Properties of an asymmetric annihilation process

Arvind Ayyer and Volker Strehl

SLC 64 - Lyon, March 2010

The annihilation process

Proof of the eigenvalue conjecture (outline)

Linear algebra approach for a generalized partition function

Denominators of weighted shifted tableaux

For a detailed discussion of the physical model see:

Arvind Ayyer, Kirone Mallick (C.A.E. Saclay)
Exact results for an asymmetric annihilation process with open boundaries
J. Phys. A: Math. Gen. 343045033 2010, 22pp.

In this paper the model is introduced and various properties are obtained: transition matrices, transfer matrices, partition functions, distributions related to particular states etc. The paper ends with a conjecture for the eigenvalues of the transition matrices. A proof of (a generalized version of) this conjecture is outlined in these slides. Furthermore, transfer matrices and partition functions for a generalized model are given. Finally, an interesting property of shifted standard tableaux that is related to the partition functions is sketched.

The model (1)

- right shift (1)

- annihilation (λ)

- left creation (α)

- left annihilation $(\alpha \lambda)$

- right annihilation (β)

- Example of a transition matrix $(L=2)$

	00	01	10	11
00	\star	β	$\alpha \lambda$	λ
01		\star	λ	$\alpha \lambda$
10	α		\star	β
11		α		\star

Note: The diagonal elements \star must be chosen so that column sums vanish

- Example of a transition matrix $(L=3)$

	000	001	010	011	100	101	110	111
000	\star	β		λ	$\alpha \lambda$		λ	
001		\star	1			$\alpha \lambda$		λ
010			\star	β	1		$\alpha \lambda$	
011				\star		1		$\alpha \lambda$
100	α				\star	β		λ
101		α				\star	1	
110			α				\star	β
111				α				\star

Note: The diagonal elements \star must be chosen so that column sums vanish

- inductive structure of the transition matrices $(\lambda=1)$ Let

$$
\sigma=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

and $\mathbf{1}_{L}$ the $\left(2^{L} \times 2^{L}\right)$-unit matrix Define

$$
M_{1}=\left[\begin{array}{cc}
-\alpha & \alpha+\beta \\
\alpha & -\alpha-\beta
\end{array}\right]
$$

and then inductively the $\left(2^{L} \times 2^{L}\right)$-matrices

$$
M_{L}=\left[\begin{array}{cc}
M_{L-1}-\alpha\left(\sigma \otimes \mathbf{1}_{L-2}\right) & \alpha \mathbf{1}_{L-1}+\left(\sigma \otimes \mathbf{1}_{L-2}\right) \\
\alpha \mathbf{1}_{L-1} & M_{L-1}-\alpha\left(\sigma \otimes \mathbf{1}_{L-2}\right)-\mathbf{1}_{L-1}
\end{array}\right]
$$

- The conjecture by Ayyer and Mallick

The characteristic polynomial $P_{L}(x)$ of M_{L} is given by

$$
P_{L}(x)=A_{L}(x) A_{L}(x+2 \alpha+\beta) B_{L}(x+\beta) B_{L}(x+2 \alpha)
$$

where

$$
\begin{aligned}
& A_{L}(x)=\prod_{k \geq 0}(x+2 k)^{\binom{L-1}{2 k}} \\
& B_{L}(x)=\prod_{k \geq 0}(x+2 k+1)^{\binom{L-1}{2 k+1}}
\end{aligned}
$$

1. Proof of the eigenvalue conjecture (outline)

- some notation
- $\mathbb{B}^{L}:$ vector space of bitvectors of length L (over \mathbb{F}_{2})
- $V_{L}=\left\{|\mathbf{b}\rangle ; \mathbf{b} \in \mathbb{B}^{L}\right\}$
- \mathcal{V}_{L} : vector space with basis V_{L} (over an extension of \mathbb{Q})
- $\sigma=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
- For $\mathbf{b}=b_{1} b_{2} \ldots b_{L} \in \mathbb{B}^{L}$

$$
\sigma^{\mathbf{b}}=\sigma^{b_{1} b_{2} \ldots b_{L}}=\sigma^{b_{1}} \otimes \sigma^{b_{2}} \otimes \cdots \otimes \sigma^{b_{L}}
$$

defines a linear transformation $\sigma^{\mathbf{b}}$ of $\mathcal{V}_{L}=\mathcal{V}_{1}^{\otimes L}$ (w.r.t. the basis V_{L})

