THE DESCENT STATISTIC ON 123-AVOIDING PERMUTATIONS

MARILENA BARNABEI, FLAVIO BONETTI, AND MATTEO SILIMBANI

Abstract

We exploit Krattenthaler's bijection between 123-avoiding permutations and Dyck paths to determine the Eulerian distribution over the set $S_{n}(123)$ of 123-avoiding permutations in S_{n}. In particular, we show that the descents of a permutation correspond to valleys and triple ascents of the associated Dyck path. We get the Eulerian numbers of $S_{n}(123)$ by studying the joint distribution of these two statistics on Dyck paths.

1. Introduction

A permutation $\sigma \in S_{n}$ avoids a pattern $\tau \in S_{k}$ if σ does not contain a subsequence that is order-isomorphic to τ. The subset of S_{n} of all permutations avoiding a pattern τ is denoted by $S_{n}(\tau)$. Pattern avoiding permutations have been intensively studied in recent years from many points of view (see e.g. [7], [4], [1], and references therein).

In the case $\tau \in S_{3}$, it has been shown that the cardinality of $S_{n}(\tau)$ equals the n-th Catalan number, for every pattern τ (see e.g. [3] and [7]), and hence the set $S_{n}(\tau)$ is in bijection with the set of Dyck paths of semilength n. Indeed, the six patterns in S_{3} are related as follows:

- $321=123^{r e v}$,
- $231=132^{r e v}$,
- $312=132^{c}$,
- $213=\left(132^{c}\right)^{r e v}$,
where rev and c denote the usual reverse and complement operations. Hence, in order to determine the distribution of the descent statistic over $S_{n}(\tau)$, for every $\tau \in S_{3}$, it is sufficient to examine the distribution of descents over two sets, say $S_{n}(132)$ and $S_{n}(123)$.

In both cases, the two bijections due to Krattenthaler [4] (see also [2]) allow to translate the descent statistic into some appropriate statistics on Dyck paths.

[^0]In the case $\tau=132$, the descents of a permutation are in one-to-one correspondence with the valleys of the associated Dyck path (see [8] and [9]).

In this paper we investigate the case $\tau=123$. In particular, we exploit Krattenthaler's map to translate the descents of a permutation $\sigma \in S_{n}(123)$ into peculiar subconfigurations of the associated Dyck path, namely, valleys and triple ascents.

For that reason, we study the joint distribution of valleys and triple ascents over the set \mathcal{P}_{n} of Dyck paths of semilength n, and we give an explicit expression for its trivariate generating function

$$
A(x, y, z)=\sum_{n \geq 0} \sum_{\mathscr{D} \in \mathcal{P}_{n}} x^{n} y^{v(\mathscr{D})} z^{t a(\mathscr{D})}=\sum_{n, p, q \geq 0} a_{n, p, q} x^{n} y^{p} z^{q}
$$

where $v(\mathscr{D})$ denotes the number of valleys in \mathscr{D} and $t a(\mathscr{D})$ denotes the number of triple ascents in \mathscr{D}. This series specializes to some well known generating functions, such as the generating function of Catalan numbers, Motzkin numbers, Narayana numbers, and sequence A092107 in [8] (see also [5]).

2. Dyck paths

A Dyck path of semilength n is a lattice path in the integer lattice $\mathbb{N} \times \mathbb{N}$ starting from the origin, consisting of n up-steps $U=(1,1)$ and n down steps $D=(1,-1)$, never passing below the x-axis.

A return of a Dyck path is a down step ending on the x-axis, not counting the last step of the Dyck path. An irreducible Dyck path is a Dyck path with no return.

We note that a Dyck path \mathscr{D} can be decomposed according to its last return (last return decomposition) into the juxtaposition of a (possibly empty) Dyck path \mathscr{D}^{\prime} of shorter length and an irreducible Dyck path $\mathscr{D}^{\prime \prime}$.

