Signed colorings of generalized permutation arrays

SLC 62, Heilsbronn

Maria Manuel Torres
joint work with J. A. Dias da Silva

Overview

- Generalized permutation arrays
- Colorings of generalized permutation arrays
- Open problems
- Applications

Generalized permutation arrays

A generalized permutation array

$$
\Gamma=\left(\begin{array}{llll}
i_{1} & i_{2} & \ldots & i_{m} \\
j_{1} & j_{2} & \ldots & j_{m}
\end{array}\right)
$$

with the properties

Generalized permutation arrays

A generalized permutation array

$$
\Gamma=\left(\begin{array}{llll}
i_{1} & i_{2} & \ldots & i_{m} \\
j_{1} & j_{2} & \ldots & j_{m}
\end{array}\right)
$$

with the properties
(1) $i_{1} \leq i_{2} \leq \ldots \leq i_{m} ;$

Generalized permutation arrays

A generalized permutation array

$$
\Gamma=\left(\begin{array}{llll}
i_{1} & i_{2} & \ldots & i_{m} \\
j_{1} & j_{2} & \ldots & j_{m}
\end{array}\right)
$$

with the properties
(1) $i_{1} \leq i_{2} \leq \ldots \leq i_{m} ;$
(2) $\left\{i_{1}, \ldots, i_{m}\right\}=\left\{j_{1}, \ldots, j_{m}\right\}=\{1, \ldots, r\}$;

Generalized permutation arrays

A generalized permutation array

$$
\Gamma=\left(\begin{array}{llll}
i_{1} & i_{2} & \ldots & i_{m} \\
j_{1} & j_{2} & \ldots & j_{m}
\end{array}\right)
$$

with the properties
(1) $i_{1} \leq i_{2} \leq \ldots \leq i_{m} ;$
(2) $\left\{i_{1}, \ldots, i_{m}\right\}=\left\{j_{1}, \ldots, j_{m}\right\}=\{1, \ldots, r\}$;
(3) $\left|\left\{k: i_{k}=1\right\}\right| \geq\left|\left\{k: i_{k}=2\right\}\right| \geq \ldots \geq\left|\left\{k: i_{k}=r\right\}\right|$.
is called a normal array.

Generalized permutation arrays

A generalized permutation array

$$
\Gamma=\left(\begin{array}{llll}
i_{1} & i_{2} & \ldots & i_{m} \\
j_{1} & j_{2} & \ldots & j_{m}
\end{array}\right)
$$

with the properties
(1) $i_{1} \leq i_{2} \leq \ldots \leq i_{m} ;$
(2) $\left\{i_{1}, \ldots, i_{m}\right\}=\left\{j_{1}, \ldots, j_{m}\right\}=\{1, \ldots, r\}$;
(3) $\left|\left\{k: i_{k}=1\right\}\right| \geq\left|\left\{k: i_{k}=2\right\}\right| \geq \ldots \geq\left|\left\{k: i_{k}=r\right\}\right|$.
(4) $\left|\left\{k: i_{k}=p\right\}\right|=\left|\left\{k: j_{k}=p\right\}\right|, p=1, \ldots, r$.

Generalized permutation arrays

A generalized permutation array

$$
\Gamma=\left(\begin{array}{llll}
i_{1} & i_{2} & \ldots & i_{m} \\
j_{1} & j_{2} & \ldots & j_{m}
\end{array}\right)
$$

with the properties
(1) $i_{1} \leq i_{2} \leq \ldots \leq i_{m} ;$
(2) $\left\{i_{1}, \ldots, i_{m}\right\}=\left\{j_{1}, \ldots, j_{m}\right\}=\{1, \ldots, r\}$;
(3) $\left|\left\{k: i_{k}=1\right\}\right| \geq\left|\left\{k: i_{k}=2\right\}\right| \geq \ldots \geq\left|\left\{k: i_{k}=r\right\}\right|$.
(4) $\left|\left\{k: i_{k}=p\right\}\right|=\left|\left\{k: j_{k}=p\right\}\right|, p=1, \ldots, r$.
is called a normal array.