- For $1 \leq j \leq L$ define involutive mappings

$$
\phi_{j}: \mathbb{B}^{L} \rightarrow \mathbb{B}^{L}:
$$

$$
b_{1} \ldots b_{j-1} b_{j} b_{j+1} \ldots b_{L} \mapsto \phi_{j} \mathbf{b}=b_{1} \ldots b_{j-1} \overline{b_{j}} b_{j+1} \ldots b_{L}
$$

by complementing the j-th component,

- and involutions

$$
\psi_{j}: \mathbb{B}^{L} \rightarrow \mathbb{B}^{L}: \mathbf{b} \mapsto \phi_{j} \phi_{j+1} \mathbf{b}
$$

by complementing components indexed j and $j+1$.
ψ_{L} is the same as ϕ_{L}.

- The \mathcal{A}-transformation
- $\boldsymbol{\alpha}=\left(\alpha_{\mathbf{b}}\right)_{\mathbf{b} \in \mathbb{B}^{\perp}}$ variables
- the transformation $\mathcal{A}_{L}(\boldsymbol{\alpha})$ of \mathcal{V}_{L} is defined by its matrix (w.r.t. the basis V_{L})

$$
A_{L}(\boldsymbol{\alpha})=\sum_{\mathbf{b} \in \mathbb{B}^{L}} \alpha_{\mathbf{b}} \sigma^{\mathbf{b}}
$$

- direct definition (matrix elements)

$$
\langle\mathbf{b}| A_{L}|\mathbf{c}\rangle=\alpha_{\mathbf{b} \oplus \mathbf{c}}, \quad\left(\mathbf{b}, \mathbf{c} \in \mathbb{B}^{L}\right)
$$

where \oplus denotes \mathbb{F}_{2}-addition (exor) of bit vectors.

- Example $(L=2)$

$$
\left[\begin{array}{llll}
\alpha_{00} & \alpha_{01} & \alpha_{10} & \alpha_{11} \\
\alpha_{01} & \alpha_{00} & \alpha_{11} & \alpha_{10} \\
\alpha_{10} & \alpha_{11} & \alpha_{00} & \alpha_{01} \\
\alpha_{11} & \alpha_{10} & \alpha_{01} & \alpha_{00}
\end{array}\right]
$$

- The \mathcal{B}-transformation
- For $1 \leq j \leq L$ define projection operators $\mathcal{P}_{L, j}$ on \mathcal{V}_{L} by

$$
\mathcal{P}_{L, j}=\sum_{\mathbf{b} \in \mathbb{B}^{L}}|\mathbf{b}\rangle\langle\mathbf{b}|-\left|\psi_{j}^{b_{j}}(\mathbf{b})\right\rangle\langle\mathbf{b}|
$$

- For variables $\mathbf{b}=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{L}\right)$ let

$$
\mathcal{B}_{L}(\boldsymbol{\beta})=\sum_{1 \leq j \leq L} \beta_{j} \mathcal{P}_{L, j}
$$

- $B_{L}(\boldsymbol{\beta})$: the matrix representing $\mathcal{B}_{L}(\boldsymbol{\beta})$ in V_{L}
- In the sum for $\mathcal{P}_{L, j}$ only summands for which $b_{j}=1$, i.e., for which $\psi_{j}(\mathbf{b})<\mathbf{b}$, occur.
Indeed: this condition allows only for two situations to contribute:

$$
\begin{array}{lrr}
b_{j} b_{j+1}=10 & \mapsto \overline{b_{j}} \overline{b_{j+1}}=01 & \text { (right shift) } \\
b_{j} b_{j+1}=11 \mapsto \overline{b_{j}} \overline{b_{j+1}}=00 & \text { (annihilation) }
\end{array}
$$

These operators ψ_{j} encode the transitions of our model.

- By definition, $B_{L}(\boldsymbol{\beta})$ is an upper triangular matrix.
- Example for $L=3$ (with $\boldsymbol{\beta}=(\beta, \gamma, \delta)$ in place of $\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$):

$$
\begin{aligned}
& B_{3}(\beta, \gamma, \delta)= \\
& {\left[\begin{array}{cccccccc}
0 & -\delta & 0 & -\gamma & 0 & 0 & -\beta & 0 \\
0 & \delta & -\gamma & 0 & 0 & 0 & 0 & -\beta \\
0 & 0 & \gamma & -\delta & -\beta & 0 & 0 & 0 \\
0 & 0 & 0 & \delta+\gamma & 0 & -\beta & 0 & 0 \\
0 & 0 & 0 & 0 & \beta & -\delta & 0 & -\gamma \\
0 & 0 & 0 & 0 & 0 & \delta+\beta & -\gamma & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \gamma+\beta & -\delta \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \delta+\gamma+\beta
\end{array}\right]}
\end{aligned}
$$