For example, the Dyck path $\mathscr{D}=U^{5} D^{2} U D^{4} U D U^{3} D U D^{3}$ decomposes into $\mathscr{D}^{\prime} \bigoplus \mathscr{D}^{\prime \prime}$, where $\mathscr{D}^{\prime}=U^{5} D^{2} U D^{4} U D$ and $\mathscr{D}^{\prime \prime}=U^{3} D U D^{3}$, as shown in Figure 1.

3. Krattenthaler's bijection

In [4], Krattenthaler describes a bijection between the set $S_{n}(123)$ and the set \mathcal{P}_{n} of Dyck paths of semilength n.

Let $\sigma=\sigma(1) \ldots \sigma(n)$ be a 123-avoiding permutation. Recall that a right-to-left maximum of σ is an element $\sigma(i)$ which is larger than $\sigma(j)$ for all j with $j>i$ (note that the last entry $\sigma(n)$ is a right-to-left
 path $\mathscr{D}=U^{5} D^{2} U D^{4} U D U^{3} D U D^{3}$.
maximum). Let x_{s}, \ldots, x_{1} be the right-to-left maxima in σ. Then, we can write

$$
\begin{equation*}
\sigma=w_{s} x_{s} \ldots w_{1} x_{1} \tag{1}
\end{equation*}
$$

where w_{i} are (possibly empty) words. Moreover, since σ avoids 123, the word $w_{s} w_{s-1} \ldots w_{1}$ must be decreasing.

In order to construct the Dyck path $\kappa(\sigma)$ corresponding to σ, read the decomposition (1) from right to left. Any right-to-left maximum x_{i} is translated into $x_{i}-x_{i-1}$ up steps (with the convention $x_{0}=0$) and any subword w_{i} is translated into $l_{i}+1$ down steps, where l_{i} denotes the number of elements in w_{i}. Then, reflect the constructed path in a vertical line.

For example, the permutation $\sigma=6473251$ in $S_{7}(123)$ corresponds to the path in Figure 2.

Figure 2. The Dyck path $\kappa(\sigma)$, with $\sigma=6473251$.

4. The descent statistic

We say that a permutation σ has a descent at position i if $\sigma(i)>$ $\sigma(i+1)$. We denote by $\operatorname{des}(\sigma)$ the number of descents of the permutation σ.

In this section we determine the generating function

$$
E(x, y)=\sum_{n \geq 0} \sum_{\sigma \in S_{n}(123)} x^{n} y^{\operatorname{des}(\sigma)}=\sum_{n \geq 0} \sum_{k \geq 0} e_{n, k} x^{n} y^{k}
$$

where $e_{n, k}$ denotes the number of permutations in $S_{n}(123)$ with k descents.

Proposition 1. Let σ be a permutation in $S_{n}(123)$, and $\mathscr{D}=\kappa(\sigma)$. The number of descents of σ is

$$
\operatorname{des}(\sigma)=v(\mathscr{D})+t a(\mathscr{D})
$$

where $v(\mathscr{D})$ is the number of valleys (the number of occurrences of $D U$) in \mathscr{D} and $t a(\mathscr{D})$ is the number of triple ascents (the number of occurrences of $U U U)$ in \mathscr{D}.

Proof. Let $\sigma=w_{s} x_{s} \ldots w_{1} x_{1}$ be a 123 -avoiding permutation. The descents of σ occur precisely in the following positions:

1. between two consecutive symbols in the same word w_{i} (we have $l_{i}-1$ of such descents),
2. after every right-to-left maximum x_{i}, except for the last one.

The proof is completed as soon as we observe that:

1. every word w_{i} is mapped into an ascending run of $\kappa(\sigma)$ of length $l_{i}+1$. Such an ascending run contains $l_{i}-1$ triple ascents, these in their turn are in bijection with the descents contained in w_{i},
2. every right-to-left maximum x_{i} with $i \geq 2$ corresponds to a valley in $\kappa(\sigma)$.

