$.

Definition 3. Two corners \mathcal{PCP} and \mathcal{QCQ} in C are complementary if $\mathcal{P} + \mathcal{Q} = 1_{M(C)}$ ($1_{M(C)}$ denotes the unit of M(C)).

Remark 4. If \mathcal{PCP} and \mathcal{QCQ} are two complementary corners in C, then $\pi''_p(\mathcal{P})C_p$ $\pi''_p(\mathcal{P})$ and $\pi''_p(\mathcal{Q})C_p\pi''_p(\mathcal{Q})$ are two complementary corners in C_p for each $p \in S(C)$.

Definition 5. A corner \mathcal{PCP} in C is full if $C\mathcal{PC}$ is dense in C.

Remark 6. If \mathcal{PCP} is a full corner in C, then $\pi_p''(\mathcal{P})C_p\pi_p''(\mathcal{P})$ is a full corner in C_p for each $p \in S(C)$.

Proposition 7. Let C be a locally C^* -algebra and let A be a full corner in C. Then A and C are strongly Morita equivalent.

Proof. Let $\mathcal{P} \in M(C)$ such that $A = \mathcal{P}C\mathcal{P}$. Then $C\mathcal{P}$ is a full Hilbert A -module with the action of A on $C\mathcal{P}$ defined by $(c\mathcal{P}, a) \to ca$ and the inner product defined by $\langle c\mathcal{P}, d\mathcal{P} \rangle = \mathcal{P}c^*d\mathcal{P}$. Moreover, for each $p \in S(C)$, the Hilbert A_p -modules $(C\mathcal{P})_p$ and $C_p \pi_p''(\mathcal{P})$ are unitarily equivalent. Then the locally C^* -algebras $K_A(C\mathcal{P})$ and $\lim_{t \to p} K_{A_p}(C_p \pi_p''(\mathcal{P}))$ are isomorphic [8, Proposition 4.7].

For each $p \in S(A)$, since A_p is a full corner in C_p , the C^* -algebras A_p and C_p are strongly Morita equivalent [1, Theorem 1.1]. Moreover, $C_p \pi_p''(\mathcal{P})$ is a full Hilbert A_p -module such that the C^* -algebras $K_{A_p}\left(C_p \pi_p''(\mathcal{P})\right)$ and C_p are isomorphic. The linear map $\Phi_p: C_p \to K_{A_p}\left(C_p \pi_p''(\mathcal{P})\right)$ defined by

$$\Phi_p\left(\pi_p\left(c\mathcal{P}d\right)\right) = \theta_{\pi_p(c\mathcal{P}),\pi_p(d^*\mathcal{P})}$$

is a morphism of C^* -algebras. Indeed, from

$$\begin{aligned} \|\Phi_p\left(\pi_p\left(c\mathcal{P}d\right)\right)\|_{K_{A_p}\left(C_p\pi_p''(\mathcal{P})\right)} &= \|\theta_{\pi_p(c\mathcal{P}),\pi_p(d^*\mathcal{P})}\|_{K_{A_p}\left(C_p\pi_p''(\mathcal{P})\right)} \\ &= \sup\{\|\pi_p\left(c\mathcal{P}de\mathcal{P}\right)\|_{C_p}; e \in C, \|\pi_p\left(e\mathcal{P}\right)\|_{C_p} \le 1\} \\ &\leq \|\pi_p\left(c\mathcal{P}d\right)\|_{C_p}\end{aligned}$$

Surveys in Mathematics and its Applications 1 (2006), 23 – 32 http://www.utgjiu.ro/math/sma for all $c, d \in E$, we conclude that Φ_p is continuous, and since

$$\Phi_p\left(\pi_p\left(c\mathcal{P}d\right)^*\right) = \theta_{\pi_p\left(d^*\mathcal{P}\right),\pi_p\left(c\mathcal{P}\right)} = \theta^*_{\pi_p\left(c\mathcal{P}\right),\pi_p\left(d^*\mathcal{P}\right)} = \Phi_p\left(\pi_p\left(c\mathcal{P}d\right)\right)^*$$

and

$$\begin{split} \Phi_{p}\left(\pi_{p}\left(c\mathcal{P}d\right)\right)\Phi_{p}\left(\pi_{p}\left(e\mathcal{P}f\right)\right) &= \theta_{\pi_{p}(c\mathcal{P}),\pi_{p}(d^{*}\mathcal{P})}\theta_{\pi_{p}(e\mathcal{P}),\pi_{p}(f^{*}\mathcal{P})}\\ &= \theta_{\pi_{p}(c\mathcal{P}),\pi_{p}(f^{*}\mathcal{P}e^{*}d^{*})}\\ &= \Phi_{p}\left(\pi_{p}\left(c\mathcal{P}de\mathcal{P}f\right)\right) \end{split}$$