- another linear transformation (over \mathbb{F}_{2})

$$
\Delta: \mathbb{B}^{L} \rightarrow \mathbb{B}^{L}:
$$

$$
\mathbf{b}=\left[b_{1} b_{2} \ldots b_{L}\right] \mapsto \mathbf{b}^{\Delta}=\left[b_{1} b_{2} \ldots b_{L}\right]\left[\begin{array}{cccccc}
1 & 1 & 1 & \ldots & 1 & 1 \\
1 & 1 & 1 & \ldots & 1 & 0 \\
\vdots & \vdots & & & & \\
1 & 1 & 0 & \ldots & 0 & 0 \\
1 & 0 & 0 & \ldots & 0 & 0
\end{array}\right]
$$

- As an example $(L=3)$:

$$
\begin{array}{c|llllllll}
\mathbf{b} & 000 & 001 & 010 & 011 & 100 & 101 & 110 & 111 \\
\hline \mathbf{b}^{\Delta} & 000 & 100 & 110 & 010 & 111 & 011 & 001 & 101
\end{array}
$$

- Main result: Consider the transformation

$$
\mathcal{M}_{L}(\boldsymbol{\alpha}, \boldsymbol{\beta})=\mathcal{A}_{L}(\boldsymbol{\alpha})-\mathcal{B}_{L}(\boldsymbol{\beta})
$$

with its matrix (w.r.t. $\left.V_{L}\right) M_{L}(\boldsymbol{\alpha}, \boldsymbol{\beta})=A_{L}(\boldsymbol{\alpha})-B_{L}(\boldsymbol{\beta})$
Then
$\operatorname{det} M_{L}(\boldsymbol{\alpha}, \boldsymbol{\beta})=\operatorname{det}\left[A_{L}(\boldsymbol{\alpha})-B_{L}(\boldsymbol{\beta})\right]=\prod_{\mathbf{b} \in \mathbb{B}^{L}}\left(\lambda_{\mathbf{b}^{\Delta}}-\boldsymbol{\beta}^{\mathrm{rev}} \cdot \mathbf{b}\right)$
where

- the $\lambda_{\mathbf{b}}$ are the eigenvalues of $\mathcal{A}_{L}(\boldsymbol{\alpha})$

$$
\lambda_{\mathbf{b}}=\sum_{c \in \mathbb{B}^{L}}(-1)^{\mathbf{b} \cdot \mathbf{c}} \alpha_{\mathbf{c}} \quad\left(\mathbf{b} \in \mathbb{B}^{L}\right)
$$

- $\beta^{\text {rev }}=\left(b_{L}, b_{L-1}, \ldots, b_{2}, b_{1}\right)$ is the reverse of $\boldsymbol{\beta}=\left(b_{1}, b_{2}, \ldots, b_{L-2}, b_{L}\right)$
- llustration of the Theorem for $L=3$:

$$
\begin{array}{ccll}
\mathbf{b} & \mathbf{b}^{\Delta} & \lambda_{b^{\Delta}} & (\delta, \gamma, \beta) \cdot \mathbf{b} \\
000 & 000 & {[++++++++] \cdot \boldsymbol{\alpha}} & 0 \\
001 & 100 & {[++++----] \cdot \boldsymbol{\alpha}} & \beta \\
010 & 110 & {[++----++] \cdot \boldsymbol{\alpha}} & \gamma \\
011 & 010 & {[++--++--] \cdot \boldsymbol{\alpha}} & \beta+\gamma \\
100 & 111 & {[+--+-++-] \cdot \boldsymbol{\alpha}} & \delta \\
101 & 011 & {[+--++--+] \cdot \boldsymbol{\alpha}} & \beta+\delta \\
110 & 001 & {[+-+-+-+-] \cdot \boldsymbol{\alpha}} & \gamma+\delta \\
111 & 101 & {[+-+--+-+] \cdot \boldsymbol{\alpha}} & \beta+\gamma+\delta
\end{array}
$$

So, as an example, the line for $\mathbf{b}=101$ contributes the factor

$$
\alpha_{000}-\alpha_{001}-\alpha_{010}+\alpha_{011}+\alpha_{100}-\alpha_{101}-\alpha_{110}+\alpha_{111}-\beta-\delta
$$

to the product.