The preceding result implies that we can switch our attention from permutations in $S_{n}(123)$ with k descents to Dyck paths of semilength n with k valleys and triple ascents. Hence, we study the joint distribution of valleys and triple ascents over \mathcal{P}_{n}, namely, we analyze the generating function

$$
A(x, y, z)=\sum_{n \geq 0} \sum_{\mathscr{D} \in \mathcal{P}_{n}} x^{n} y^{v(\mathscr{D})} z^{t a(\mathscr{D})}=\sum_{n, p, q \geq 0} a_{n, p, q} x^{n} y^{p} z^{q} .
$$

We determine the relation between the function $A(x, y, z)$ and the generating function

$$
B(x, y, z)=\sum_{n \geq 0} \sum_{\mathscr{D} \in \mathcal{I} \mathcal{P}_{n}} x^{n} y^{v(\mathscr{O})} z^{t a(\mathscr{D})}=\sum_{n, p, q \geq 0} b_{n, p, q} x^{n} y^{p} z^{q}
$$

of the same joint distribution over the set $\mathcal{I P}_{n}$ of irreducible Dyck paths in \mathcal{P}_{n}.

Proposition 2. For every $n>2$, we have:

$$
\begin{equation*}
b_{n, p, q}=a_{n-1, p, q-1}-a_{n-2, p-1, q-1}+a_{n-2, p-1, q} . \tag{2}
\end{equation*}
$$

Proof. An irreducible Dyck path of semilength n with p valleys and q triple ascents can be obtained by prepending U and appending D to a Dyck path of semilength $n-1$ of one of the two following types:

1. a Dyck path with p valleys and q triple ascents, starting with $U D$,
2. a Dyck path with p valleys and $q-1$ triple ascents, which does not start with $U D$.
We observe that:
3. The paths of the first kind are in bijection with Dyck paths of semilength $n-2$ with $p-1$ valleys and q triple ascents, enumerated by $a_{n-2, p-1, q}$.

Figure 3. The Dyck path $U^{2} D U^{3} D^{2} U^{3} D^{5}$ with 2 valleys and 2 triple ascents is obtained by prepending $U D$ to the path $U^{3} D^{2} U^{3} D^{4}$ with 1 valley and 2 triple ascents, and then elevating.
2. In order to enumerate the paths of the second kind we have to subtract from the integer $a_{n-1, p, q-1}$ the number of Dyck paths of semilength $n-1$ with p valleys and $q-1$ triple ascents, starting with $U D$. Dyck paths of this kind are in bijection with Dyck paths of semilength $n-2$ with $p-1$ valleys and $q-1$ triple ascents, enumerated by $a_{n-2, p-1, q-1}$.

Proposition 3. For every $n>0$, we have:

$$
\begin{equation*}
a_{n, p, q}=b_{n, p, q}+\sum_{i=1}^{n-1} \sum_{j, s \geq 0} b_{i, j, s} a_{n-i, p-j-1, q-s} . \tag{3}
\end{equation*}
$$

Figure 4. The Dyck path $U^{3} D U^{2} D^{2} U^{3} D^{5}$ with 2 valleys and 2 triple ascents is obtained by elevating the path $U^{2} D U^{2} D^{2} U^{3} D^{4}$ with 2 valleys and 1 triple ascent.

Proof. Let \mathscr{D} be a Dyck path of semilength n and consider its last return decomposition $\mathscr{D}=\mathscr{D}^{\prime} \bigoplus \mathscr{D}^{\prime \prime}$. If \mathscr{D}^{\prime} is empty, then \mathscr{D} is irreducible. Otherwise, we have

- $v(\mathscr{D})=v\left(\mathscr{D}^{\prime}\right)+v\left(\mathscr{D}^{\prime \prime}\right)+1$,
- $t a(\mathscr{D})=t a\left(\mathscr{D}^{\prime}\right)+t a\left(\mathscr{D}^{\prime \prime}\right)$.