for all $c, d, e, f \in C$, Φ_p is a morphism of C^* -algebras. Moreover, Φ_p is surjective. If $\Phi_p(\pi_p(c\mathcal{P}d)) = 0$, then $\pi_p(c\mathcal{P}de\mathcal{P}) = 0$ for all $e \in C$, in particular we have $\pi_p(c\mathcal{P}dd^*\mathcal{P}c^*) = 0$. This implies that $\pi_p(c\mathcal{P}d) = 0$ and so Φ_p is injective. Therefore Φ_p is an isomorphism of C^* -algebras from C_p onto $K_{A_p}(C_p\pi_p''(\mathcal{P}))$.

It is not difficult to check that $(\Phi_p)_p$ is an inverse system of isomorphisms of C^* -algebras. Let $\Phi = \lim_{\substack{\leftarrow p \\ p \end{pmatrix}} \Phi_p$. Then Φ is an isomorphism of locally C^* -algebras from $\lim_{\substack{\leftarrow p \\ p \end{pmatrix}} C_p$ onto $\lim_{\substack{\leftarrow p \\ p \end{pmatrix}} K_{A_p} \left(C_p \pi_p''(\mathcal{P}) \right)$. From this fact and taking into account that the locally C^* -algebras $\lim_{\substack{\leftarrow p \\ p \end{pmatrix}} K_{A_p} \left(C_p \pi_p''(\mathcal{P}) \right)$ and $K_A(C\mathcal{P})$ can be identified as well as the locally C^* -algebras $\lim_{\substack{\leftarrow p \\ p \end{pmatrix}} C_p$ and C, we conclude that the locally C^* -algebras $K_A(C\mathcal{P})$ and C are isomorphic. Therefore the locally C^* -algebras A and C are strongly Morita equivalent.

From Proposition 7 and taking into account that the strong Morita equivalence is an equivalence relation on the set of all locally C^* -algebras we obtain the following corollary.

Corollary 8. Let C be a locally C^* -algebra. If A and B are two full corners in C, then A and B are strongly Morita equivalent.

Let E be a Hilbert A-module.

The direct sum $A \oplus E$ of the Hilbert A -modules A and E is a Hilbert A -module with the action of A on $A \oplus E$ defined by

$$(A \oplus E, A) \
i (a \oplus \xi, b) \rightarrow (a \oplus \xi) \ b = ab \oplus \xi b \in A \oplus E$$

and the inner product defined by

$$(A \oplus E, A \oplus E) \ \Rightarrow (a \oplus \xi, b \oplus \eta) \to \langle a \oplus \xi, b \oplus \eta \rangle = a^*b + \langle \xi, \eta \rangle \in A.$$

Moreover, for each $p \in S(A)$, the Hilbert A_p -modules $(A \oplus E)_p$ and $A_p \oplus E_p$ can be identified. Then the locally C^* -algebras $L_A(A \oplus E)$ and $\lim_{\leftarrow} L_{A_p}(A_p \oplus E_p)$ can be

identified.

Let $a \in A, \xi \in E, \eta \in E$ and $T \in K_A(E)$. The map

$$L_{a,\xi,\eta,T}: A \oplus E \to A \oplus E$$

defined by

$$L_{a,\xi,\eta,T}(b\oplus\zeta) = (ab + \langle\xi,\zeta\rangle) \oplus (\eta b + T(\zeta))$$

is an element in $L_A(A \oplus E)$. Moreover, $(L_{a,\xi,\eta,T})^* = L_{a^*,\eta,\xi,T^*}$. The locally C^* -subalgebra of $L_A(A \oplus E)$ generated by

$$\{L_{a,\xi,\eta,T}; a \in A, \xi \in E, \eta \in E, T \in K_A(E)\}\$$

is denoted by $\mathcal{L}(E)$ and it is called the linking algebra of E.