- Idea of proof:
- Use the Hadamard transform on \mathcal{V}_{L}, given by

$$
H^{\otimes L}=\left(\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\right)^{\otimes L}
$$

to diagonalize $\mathcal{A}_{L}(\boldsymbol{\alpha})$. The basis

$$
W_{L}=\left\{H^{\otimes L}|\mathbf{b}\rangle ; \mathbf{b} \in \mathbb{B}^{L}\right\}=\left\{\left|w^{\mathbf{b}}\right\rangle ; \mathbf{b} \in \mathbb{B}^{L}\right\}
$$

is the adapted ON -basis of \mathcal{V}_{L}

- \mathcal{B}_{L} is not even triangular in the basis W_{L}, but becomes lower triangular w.r.t. the basis

$$
\widetilde{W}_{L}=\left\{\left|w^{\mathbf{b}^{\Delta}}\right\rangle ; \mathbf{b} \in \mathbb{B}^{L}\right\}
$$

namely

$$
\tilde{H}_{L} \cdot B_{L}(\boldsymbol{\beta}) \cdot \tilde{H}_{L}=B_{L}^{\mathrm{t}}\left(\boldsymbol{\beta}^{\mathrm{rev}}\right)
$$

where \widetilde{H}_{L} is the matrix of the Hadamard transformation combined with the Δ-transformation.

- Comments
- The original conjecture by AyYer-Mallick about the eigenvalues of the asymmetric annihilation process is a particular case of the above factorized determinant
- In the original problem the eigenvalues had high multiplicities and the eigenspaces were maximally degenerate (experimental observation) - in the extended "symbolic" model all eigenvalues are simple
- For the extended model a partition function can be computed

$$
Z(\boldsymbol{\alpha}, \boldsymbol{\beta})=\prod_{\mathbf{0} \neq \mathbf{b} \in \mathbb{B}^{L}}\left(\lambda_{b^{\Delta}}^{*}+\boldsymbol{\beta}^{\mathrm{rev}} \cdot \mathbf{b}\right)
$$

where

$$
\lambda_{\mathbf{b}}^{*}=2 \sum_{\mathbf{c}: \mathbf{b} \cdot \mathbf{c}=1} \alpha_{\mathbf{c}} \quad\left(\mathbf{b} \in \mathbb{B}^{L}\right)
$$

which has degree $2^{L}-1$ - instead of $\binom{L+1}{2}$ in the original model.
2. Linear algebra approach for a generalized partition function

- Some notation
- \mathbb{I}_{k} denotes the $2^{k} \times 2^{k}$-identity matrix
- $\sigma=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
- if N is a $2^{n} \times 2^{n}$ matrix with $n>0$, then

$$
N^{\sigma}=N \cdot\left(\sigma \otimes \mathbb{I}_{n-1}\right)
$$

- for matrices $M=\left[m_{i, j}\right]_{\substack{1 \leq i \leq k \\ 1 \leq j \leq \ell}}$ and N (as before)

$$
M \otimes_{\sigma} N=\left[m_{i, j} \cdot N^{\sigma^{i+j}}\right]_{\substack{1 \leq i \leq k \\
1 \leq j \leq \ell}}=\left[\begin{array}{cccc}
m_{1,1} N & m_{1,2} N^{\sigma} & m_{1,3} N & \ldots \\
m_{2,1} N^{\sigma} & m_{2,2} N & m_{2,3} N^{\sigma} & \ldots \\
m_{3,1} N & m_{3,2} N^{\sigma} & m_{3,3} N & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

- a useful homomorphism property

$$
\left(M \otimes_{\sigma} N\right)^{\sigma}=M^{\sigma} \otimes_{\sigma} N^{\sigma}
$$

- generalized transition matrices

$$
\begin{gathered}
M_{1}=\left[\begin{array}{cc}
z & a+b \\
a & z-b
\end{array}\right] \\
M_{2}=\left[\begin{array}{cccc}
z & b & a & c \\
0 & z-b & c & a \\
a & 0 & z-c & b \\
0 & a & 0 & z-b-c
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& M_{3}= \\
& {\left[\begin{array}{cccccccc}
z & b & 0 & c & a & 0 & d & 0 \\
0 & z-b & c & 0 & 0 & a & 0 & d \\
0 & 0 & z-c & b & d & 0 & a & 0 \\
0 & 0 & 0 & z-b-c & 0 & d & 0 & a \\
a & 0 & 0 & 0 & z-d & b & 0 & c \\
0 & a & 0 & 0 & 0 & z-b-d & c & 0 \\
0 & 0 & a & 0 & 0 & 0 & z-c-d & b \\
0 & 0 & 0 & a & 0 & 0 & 0 & z-b-c-d
\end{array}\right]}
\end{aligned}
$$