Identities (2) and (3) yield the following relations between the two generating functions $A(x, y, z)$ and $B(x, y, z)$.
Proposition 4. We have

$$
\begin{equation*}
B(x, y, z)=(A(x, y, z)-1)\left(x z+x^{2} y-x^{2} y z\right)+1+x+x^{2}-x^{2} z \tag{4}
\end{equation*}
$$ and

$$
\begin{equation*}
A(x, y, z)=B(x, y, z)+y(B(x, y, z)-1)(A(x, y, z)-1) . \tag{5}
\end{equation*}
$$

Proof. Note that recurrence (2) holds for $n>2$. This fact gives rise to the correction terms of x-degree less than 3 in Formula (4).

Combining Formulae (4) and (5) we obtain the following result.
Theorem 5. We have:

$$
\begin{align*}
& A(x, y, z)=\frac{1}{2 x y(x y z-z-x y)}\left(-1+x y+2 x^{2} y\right. \\
& \tag{6}\\
& \qquad \begin{array}{r}
\quad-2 x^{2} y^{2}+x z-2 x y z-2 x^{2} y z+2 x^{2} y^{2} z
\end{array} \\
& \left.+\sqrt{1-2 x y-4 x^{2} y+x^{2} y^{2}-2 x z+2 x^{2} y z+x^{2} z^{2}}\right)
\end{align*}
$$

This last result allows us to determine the generating function $E(x, y)$ of the Eulerian distribution over $S_{n}(123)$. In fact, the previous arguments show that

$$
E(x, y)=A(x, y, y)
$$

Hence, we obtain the following explicit expression for $E(x, y)$.
Theorem 6. We have:

$$
E(x, y)=\frac{-1+2 x y+2 x^{2} y-2 x y^{2}-4 x^{2} y^{2}+2 x^{2} y^{3}}{+\sqrt{1-4 x y-4 x^{2} y+4 x^{2} y^{2}}} .
$$

The first values of the sequence $e_{n, d}$ are shown in the following table:

n / d	0	1	2	3	4	5	6
0	1						
1	1						
2	1	1					
3	0	4	1				
4	0	2	11	1			
5	0	0	15	26	1		
6	0	0	5	69	57	1	
7	0	0	0	56	252	120	1

Needless to say, the series $A(x, y, z)$ specializes to some well known generating functions. In particular, $A(x, 1,1)$ is the generating function of Catalan numbers, $A(x, 1,0)$ the generating function of Motzkin numbers, $y A(x, y, 1)$ the generating function of Narayana numbers, and $A(x, 1, z)$ the generating function of seq. A092107 in [8].

References

[1] M. Bóna, Combinatorics of permutations, Chapman \& Hall/CRC, Boca Raton, 2004.
[2] A. Claesson and S. Kitaev, Classification of bijections between 321- and 132avoiding permutations Sém. Lothar. Combin. 60 (2008), Art. B60d, 30 pp.
[3] D. E. Knuth, The art of computer programming, vol. 1: "Fundamental algorithms," Addison-Wesley, Reading Massachusetts, 1969.
[4] C. Krattenthaler, Permutations with restricted patterns and Dyck paths, Adv. in Appl. Math. 27 (2001), 510-530.
[5] A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math. 307 (2007), 2909-2924.
[6] R. Simion, Combinatorial statistics on noncrossing partitions, J. Combin. Theory Ser. A 66 (1994), no. 2, 270-301.
[7] R. Simion, F. W. Schmidt, Restricted permutations, Europ. J. Combin. 6 (1985), 383-406.
[8] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences/.
[9] M. Zabrocki, private communication.

Department of Mathematics, University of Bologna, P.zza di Porta San Donato 5, 40126 Bologna

E-mail address: barnabei@dm.unibo.it, bonetti@dm.unibo.it, silimban@dm.unibo.it

[^0]: 2000 Mathematics Subject Classification. 05A05 05A15 05A19.
 Key words and phrases. Restricted permutations, Dyck paths, Eulerian numbers.