The sequence

$$
\lambda=\left(\left|\left\{k: i_{k}=1\right\}\right|,\left|\left\{k: i_{k}=2\right\}\right|, \ldots,\left|\left\{k: i_{k}=r\right\}\right|\right)
$$

is a partition of m and it is called the multiplicity partition of Γ. The conjugate partition of λ is called the rank partition of Γ and it is denoted

The sequence

$$
\lambda=\left(\left|\left\{k: i_{k}=1\right\}\right|,\left|\left\{k: i_{k}=2\right\}\right|, \ldots,\left|\left\{k: i_{k}=r\right\}\right|\right)
$$

is a partition of m and it is called the multiplicity partition of Γ. The conjugate partition of λ is called the rank partition of Γ and it is denoted

is a normal array, with multiplicity partition

The sequence

$$
\lambda=\left(\left|\left\{k: i_{k}=1\right\}\right|,\left|\left\{k: i_{k}=2\right\}\right|, \ldots,\left|\left\{k: i_{k}=r\right\}\right|\right)
$$

is a partition of m and it is called the multiplicity partition of Γ. The conjugate partition of λ is called the rank partition of Γ and it is denoted

$$
\rho(Г) .
$$

Example.
is a normal array, with multiplicity partition

$$
\lambda=\left(3,2^{2}, 1^{2}\right)
$$

The sequence

$$
\lambda=\left(\left|\left\{k: i_{k}=1\right\}\right|,\left|\left\{k: i_{k}=2\right\}\right|, \ldots,\left|\left\{k: i_{k}=r\right\}\right|\right)
$$

is a partition of m and it is called the multiplicity partition of Γ.
The conjugate partition of λ is called the rank partition of Γ and it is denoted

$$
\rho(Г)
$$

Example.

$$
\Gamma=\left(\begin{array}{lllllllll}
1 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 5 \\
1 & 3 & 5 & 1 & 2 & 2 & 4 & 1 & 3
\end{array}\right)
$$

is a normal array, with multiplicity partition

$$
\lambda=\left(3,2^{2}, 1^{2}\right) .
$$

Signed colorings of normal arrays

Let Γ be a normal array.

Let μ be a partition of m.
We say that Γ is μ-colorable if it is possible to fill the Young diagram $[\mu]$ with all the pairs

Signed colorings of normal arrays

Let Γ be a normal array.
Let μ be a partition of m.

We say that Γ is μ-colorable if it is possible to fill the Young diagram $[\mu]$ with all the pairs

$$
\left(i_{k}, j_{k}\right), k=1, \ldots, m
$$

in a way that there will be a bijection on every row of $[\mu]$
The obtained Young tableau T^{μ} is called a μ-coloring of Γ

Signed colorings of normal arrays

Let Γ be a normal array.
Let μ be a partition of m.
We say that Γ is μ-colorable if it is possible to fill the Young diagram $[\mu]$ with all the pairs

$$
\left(i_{k}, j_{k}\right), k=1, \ldots, m
$$

in a way that there will be a bijection on every row of $[\mu]$.

A $\rho(\Gamma)$-coloring of Γ will be called a full coloring of Γ

Signed colorings of normal arrays

Let Γ be a normal array.
Let μ be a partition of m.
We say that Γ is μ-colorable if it is possible to fill the Young diagram $[\mu]$ with all the pairs

$$
\left(i_{k}, j_{k}\right), k=1, \ldots, m
$$

in a way that there will be a bijection on every row of $[\mu]$. The obtained Young tableau T^{μ} is called a μ-coloring of Γ.

A $\rho(\Gamma)$-coloring of Γ will be called a full coloring of Γ. Theorem. If Γ is μ-colorable, then $\mu \preceq \rho(\Gamma)$.

Signed colorings of normal arrays

Let Γ be a normal array.
Let μ be a partition of m.
We say that Γ is μ-colorable if it is possible to fill the Young diagram $[\mu]$ with all the pairs

$$
\left(i_{k}, j_{k}\right), k=1, \ldots, m
$$

in a way that there will be a bijection on every row of $[\mu]$. The obtained Young tableau T^{μ} is called a μ-coloring of Γ.