- writing the transition matrices using the matrices

$$
\sigma=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text { and } \tau=\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right]
$$

$$
M_{1}=z \cdot \mathbb{I}_{1}+a \sigma+b \tau
$$

$$
M_{2}=z \cdot \mathbb{I}_{2}+a \cdot \sigma \otimes \mathbb{I}_{1}+b \cdot \mathbb{I}_{1} \otimes \tau+c \cdot \tau \otimes_{\sigma} \mathbb{I}_{1}
$$

$$
M_{3}=z \cdot \mathbb{I}_{3}+a \cdot \sigma \otimes \mathbb{I}_{2}+b \cdot \mathbb{I}_{2} \otimes \tau+c \cdot \mathbb{I}_{1} \otimes \tau \otimes_{\sigma} \mathbb{I}_{1}+d \cdot \mathbb{I}_{0} \otimes \tau \otimes_{\sigma} \mathbb{I}_{2}
$$

- the general picture

$$
M_{k}=z \cdot \mathbb{I}_{k}+a_{0} \cdot \sigma \otimes \mathbb{I}_{k-1}+\sum_{j=0}^{k-1} a_{j+1} \cdot \mathbb{I}_{k-1-j} \otimes \tau \otimes_{\sigma} \mathbb{I}_{j}
$$

- wanted: transfer matrices $T_{k+1, k}$ of format $2^{k+1} \times 2^{k}$ such that

$$
M_{k+1} \cdot T_{k+1, k}=T_{k+1, k} \cdot M_{k}
$$

- $k=1$

$$
\begin{aligned}
T_{2,1} & =\left[\begin{array}{cc}
a b+b c+c^{2} & a b+a c+b c \\
a c & c^{2} \\
a b+a c & a b \\
0 & a c
\end{array}\right] \\
& =\left[\begin{array}{l}
c \\
a
\end{array}\right] \otimes \underbrace{\left[\begin{array}{cc}
b+c & b \\
0 & c
\end{array}\right]}_{\beta(b, c)}+\left[\begin{array}{l}
a \\
0
\end{array}\right] \otimes \underbrace{\left[\begin{array}{cc}
b & b+c \\
c & 0
\end{array}\right]}_{\beta^{\sigma}(b, c)} \\
& =\left[\begin{array}{l}
c \\
a
\end{array}\right] \otimes \beta(b, c)+\left[\begin{array}{l}
a \\
0
\end{array}\right] \otimes \beta^{\sigma}(b, c)
\end{aligned}
$$

- $k=2$

$$
\begin{aligned}
& T_{3,2}= \\
& {\left[\begin{array}{cccc}
d^{2} c+d^{2} b+d^{3}+d c b+a c b & d^{2} b+c d a+d c b+a c b & d c b+c d a+a b d+a d^{2}+a c b & d^{2} c+a b d+d c b+a c b \\
c d a & (d+c) d^{2} & d^{2} c & (d+c) a d \\
(b+d) a d & a b d & (b+d) d^{2} & d^{2} b \\
0 & a d^{2} & 0 & d^{3} \\
a\left(b d+d^{2}+c b+c d\right) & b a(d+c) & a c b & a c(b+d) \\
0 & (d+c) a d & c d a & 0 \\
0 & 0 & (b+d) a d & a b d \\
0 & 0 & a d^{2}
\end{array}\right]} \\
& =\left[\begin{array}{cc}
c d+d^{2} & a c+a d \\
a d & d^{2} \\
a c+a d & 0 \\
0 & a d
\end{array}\right] \otimes \beta(b, d)+\left[\begin{array}{cc}
a c & c d \\
0 & 0 \\
0 & a c \\
0 & 0
\end{array}\right] \otimes \beta^{\sigma}(b, d)
\end{aligned}
$$

that is

$$
T_{3,2}=\left[\begin{array}{l}
d \\
a
\end{array}\right] \otimes B+\left[\begin{array}{l}
a \\
0
\end{array}\right] \otimes B^{\sigma}
$$