By Lemma III 3.2 in [7], we have

$$\mathcal{L}(E) = \lim_{\stackrel{\leftarrow}{p}} \overline{(\pi_p)_* (\mathcal{L}(E))},$$

where $\overline{(\pi_p)_*(\mathcal{L}(E))}$ means the closure of the vector space $(\pi_p)_*(\mathcal{L}(E))$ in $L_{A_p}(A_p \oplus E_p)$. Let $p \in S(A)$. From

$$(\pi_p)_* (L_{a,\xi,\eta,T}) = L_{\pi_p(a),\sigma_p^E(\xi),\sigma_p^E(\eta),(\pi_p)_*(T)}$$

for all $a, b \in A$, for all $\xi, \eta, \zeta \in E$, and taking into account that $\mathcal{L}(E_p)$, the linking algebra of E_p , is generated by

$$\{L_{\pi_p(a),\sigma_n^E(\xi),\sigma_n^E(\eta),(\pi_p)_*(T)}; a \in A, \xi \in E, \eta \in E, T \in K_A(E)\}$$

since $\pi_p(A) = A_p$, $\sigma_p^E(E) = E_p$, and $\overline{(\pi_p)_*(K(E))} = K(E_p)$, we conclude that

$$\mathcal{L}(E) = \lim_{\stackrel{\leftarrow}{p}} \mathcal{L}(E_p).$$

Moreover, since $\mathcal{L}(E_p) = K_{A_p}(A_p \oplus E_p)$ and the locally C^* -algebras $K_A(A \oplus E)$ and $\lim_{\stackrel{\leftarrow}{p}} K_{A_p}(A_p \oplus E_p)$ can be identified, the linking algebra of E coincides with $K_A(A \oplus E)$.

The following theorem is a generalization of Theorem 1.1 in [1].

Theorem 9. Two locally C^* -algebras A and B are strongly Morita equivalent if and only if there is a locally C^* -algebra C with two complementary full corners isomorphic with A respectively B.

Proof. First we suppose that A and B are strongly Morita equivalent. Then there is a full Hilbert A -module E such that the locally C^* -algebras $K_A(E)$ and B are isomorphic. Let $C = \mathcal{L}(E)$. Then, for each $p \in S(A)$, $C_p = \mathcal{L}(E_p)$. By Theorem 1.1 in [1] we have:

- 1. $i_{A_p} : A_p \to C_p$ defined by $i_{A_p}(a_p) = L_{a_p,0,0,0}$ is an isometric morphism of C^* -algebras;
- 2. the map $\mathcal{P}_p : A_p \oplus E_p \to A_p \oplus E_p$ defined by $\mathcal{P}_p \left(a_p \oplus \xi_p \right) = a_p \oplus 0$ is a projection in $L_{A_p} \left(A_p \oplus E_p \right)$;
- 3. $C_p \mathcal{P}_p C_p$ is dense in C_p ;
- 4. $\mathcal{P}_p C_p \mathcal{P}_p = i_{A_p}(A_p);$
- 5. $i_{K_{A_p}(E_p)} : K_{A_p}(E_p) \to C_p$ defined by $i_{K_{A_p}(E_p)}(T_p) = L_{0,0,0,T_p}$ is an isometric morphism of C^* -algebras;
- 6. the map $\mathcal{Q}_p : A_p \oplus E_p \to A_p \oplus E_p$ defined by $\mathcal{Q}_p(a_p \oplus \xi_p) = 0 \oplus \xi_p$ is a projection in $L_{A_p}(A_p \oplus E_p)$;
- 7. $C_p \mathcal{Q}_p C_p$ is dense in C_p ;
- 8. $\mathcal{Q}_p C_p \mathcal{Q}_p = i_{K_{A_p}(E_p)}(K_{A_p}(E_p)).$

It is not difficult to check that $(\mathcal{P}_p)_p$ and $(\mathcal{Q}_p)_p$ are elements in $\lim_{\stackrel{\leftarrow}{p}} L_{A_p}(A_p \oplus E_p)$. Let $\mathcal{P} \in L_A(A \oplus E)$ such that $(\pi_p)_*(\mathcal{P}) = \mathcal{P}_p$ for all $p \in S(A)$ and $\mathcal{Q} \in L_A(A \oplus E)$ such that $(\pi_p)_*(\mathcal{Q}) = \mathcal{Q}_p$ for each $p \in S(A)$. Clearly, \mathcal{P} and \mathcal{Q} are projections in $L_A(A \oplus E)$ and $\mathcal{P} + \mathcal{Q} = id_{A \oplus E}$. Also it is not difficult to check that $(i_{A_p})_p$ is an inverse system of isometric morphisms of C^* -algebras as well as $(i_{K_{A_p}(E_p)})_p$. Let $i_A = \lim_{\stackrel{\leftarrow}{p}} i_{A_p}$ and $i_{K_A(E)} = \lim_{\stackrel{\leftarrow}{p}} i_{K_{A_p}(E_p)}$. Then i_A is the embedding of A in C and $i_{K_A(E)}$ is the embedding of $K_A(E)$ in C. Moreover, we have:

$$i_A(A) = \lim_{\stackrel{\leftarrow}{p}} i_{A_p}(A_p) = \lim_{\stackrel{\leftarrow}{p}} \mathcal{P}_p C_p \mathcal{P}_p = \lim_{\stackrel{\leftarrow}{p}} \overline{\pi_p(\mathcal{P}C\mathcal{P})} = \mathcal{P}C\mathcal{P};$$

$$i_{K_{A}(E)}(K_{A}(E)) = \lim_{\stackrel{\leftarrow}{p}} i_{K_{A_{p}}(E_{p})}(K_{A_{p}}(E_{p})) = \lim_{\stackrel{\leftarrow}{p}} \mathcal{Q}_{p}C_{p}\mathcal{Q}_{p}$$
$$= \lim_{\stackrel{\leftarrow}{p}} \overline{\pi_{p}(\mathcal{Q}C\mathcal{Q})} = \mathcal{Q}C\mathcal{Q}$$

Therefore the locally C^* -algebras A and $K_A(E)$ are isomorphic with two complementary corners in C. Moreover, these corners are full since

$$\overline{C\mathcal{P}C} = \lim_{\stackrel{\leftarrow}{p}} \overline{\pi_p(C\mathcal{P}C)} = \lim_{\stackrel{\leftarrow}{p}} \overline{C_p\mathcal{P}_pC_p} = \lim_{\stackrel{\leftarrow}{p}} C_p = C$$

Surveys in Mathematics and its Applications 1 (2006), 23 – 32 http://www.utgjiu.ro/math/sma and

$$\overline{CQC} = \lim_{\stackrel{\leftarrow}{p}} \overline{\pi_p(CQC)} = \lim_{\stackrel{\leftarrow}{p}} \overline{C_pQ_pC_p} = \lim_{\stackrel{\leftarrow}{p}} C_p = C.$$

Thus we showed that the locally C^* -algebras A and B are isomorphic with two complementary full corners in C.

The converse implication is proved by Corollary 8.

It is well known that a Hilbert module E over a locally C^* -algebra A is nondegenerate as topological A -module in the sense that the linear space generated by $\{\xi a, \xi \in E, a \in A\}$ is dense in E (see, for example, [5]). Also it is well known that a Hilbert C^* -module E is non-degenerate as Hilbert module, that is, for any $\xi \in E$ there is $\eta \in E$ such that $\xi = \eta \langle \eta, \eta \rangle$. By analogy with the case of Hilbert C^* -modules, we prove that any Hilbert module E over a locally C^* -algebra A is non-degenerate as Hilbert module.

Proposition 10. Let E be a Hilbert A -module. Then for each $\xi \in E$ there is $\eta \in E$ such that $\xi = \eta \langle \eta, \eta \rangle$.

Proof. Let $T = L_{0,\xi,\xi,0} \in \mathcal{L}(E)$. Clearly, $T = T^*$. As in the case of Hilbert C^* -modules, consider the function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(t) = t^{\frac{1}{3}}$. Then, for each $p \in S(A)$, there is $\eta_p \in E_p$ such that

$$f\left(L_{0,\sigma_p^E(\xi),\sigma_p^E(\xi),0}\right) = L_{0,\eta_p,\eta_p,0}$$

(see, for example, [9, Proposition 2.31]) and moreover, $\sigma_p^E(\xi) = \eta_p \langle \eta_p, \eta_p \rangle$. But, by functional calculus (see, for example, [8]),

$$(\pi_p)_*(f(T)) = f((\pi_p)_*(T)) = f(L_{0,\sigma_p^E(\xi),\sigma_p^E(\xi),0})$$