A $\rho(\Gamma)$-coloring of Γ will be called a full coloring of Γ.
Theorem. If Γ is μ-colorable, then $\mu \preceq \rho(\Gamma)$.

In general, it is not true that every normal array admits a full

Signed colorings of normal arrays

Let Γ be a normal array.
Let μ be a partition of m.
We say that Γ is μ-colorable if it is possible to fill the Young diagram $[\mu]$ with all the pairs

$$
\left(i_{k}, j_{k}\right), k=1, \ldots, m
$$

in a way that there will be a bijection on every row of $[\mu]$. The obtained Young tableau T^{μ} is called a μ-coloring of Γ.

A $\rho(\Gamma)$-coloring of Γ will be called a full coloring of Γ.
Theorem. If Γ is μ-colorable, then $\mu \preceq \rho(\Gamma)$.
In general, it is not true that every normal array admits a full coloring.

Signed colorings of normal arrays

Let Γ be a normal array.
Let μ be a partition of m.
We say that Γ is μ-colorable if it is possible to fill the Young diagram $[\mu]$ with all the pairs

$$
\left(i_{k}, j_{k}\right), k=1, \ldots, m
$$

in a way that there will be a bijection on every row of $[\mu]$. The obtained Young tableau T^{μ} is called a μ-coloring of Γ.

A $\rho(\Gamma)$-coloring of Γ will be called a full coloring of Γ.
Theorem. If Γ is μ-colorable, then $\mu \preceq \rho(\Gamma)$.
In general, it is not true that every normal array admits a full coloring.

If $T^{\rho(\Gamma)}$ is a full coloring of Γ, then on row v there is a permutation σ_{v} of the set $\left\{1, \ldots, \rho_{v}\right\}$, for every $v \in\left\{1, \ldots, \lambda_{1}\right\}$.

The sign of $T^{\rho(\Gamma)}$ is the product of the signs of the permutations $\sigma_{1}, \ldots, \sigma_{\lambda_{1}}$, lying on the rows of $T^{\rho(\Gamma)}$.

If $T^{\rho(\Gamma)}$ is a full coloring of Γ, then on row v there is a permutation σ_{v} of the set $\left\{1, \ldots, \rho_{v}\right\}$, for every $v \in\left\{1, \ldots, \lambda_{1}\right\}$.

The sign of $T^{\rho(\Gamma)}$ is the product of the signs of the permutations $\sigma_{1}, \ldots, \sigma_{\lambda_{1}}$, lying on the rows of $T^{\rho(\Gamma)}$.

We say that a full coloring of Γ is positive (respectively negative) if its sign is 1 (respectively -1).

If $T^{\rho(\Gamma)}$ is a full coloring of Γ, then on row v there is a permutation σ_{v} of the set $\left\{1, \ldots, \rho_{v}\right\}$, for every $v \in\left\{1, \ldots, \lambda_{1}\right\}$.

The sign of $T^{\rho(\Gamma)}$ is the product of the signs of the permutations $\sigma_{1}, \ldots, \sigma_{\lambda_{1}}$, lying on the rows of $T^{\rho(\Gamma)}$.

We say that a full coloring of Γ is positive (respectively negative) if its sign is 1 (respectively -1).

We denote
the number of positive full colorings of Γ

If $T^{\rho(\Gamma)}$ is a full coloring of Γ, then on row v there is a permutation σ_{v} of the set $\left\{1, \ldots, \rho_{v}\right\}$, for every $v \in\left\{1, \ldots, \lambda_{1}\right\}$.

The sign of $T^{\rho(\Gamma)}$ is the product of the signs of the permutations $\sigma_{1}, \ldots, \sigma_{\lambda_{1}}$, lying on the rows of $T^{\rho(\Gamma)}$.

We say that a full coloring of Γ is positive (respectively negative) if its sign is 1 (respectively -1).

We denote
the number of positive full colorings of Γ;

If $T^{\rho(\Gamma)}$ is a full coloring of Γ, then on row v there is a permutation σ_{v} of the set $\left\{1, \ldots, \rho_{v}\right\}$, for every $v \in\left\{1, \ldots, \lambda_{1}\right\}$.