where

$$
\begin{aligned}
B & =\left[\begin{array}{cc}
(c+d) \beta(b, d) & c \beta^{\sigma}(b, d) \\
0 & d \beta(b, d)
\end{array}\right]=\beta(c, d) \otimes_{\sigma} \beta(b, d) \\
B^{\sigma} & =\left[\begin{array}{cc}
c \beta^{\sigma}(b, d) & (c+d) \beta(b, d) \\
d \beta(b, d) & 0
\end{array}\right]=\beta^{\sigma}(c, d) \otimes_{\sigma} \beta^{\sigma}(b, d)
\end{aligned}
$$

so we get

$$
T_{3,2}=\left[\begin{array}{l}
d \\
a
\end{array}\right] \otimes \underbrace{\beta(c, d) \otimes_{\sigma} \beta(b, d)}_{\beta(b, c, d)}+\left[\begin{array}{l}
a \\
0
\end{array}\right] \otimes \underbrace{\beta^{\sigma}(c, d) \otimes_{\sigma} \beta^{\sigma}(b, d)}_{\beta^{\sigma}(b, c, d)}
$$

- $k=3$

$$
\begin{aligned}
T_{4,3}= & {\left[\begin{array}{l}
e \\
a
\end{array}\right] \otimes \underbrace{\beta(d, e) \otimes_{\sigma} \beta(c, e) \otimes_{\sigma} \beta(b, e)}_{\beta(b, c, d, e)} } \\
& +\left[\begin{array}{l}
a \\
0
\end{array}\right] \otimes \underbrace{\beta^{\sigma}(d, e) \otimes_{\sigma} \beta^{\sigma}(c, e) \otimes_{\sigma} \beta^{\sigma}(b, e)}_{\beta^{\sigma}(b, c, d, e)}
\end{aligned}
$$

- the general picture: the transfer matrices are

$$
\begin{aligned}
T_{k+1, k}= & {\left[\begin{array}{c}
a_{k+1} \\
a_{0}
\end{array}\right] \otimes \beta\left(a_{1}, a_{2}, \ldots, a_{k+1}\right) } \\
& +\left[\begin{array}{c}
a_{0} \\
0
\end{array}\right] \otimes \beta^{\sigma}\left(a_{1}, a_{2}, \ldots, a_{k+1}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \beta\left(a_{1}, a_{2}, \ldots, a_{k+1}\right)= \\
& \quad \beta\left(a_{k}, a_{k+1}\right) \otimes_{\sigma} \beta\left(a_{k-1}, a_{k+1}\right) \otimes_{\sigma} \cdots \otimes_{\sigma} \beta\left(a_{1}, a_{k+1}\right)
\end{aligned}
$$

- the partition functions
- the stationary vectors ($=$ right eigenvectors for eigenvalue $\left.a_{0}+a_{1}\right)$

$$
\left|v_{1}\right\rangle=\left[\begin{array}{c}
a_{0}+a_{1} \\
a_{0}
\end{array}\right] \quad\left|v_{k+1}\right\rangle=T_{k+1, k}\left|v_{k}\right\rangle
$$

- the partition functions

$$
z_{k}=\left\langle 1^{2^{k}} \mid v_{k}\right\rangle
$$

so that

$$
z_{0}=2 a_{0}+a_{1} \quad z_{k+1}=\left\langle 1^{2^{k+1}}\right| T_{k+1, k}\left|v_{k}\right\rangle
$$

- note

$$
\begin{aligned}
\langle 11| \beta(b, c) & =\langle 11|\left[\begin{array}{cc}
b+c & b \\
0 & c
\end{array}\right]
\end{aligned}=(b+c)\langle 11|
$$

- so that (as an example)

$$
\begin{aligned}
z_{3}= & \left\langle 1^{8} \mid v_{3}\right\rangle=\left\langle 1^{8}\right| T_{3,2}\left|v_{2}\right\rangle \\
= & \left\langle\left.\left. 11\right|^{\otimes 3}\left(\left[\begin{array}{l}
d \\
a
\end{array}\right] \otimes \beta(c, d) \otimes_{\sigma} \beta(b, d)\right) \right\rvert\, v_{2}\right\rangle \\
& +\left\langle\left.\left. 11\right|^{\otimes 3}\left(\left[\begin{array}{l}
a \\
0
\end{array}\right] \otimes \beta^{\sigma}(c, d) \otimes_{\sigma} \beta^{\sigma}(b, d)\right) \right\rvert\, v_{2}\right\rangle \\
= & ((a+d)(c+d)(b+d)+a(c+d)(b+d)) \cdot\left\langle 1^{4} \mid v_{2}\right\rangle \\
= & (2 a+d)(b+d)(c+d) \cdot z_{2}
\end{aligned}
$$