for all $p \in S(A)$, and then

$$\begin{split} L_{0,\sigma_{pq}^{E}(\eta_{p}),\sigma_{pq}^{E}(\eta_{p}),0} &= (\pi_{pq})_{*} \left(L_{0,\eta_{p},\eta_{p},0} \right) \\ &= (\pi_{pq})_{*} \left(f \left(L_{0,\sigma_{p}^{E}(\xi),\sigma_{p}^{E}(\xi),0} \right) \right) \\ &= (\pi_{pq})_{*} \circ (\pi_{p})_{*} \left(f \left(L_{0,\xi,\xi,0} \right) \right) \\ &= (\pi_{q})_{*} \left(f \left(L_{0,\xi,\xi,0} \right) \right) \\ &= f \left(L_{0,\sigma_{q}^{E}(\xi),\sigma_{q}^{E}(\xi),0} \right) \\ &= L_{0,\eta_{q},\eta_{q},0} \end{split}$$

for all $p, q \in S(A)$ with $p \ge q$. This implies that for $p, q \in S(A)$ with $p \ge q$ we have

$$\left\langle \sigma_{pq}^{E}\left(\eta_{p}\right)-\eta_{q},\sigma_{q}^{E}\left(\zeta\right)\right\rangle =0$$

Surveys in Mathematics and its Applications 1 (2006), 23 – 32 http://www.utgjiu.ro/math/sma

for all $\zeta \in E$. From this fact, and taking into account that $\sigma_q^E(E) = E_q$, we obtain $\sigma_{pq}^E(\eta_p) = \eta_q$. Therefore $(\eta_p)_p \in \lim_{\leftarrow p \ p} E_p$. Let $\eta \in E$ such that $\sigma_p^E(\eta) = \eta_p$ for all $p \in S(A)$. From

$$\begin{aligned} \sigma_{p}^{E}\left(\xi - \eta \left\langle \eta, \eta \right\rangle\right) &= \sigma_{p}^{E}\left(\xi\right) - \sigma_{p}^{E}\left(\eta\right) \left\langle\sigma_{p}^{E}\left(\eta\right), \sigma_{p}^{E}\left(\eta\right)\right\rangle \\ &= \sigma_{p}^{E}\left(\xi\right) - \eta_{p}\left\langle\eta_{p}, \eta_{p}\right\rangle = 0 \end{aligned}$$

for all $p \in S(A)$, we deduce that $\xi = \eta \langle \eta, \eta \rangle$ and the proposition is proved.

References

- L.G. Brown, P. Green and M.A. Rieffel, Stable isomorphism and strong Morita equivalence of C^{*}-algebras, Pacific J. Math. **71** (1977), 349-363. MR0463928(57 #3866). Zbl 0362.46043.
- M. Fragoulopoulou, Topological algebras with involution, North-Holland Mathematics Studies, 200. Elsevier Science B.V., Amsterdam, 2005. xvi+495 pp. ISBN: 0-444-52025-2. MR2172581(2006m:46067). Zbl pre02176199.
- [3] A. Inoue, Locally C*-algebras, Mem. Faculty Sci. Kyushu Univ. Ser. A, 25(1971), 197-235. MR0305089(46 #4219). Zbl 0227.46060.
- [4] M. Joiţa, Morita equivalence for locally C*-algebras, Bull. London Math. Soc. 36(2004), 802-810. MR2083756(2005d:46125). Zbl 1076.46047.
- [5] M. Joiţa, *Hilbert modules over locally C^{*} -algebras*, University of Bucharest Press, (2006), 150 pp. ISBN 973737128-3
- [6] E. C. Lance, Hilbert C^{*}-modules. A toolkit for operator algebraists, London Mathematical Society Lecture Note Series 210, Cambridge University Press, Cambridge 1995. MR1325694(96k:46100). Zbl 0822.46080.
- [7] A. Mallios, *Topological algebras: Selected Topics*, North Holland, Amsterdam, 1986. MR0857807(87m:46099). Zbl 0597.46046.
- [8] N. C. Phillips, *Inverse limits of C^{*}-algebras*, J. Operator Theory, **19** (1988), 159-195.MR0996445(90j:46052). Zbl 0662.46063.
- I. Raeburn, P.D. Williams, Morita equivalence and continuous-trace C^{*}algebras, Mathematical Surveys and Monographs, 60. American Mathematical Society, Providence, RI, 1998. xiv+327 pp. ISBN: 0-8218-0860-5. MR1634408(2000c:46108). Zbl 0922.46050.

University of Bucharest, Faculty of Chemistry, Department of Mathematics, Bd. Regina Elisabeta, Nr. 4-12, Bucharest, Romania. e-mail: mjoita@fmi.unibuc.ro http://www.geocities.com/m_joita/

Surveys in Mathematics and its Applications 1 (2006), 23 – 32 http://www.utgjiu.ro/math/sma