The sign of $T^{\rho(\Gamma)}$ is the product of the signs of the permutations $\sigma_{1}, \ldots, \sigma_{\lambda_{1}}$, lying on the rows of $T^{\rho(\Gamma)}$.

We say that a full coloring of Γ is positive (respectively negative) if its sign is 1 (respectively -1).

We denote

$$
P(\Gamma)
$$

the number of positive full colorings of Γ;
the number of negative full colorings of Γ.

If $T^{\rho(\Gamma)}$ is a full coloring of Γ, then on row v there is a permutation σ_{v} of the set $\left\{1, \ldots, \rho_{v}\right\}$, for every $v \in\left\{1, \ldots, \lambda_{1}\right\}$.

The sign of $T^{\rho(\Gamma)}$ is the product of the signs of the permutations $\sigma_{1}, \ldots, \sigma_{\lambda_{1}}$, lying on the rows of $T^{\rho(\Gamma)}$.

We say that a full coloring of Γ is positive (respectively negative) if its sign is 1 (respectively -1).

We denote

$$
P(\Gamma)
$$

the number of positive full colorings of Γ;

$$
N(\Gamma)
$$

the number of negative full colorings of Γ.

Example

Let

$$
\Gamma=\left(\begin{array}{lllllllll}
1 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 5 \\
1 & 3 & 5 & 1 & 2 & 2 & 4 & 1 & 3
\end{array}\right) .
$$

Then, $\rho(\Gamma)$ is the partition $(5,3,1)$ and

Example

Let

$$
\Gamma=\left(\begin{array}{lllllllll}
1 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 5 \\
1 & 3 & 5 & 1 & 2 & 2 & 4 & 1 & 3
\end{array}\right)
$$

Then, $\rho(\Gamma)$ is the partition $(5,3,1)$ and

is a full coloring of Γ.
The sign of T is -1 , since

Example

Let

$$
\Gamma=\left(\begin{array}{lllllllll}
1 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 5 \\
1 & 3 & 5 & 1 & 2 & 2 & 4 & 1 & 3
\end{array}\right)
$$

Then, $\rho(\Gamma)$ is the partition $(5,3,1)$ and

$$
T=
$$

is a full coloring of Γ.

$$
\sigma_{1}=\left(\begin{array}{lll}
1 & 5 & 3
\end{array}\right), \sigma_{2}=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right), \sigma_{3}=i d .
$$

Example

Let

$$
\Gamma=\left(\begin{array}{lllllllll}
1 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 5 \\
1 & 3 & 5 & 1 & 2 & 2 & 4 & 1 & 3
\end{array}\right)
$$

Then, $\rho(\Gamma)$ is the partition $(5,3,1)$ and

$$
T=
$$

is a full coloring of Γ.
The sign of T is -1 , since

$$
\sigma_{1}=\left(\begin{array}{lll}
1 & 5 & 3
\end{array}\right), \sigma_{2}=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right), \sigma_{3}=i d
$$

A partition λ is said to be sign uniform if, for every array Γ, with multiplicity partition λ, whether $N(\Gamma)=0$ or $P(\Gamma)=0$.

Theorem(Dias da Silva, MMT) : A partition λ is sign uniform if and only if its Young diagram does not contain the diagram

For instance, the partition $(5,3,1)$ is sign uniform.

A partition λ is said to be sign uniform if, for every array Γ, with multiplicity partition λ, whether $N(\Gamma)=0$ or $P(\Gamma)=0$.

Theorem(Dias da Silva, MMT) : A partition λ is sign uniform if and only if its Young diagram does not contain the diagram

For instance, the partition $(5,3,1)$ is sign uniform.

A partition λ is said to be sign uniform if, for every array Γ, with multiplicity partition λ, whether $N(\Gamma)=0$ or $P(\Gamma)=0$.

Theorem(Dias da Silva, MMT) : A partition λ is sign uniform if and only if its Young diagram does not contain the diagram

For instance, the partition $(5,3,1)$ is sign uniform.