- and the general result is

$$
z_{k}=\prod_{1 \leq j \leq k}\left(2 a_{0}+a_{j}\right) \cdot \prod_{1 \leq i<j \leq k}\left(a_{i}+a_{j}\right)
$$

3. Denominators of weighted shifted tableaux

- some notation
- shifted shape (alias strict partition) : a sequence $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$ of integers with $\lambda_{1}>\lambda_{2}>\ldots>\lambda_{\ell}>0$
- length of $\boldsymbol{\lambda}:|\boldsymbol{\lambda}|=\ell$ (= number of parts)
- size of $\boldsymbol{\lambda}:\|\boldsymbol{\lambda}\|=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{\ell}$ (sum of parts)
- A weight function on shifted shapes $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$

$$
w(\boldsymbol{\lambda})=x_{\lambda_{1}}+x_{\lambda_{2}}+\cdots+x_{\lambda_{\ell}}
$$

x_{1}, x_{2}, \ldots are variables

- Shifted standard Young tableaux (sSYT) of shape $\boldsymbol{\lambda}$ are defined as usual
- A sSYT t is as a sequence of nested shifted shapes

$$
t: \emptyset \subset \boldsymbol{\lambda}^{(1)} \subset \boldsymbol{\lambda}^{(2)} \subset \ldots \subset \boldsymbol{\lambda}^{(\|\boldsymbol{\lambda}\|)}=\boldsymbol{\lambda}
$$

where $\left\|\boldsymbol{\lambda}^{(j)}\right\|=j \quad(1 \leq j \leq\|\boldsymbol{\lambda}\|)$

- $s S Y T(\boldsymbol{\lambda})$: the set of all $s S Y T s t$ of shape $\boldsymbol{\lambda}$
- multiplicative extension of the weight function

$$
w(t)=\prod_{1 \leq j \leq\|\boldsymbol{\lambda}\|} w\left(\boldsymbol{\lambda}^{(j)}\right)
$$

$w(t)$ is a polynomial in $x_{1}, x_{2}, \ldots, x_{\lambda_{1}}$ of degree $\|\boldsymbol{\lambda}\|$

- now define

$$
S(\boldsymbol{\lambda}):=\sum_{t \in \operatorname{sSY}(\boldsymbol{\lambda})} \frac{1}{w(t)}=\frac{\operatorname{num}(\boldsymbol{\lambda})}{\operatorname{den}(\boldsymbol{\lambda})}
$$

where

- num $(\boldsymbol{\lambda})$ is a polynomial in $x_{1}, x_{2}, \ldots, x_{\lambda_{1}}$ of degree $\operatorname{deg}(\operatorname{den}(\boldsymbol{\lambda}))-\|\boldsymbol{\lambda}\|$,
- the fraction is reduced, i.e. num $(\boldsymbol{\lambda})$ and $\operatorname{den}(\boldsymbol{\lambda})$ have no common factor
- Claim:
- if $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$, then

$$
\operatorname{den}(\boldsymbol{\lambda})=\prod_{\boldsymbol{\mu} \subseteq\left(\lambda_{1}, \lambda_{2}\right)} w(\boldsymbol{\mu}),
$$

where the $\boldsymbol{\mu}$'s appearing in the product have length two or one.
So $\operatorname{den}(\boldsymbol{\lambda})$ depends only on the two largest parts of $\boldsymbol{\lambda}$.

- if $\boldsymbol{\lambda}$ has length one, i.e. $\boldsymbol{\lambda}=\left(\lambda_{1}\right)$, this reduces to

$$
\operatorname{den}(\boldsymbol{\lambda})=\prod_{1 \leq i \leq \lambda_{1}} x_{i} .
$$

- Illustration

$$
\begin{aligned}
& t=\begin{array}{ll}
8 \\
& 3 \\
6 & \\
1 & 2
\end{array} \\
& 4 \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& \quad w(t)= \\
& x_{1} \cdot x_{2} \cdot\left(x_{2}+x_{1}\right) \cdot\left(x_{3}+x_{1}\right) \cdot\left(x_{4}+x_{1}\right) \cdot\left(x_{4}+x_{2}\right) \cdot\left(x_{5}+x_{2}\right) \cdot\left(x_{5}+x_{2}+x_{1}\right)
\end{aligned}
$$