Problem 1

Given a normal array Γ, find necessary and sufficient conditions for the existence of a full coloring of Γ.

We have established a necessary condition for the existence of a full coloring of Γ, using a graph theoretic approach.

This problem is related to a problem about edge colorings of bipartite graphs, stated by Folkmann and Fulkerson in 1969, which is still an open problem.

Problem 1

Given a normal array Γ, find necessary and sufficient conditions for the existence of a full coloring of Γ.

We have established a necessary condition for the existence of a full coloring of Γ, using a graph theoretic approach.

This problem is related to a problem about edge colorings of bipartite graphs, stated by Folkmann and Fulkerson in 1969, which is still an open problem.

Problem 1

Given a normal array Γ, find necessary and sufficient conditions for the existence of a full coloring of Γ.

We have established a necessary condition for the existence of a full coloring of Γ, using a graph theoretic approach.

This problem is related to a problem about edge colorings of bipartite graphs, stated by Folkmann and Fulkerson in 1969, which is still an open problem.

Problem 2

Given a normal array Γ, whose multiplicity partition is not sign uniform, find conditions for the equality of $P(\Gamma)$ and $N(\Gamma)$.

For normal arrays

Problem 2

Given a normal array Γ, whose multiplicity partition is not sign uniform, find conditions for the equality of $P(\Gamma)$ and $N(\Gamma)$.

For normal arrays

$$
\Gamma=\left(\begin{array}{llll}
i_{1} & i_{2} & \ldots & i_{r^{2}} \\
j_{1} & j_{2} & \ldots & j_{r^{2}}
\end{array}\right)
$$

such that

$$
\left\{\left(i_{k}, j_{k}\right): k=1, \ldots, r^{2}\right\}=\{1, \ldots, r\} \times\{1, \ldots, r\}
$$

there is a one-to-one correspondence between Latin squares of order r and full colorings of Γ.

Problem 2

Given a normal array Γ, whose multiplicity partition is not sign uniform, find conditions for the equality of $P(\Gamma)$ and $N(\Gamma)$.

For normal arrays

$$
\Gamma=\left(\begin{array}{llll}
i_{1} & i_{2} & \ldots & i_{r^{2}} \\
j_{1} & j_{2} & \ldots & j_{r^{2}}
\end{array}\right)
$$

such that

$$
\left\{\left(i_{k}, j_{k}\right): k=1, \ldots, r^{2}\right\}=\{1, \ldots, r\} \times\{1, \ldots, r\}
$$

there is a one-to-one correspondence between Latin squares of order r and full colorings of Γ.

Problem 2

Given a normal array Γ, whose multiplicity partition is not sign uniform, find conditions for the equality of $P(\Gamma)$ and $N(\Gamma)$.

For normal arrays

$$
\Gamma=\left(\begin{array}{cccc}
i_{1} & i_{2} & \ldots & i_{r^{2}} \\
j_{1} & j_{2} & \ldots & j_{r^{2}}
\end{array}\right)
$$

such that

$$
\left\{\left(i_{k}, j_{k}\right): k=1, \ldots, r^{2}\right\}=\{1, \ldots, r\} \times\{1, \ldots, r\}
$$

there is a one-to-one correspondence between Latin squares of order r and full colorings of Γ.

In 1994, R. Huang and Gian-Carlo Rota have proved that if r is odd, then

$$
P(\Gamma)=N(\Gamma) .
$$

The same authors have conjectured that, if r is even, then $P(\Gamma) \neq N(\Gamma)$.

In 1994, R. Huang and Gian-Carlo Rota have proved that if r is odd, then

$$
P(\Gamma)=N(\Gamma)
$$

The same authors have conjectured that, if r is even, then

$$
P(\Gamma) \neq N(\Gamma) .
$$

Applications to Multilinear Algebra

Let $V=\mathbb{C}^{n}$ and let $\left(e_{1}, \ldots, e_{n}\right)$ be a o.n. basis of V.