- the general rule

$$
S(\boldsymbol{\lambda})=\frac{1}{w(\boldsymbol{\lambda})} \sum_{\mu \triangleleft \boldsymbol{\lambda}} S(\boldsymbol{\mu})
$$

where \triangleleft denotes covering w.r.t. inclusion

Illustration for $\boldsymbol{\lambda}=(3,2,1)$:

- $(3,2) \triangleleft(3,2,1)$
- $\boldsymbol{\lambda}=(3,2), \operatorname{sSY}(3,2)=\{(123 \mid 45),(124 \mid 35)\}$

$$
\begin{aligned}
S(3,2) & =\frac{1}{w(3,2)} S(3,1) \\
& =\frac{x_{1}+x_{2}+x_{3}}{x_{1} x_{2} x_{3}\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)\left(x_{2}+x_{3}\right)}
\end{aligned}
$$

- $\boldsymbol{\lambda}=(3,2,1), \operatorname{sSY}(3,2,1)=\{(123|45| 6),(124|35| 6)\}$

$$
\begin{aligned}
S(3,2,1) & =\frac{1}{w(3,2,1)} S(3,2)= \\
& =\frac{1}{x_{1} x_{2} x_{3}\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)\left(x_{2}+x_{3}\right)}
\end{aligned}
$$

Illustration for $\boldsymbol{\lambda}=(4,2,1)$:

- $(3,2,1) \triangleleft(4,2,1),(4,2) \triangleleft(4,2,1)$
- $\boldsymbol{\lambda}=(3,2,1)$

$$
S(3,2,1)=\frac{1}{x_{1} x_{2} x_{3}\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)\left(x_{2}+x_{3}\right)}
$$

- $\boldsymbol{\lambda}=(4,2)$

$$
\begin{aligned}
& \operatorname{sSY} T(4,2)=\{(1234 \mid 56),(1235 \mid 46),(1245 \mid 36) \\
&(1236 \mid 45),(1246 \mid 35)\}
\end{aligned}
$$

$$
\begin{aligned}
& \quad S(4,2)=\frac{1}{w(4,2)}(S(4,1)+S(3,2)) \\
& = \\
& \frac{x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1}^{2} x_{4}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{1} x_{4}^{2}+x_{2}^{2} x_{3}+x_{2}^{2} x_{4}+\cdots+x_{3} x_{4}^{2}}{x_{1} x_{2} x_{3} x_{4}\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)\left(x_{1}+x_{4}\right)\left(x_{2}+x_{3}\right)\left(x_{2}+x_{4}\right)} \\
& \\
& \quad+\frac{2 x_{1} x_{2} x_{3}+2 x_{1} x_{2} x_{4}+2 x_{1} x_{3} x_{4}+2 x_{2} x_{3} x_{4}}{x_{1} x_{2} x_{3} x_{4}\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)\left(x_{1}+x_{4}\right)\left(x_{2}+x_{3}\right)\left(x_{2}+x_{4}\right)} \\
& = \\
& =\frac{m_{(2,1)\left(x_{1}, x_{2}, x_{3}, x_{4}\right)+2 m_{(1,1,1)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)}^{x_{1} x_{2} x_{3} x_{4}\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)\left(x_{1}+x_{4}\right)\left(x_{2}+x_{3}\right)\left(x_{2}+x_{4}\right)}}{}
\end{aligned}
$$

- $\boldsymbol{\lambda}=(4,2,1)$

$$
\begin{aligned}
\operatorname{sSY}(4,2,1)= & \{(1234|56| 7),(1235|46| 7),(1245|36| 7), \\
& (1236|45| 7),(1246|35| 7),(1237|45| 6), \\
& (1247|35| 6)\}
\end{aligned}
$$

$$
\begin{aligned}
& S(4,2,1)=\frac{1}{w(4,2,1)}(S(4,2)+S(3,2,1)) \\
& \quad=\frac{x_{1} x_{2}+x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{3}+x_{2} x_{4}+x_{3}^{2}+x_{3} x_{4}+x_{4}^{2}}{x_{1} x_{2} x_{3} x_{4}\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)\left(x_{1}+x_{4}\right)\left(x_{2}+x_{3}\right)\left(x_{2}+x_{4}\right)} \\
& \quad=\frac{e_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)+x_{3}^{2}+x_{4}^{2}}{x_{1} x_{2} x_{3} x_{4}\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)\left(x_{1}+x_{4}\right)\left(x_{2}+x_{3}\right)\left(x_{2}+x_{4}\right)}
\end{aligned}
$$