Applications to Multilinear Algebra

Let $V=\mathbb{C}^{n}$ and let $\left(e_{1}, \ldots, e_{n}\right)$ be a o.n. basis of V. Let $m \in \mathbb{N}$.
Let $\Gamma_{m, n}$ be the set of the mappings from $\{1, \ldots, m\}$ to $\{1, \ldots, n\}$ Let χ be an irreducible character of S_{m}.

Applications to Multilinear Algebra

Let $V=\mathbb{C}^{n}$ and let $\left(e_{1}, \ldots, e_{n}\right)$ be a o.n. basis of V.
Let $m \in \mathbb{N}$.
Let $\Gamma_{m, n}$ be the set of the mappings from $\{1, \ldots, m\}$ to $\{1, \ldots, n\}$. _et χ be an irreducible character of S_{m}.

The χ-symmetry class of tensors on V is the span of the set of
the decomposable symmetrized tensors e_{n}^{χ}

Applications to Multilinear Algebra

Let $V=\mathbb{C}^{n}$ and let $\left(e_{1}, \ldots, e_{n}\right)$ be a o.n. basis of V.
Let $m \in \mathbb{N}$.
Let $\Gamma_{m, n}$ be the set of the mappings from $\{1, \ldots, m\}$ to $\{1, \ldots, n\}$. Let χ be an irreducible character of S_{m}.

The χ-symmetry class of tensors on V is the span of the set of the decomposable symmetrized tensors e_{α}^{χ}

Grassmann space is the ε-symmetry class of tensors.

Applications to Multilinear Algebra

Let $V=\mathbb{C}^{n}$ and let $\left(e_{1}, \ldots, e_{n}\right)$ be a o.n. basis of V.
Let $m \in \mathbb{N}$.
Let $\Gamma_{m, n}$ be the set of the mappings from $\{1, \ldots, m\}$ to $\{1, \ldots, n\}$. Let χ be an irreducible character of S_{m}.

The χ-symmetry class of tensors on V is the span of the set of the decomposable symmetrized tensors e_{α}^{χ}

$$
\left\{\frac{\chi(i d)}{m!} \sum_{\sigma \in S_{m}} \chi(\sigma) e_{\alpha \sigma^{-1}(1)} \otimes \ldots \otimes e_{\alpha \sigma^{-1}(m)}: \alpha \in \Gamma_{m, n}\right\}
$$

Grassmann space is the ε-symmetry class of tensors.

Applications to Multilinear Algebra

Let $V=\mathbb{C}^{n}$ and let $\left(e_{1}, \ldots, e_{n}\right)$ be a o.n. basis of V.
Let $m \in \mathbb{N}$.
Let $\Gamma_{m, n}$ be the set of the mappings from $\{1, \ldots, m\}$ to $\{1, \ldots, n\}$. Let χ be an irreducible character of S_{m}.

The χ-symmetry class of tensors on V is the span of the set of the decomposable symmetrized tensors e_{α}^{χ}

$$
\left\{\frac{\chi(i d)}{m!} \sum_{\sigma \in S_{m}} \chi(\sigma) e_{\alpha \sigma^{-1}(1)} \otimes \ldots \otimes e_{\alpha \sigma^{-1}(m)}: \alpha \in \Gamma_{m, n}\right\}
$$

Grassmann space is the ε-symmetry class of tensors.

The inner product of two symmetrized decomposable tensors e_{α}^{χ} and e_{β}^{χ} is zero whenever α and β are not congruent modulo S_{m}.

Otherwise, it is given by the formula

$$
\frac{\chi(i d)}{m!} \sum_{\sigma \in S_{\alpha}} \chi\left(\tau^{-1} \sigma\right)
$$

where $\beta=\alpha \tau$ and S_{α} is the stabilizer of α.
It is important to have conditions for the orthogonality of two symmetrized decomposable tensors.

The inner product of two symmetrized decomposable tensors e_{α}^{χ} and e_{β}^{χ} is zero whenever α and β are not congruent modulo S_{m}.

Otherwise, it is given by the formula

$$
\frac{\chi(i d)}{m!} \sum_{\sigma \in S_{\alpha}} \chi\left(\tau^{-1} \sigma\right)
$$

where $\beta=\alpha \tau$ and S_{α} is the stabilizer of α.
It is important to have conditions for the orthogonality of two symmetrized decomposable tensors.

Without loss of generality, we can suppose that α is weakly increasing and $\left|\alpha^{-1}(1)\right| \geq \ldots \geq\left|\alpha^{-1}(n)\right|$

The inner product of two symmetrized decomposable tensors e_{α}^{χ} and e_{β}^{χ} is zero whenever α and β are not congruent modulo S_{m}.

Otherwise, it is given by the formula

$$
\frac{\chi(i d)}{m!} \sum_{\sigma \in S_{\alpha}} \chi\left(\tau^{-1} \sigma\right)
$$

where $\beta=\alpha \tau$ and S_{α} is the stabilizer of α.
It is important to have conditions for the orthogonality of two symmetrized decomposable tensors.

Without loss of generality, we can suppose that α is weakly increasing and $\left|\alpha^{-1}(1)\right| \geq \ldots \geq\left|\alpha^{-1}(n)\right|$.

It is easy to see that, under the previous conditions, α and β are congruent modulo S_{m} if and only if

$$
\Gamma=\left(\begin{array}{cccc}
\alpha(1) & \alpha(2) & \ldots & \alpha(m) \\
\beta(1) & \beta(2) & \ldots & \beta(m)
\end{array}\right)
$$

is a normal array.
Theorem. (Dias da Silva, MMT) If the multiplicity partition of 「 is equal to χ, then
ϵ_{0}^{χ} and ϵ_{β}^{χ} are orthogonal if and only if $N(\Gamma)=P(\Gamma)$.

The proof is based on the Littlewood correspondence between Schur polynomials and immanants.

It is easy to see that, under the previous conditions, α and β are congruent modulo S_{m} if and only if

$$
\Gamma=\left(\begin{array}{cccc}
\alpha(1) & \alpha(2) & \ldots & \alpha(m) \\
\beta(1) & \beta(2) & \ldots & \beta(m)
\end{array}\right)
$$

is a normal array.
Theorem. (Dias da Silva, MMT) If the multiplicity partition of Γ is equal to χ, then
e_{α}^{χ} and e_{β}^{χ} are orthogonal if and only if $N(\Gamma)=P(\Gamma)$.

The proof is based on the Littlewood correspondence between Schur polynomials and immanants.

It is easy to see that, under the previous conditions, α and β are congruent modulo S_{m} if and only if

$$
\Gamma=\left(\begin{array}{cccc}
\alpha(1) & \alpha(2) & \ldots & \alpha(m) \\
\beta(1) & \beta(2) & \ldots & \beta(m)
\end{array}\right)
$$

is a normal array.
Theorem. (Dias da Silva, MMT) If the multiplicity partition of Γ is equal to χ, then

$$
e_{\alpha}^{\chi} \text { and } e_{\beta}^{\chi} \text { are orthogonal if and only if } N(\Gamma)=P(\Gamma)
$$

The proof is based on the Littlewood correspondence between Schur polynomials and immanants.

Example

$$
\begin{aligned}
& \text { Let } \chi=\left(3,2^{2}, 1^{2}\right), u=e_{\alpha}^{\chi}, v=e_{\beta}^{\chi} \text { and } \\
& \qquad \Gamma=\left(\begin{array}{lllllllll}
1 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 5 \\
1 & 3 & 5 & 1 & 2 & 2 & 4 & 1 & 3
\end{array}\right) .
\end{aligned}
$$

Since χ is sign uniform and there is a full coloring of Γ, we know that $N(\Gamma) \neq P(\Gamma)$, so u and v are not orthogonal.

References

[1] R. Huang and G.-C. Rota, On the relations of various conjectures on Latin squares and straightening coefficients, Discrete Mathematics, 28 (1994), 225-236.
[2] J. A. Dias da Silva e Maria M. Torres, On the orthogonal dimension of orbital sets, Linear Algebra and its Applications 401 (2005) 77-107.
[3] J. A. Dias da Silva e Maria M. Torres, A combinatorial approach to the orthogonality on critical orbital sets, Linear Algebra and its Applications 414 (2006), 474-491.

