Cyclic symmetry (Talk 1) invariant theory (Talk 2), q - and t-analogues (Talk 3)

Séminaire Lotharingien de
 Combinatoire

Heilsbronn 22.2-25.2.2009

Vic Reiner
Univ. of Minnesota, USA

Joint work with
Bram Broer,
Larry Smith,
Dennis Stanton, Peter Webb,
Dennis White.

Talk 1 Outline

I. The cyclic sieving phenomenon (CSP)
II. Example 1: subsets.
III. Keywords
IV. "Bad" / "good" proofs.
V. A good proof via invariant theory (\rightsquigarrow Talk 2).

I. The cyclic sieving phenomenon (CSP) (-, Stanton, and White 2004)

Given

- a finite set X, and
- a polynomial $X(t) \in \mathbb{Z}[t]$, and
- a cyclic group $C=\langle c\rangle \cong \mathbb{Z} / n \mathbb{Z}$ permuting X,
say the triple ($X, X(t), C$) exhibits the CSP if for any element c^{m} in C, the number of elements of X which c^{m} fixes is

$$
\left|X^{c^{m}}\right|=[X(t)]_{t=\left(e^{\frac{2 \pi i}{n}}\right)^{m}}
$$

In particular, $|X|=X(1)$.

In examples,

- most often $X(t) \in \mathbb{N}[t]$,
- sometimes $X(t)$ is a generating function for X of the form

$$
X(t)=\sum_{x \in X} t^{s(x)}
$$

- sometimes a Hilbert series

$$
\begin{aligned}
X(t) & =\operatorname{Hilb}(U, t) \\
& :=\sum_{d \geq 0} \operatorname{dim}\left(U_{d}\right) t^{d}
\end{aligned}
$$

for some interesting graded vector space/ring/representation

$$
U=\bigoplus_{d \geq 0} U_{d}
$$

Special case when $C=\mathbb{Z} / 2 \mathbb{Z}$:
Stembridge's $t=-1$ phenomenon (1994):

$$
[X(t)]_{t=-1}=\left|X^{c}\right|
$$

for some involution $c: X \rightarrow X$.

This turned out to be useful in organizing some results enumerating plane partitions with symmetry.

I. Example 1- subsets

$$
X:=k \text {-subsets of }\{1,2, \ldots, n\}
$$

$X(t):=t$-binomial coefficient

$$
\left[\begin{array}{c}
n \\
k
\end{array}\right]_{t}=\frac{[n]!_{t}}{[k]!_{t}[n-k]!_{t}},
$$

with $[n]!_{t}:=[n]_{t} \cdots[2]_{t}[1]_{t}$

$$
[n]_{t}:=1+t+t^{2}+\cdots+t^{n-1}=\frac{1-t^{n}}{1-t}
$$

$$
C:=\langle(123 \cdots n)\rangle \cong \mathbb{Z} / n \mathbb{Z}
$$

$$
\text { cyclically permuting }\{1,2, \ldots, n\},
$$ and therefore also permuting k-subsets .

THM (-, Stanton, White 2004)
This triple ($X, X(t), C$) exhibits the CSP.

Example 1 (continued)

For $n=4, k=2$, the set

$$
X=\{12,13,14,23,24,34\}
$$

carries this action of $C=\mathbb{Z}_{4}$:

$$
X(t)=\left[\begin{array}{l}
4 \\
2
\end{array}\right]_{t}=\frac{[4]_{t}[3]_{t}}{[2]_{t}}=1+t+2 t^{2}+t^{3}+t^{4}
$$

evaluates at $4^{\text {th }}$-roots of unity as

$$
X(\omega)= \begin{cases}6(=|X|) & \text { if } \omega=1 \\ 2\left(=\left|X^{c^{2}}\right|\right) & \text { if } \omega=-1 \\ 0\left(=\left|X^{c}\right|=\left|X^{c^{3}}\right|\right) & \text { if } \omega= \pm i .\end{cases}
$$

Alternate phrasing of CSP:
in the unique expansion
$X(t) \equiv a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{n-1} t^{n-1} \quad \bmod t^{n-1}$
a_{i} counts the C-orbits on X for which
the C-stabilizer has order dividing i.

In particular,
a_{0} is the number of C-orbits in total,
a_{1} is the number of C-orbits which are free.
E.g. above

$$
\begin{aligned}
X(t) & =1+t+2 t^{2}+t^{3}+t^{4} \\
& \equiv 2+t+2 t^{2}+t^{3} \quad \bmod t^{4}-1
\end{aligned}
$$

A few remarks on Example 1...

REMARK:
One also has the CSP for ($X, X(t), C$) with same set X equal to all k-subsets of $\{1,2, \ldots, n\}$ same set $X(t)=\left[\begin{array}{l}n \\ k\end{array}\right]_{t}$, different cyclic group

$$
C=\langle(123 \cdots n-1)(n)\rangle \cong \mathbb{Z} /(n-1) \mathbb{Z}
$$

But then it fails for any other cyclic subgroup C of permutations which is not a subgroup of $\langle(123 \cdots n)\rangle$ or $\langle(123 \cdots n-1)(n)\rangle$!

REMARK;
$X(t)=\left[\begin{array}{l}n \\ k\end{array}\right]_{t}$ has many interpretations; we emphasize one from invariant theory...

Let $S:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, with symmetric group \mathfrak{S}_{n} permuting variables. Then one has

$$
\begin{aligned}
X(t) & =\left[\begin{array}{l}
n \\
k
\end{array}\right]_{t} \\
& =\frac{1}{(1-t) \cdots\left(1-t^{k}\right) \cdot(1-t) \cdots\left(1-t^{n-k}\right)} \\
& / \frac{1}{(1-t) \cdots\left(1-t^{n}\right)} \\
& =\operatorname{Hilb}\left(S^{\left.\mathfrak{S}_{k} \times \mathfrak{S}_{n-k}, t\right) / \operatorname{Hilb}\left(S^{\mathfrak{S}_{n}}, t\right)}\right. \\
& =\operatorname{Hilb}\left(S^{\left.\mathfrak{S}_{k} \times \mathfrak{S}_{n-k} /\left(S_{+}^{\mathfrak{S}_{n}}\right), t\right) .}\right.
\end{aligned}
$$

Note that one can think of our set X as
k - subsets of $\{1,2, \ldots, n\} \longleftrightarrow \mathfrak{S}_{n} /\left(\mathfrak{S}_{k} \times \mathfrak{S}_{n-k}\right)$.

III. Keywords

Some examples of CSP's we have encountered, conjecturally in at least one case:

- $X=k$-dimensional subspaces of $\left(\mathbb{F}_{q}\right)^{n}$
(that is, q-Example 1, which led to Talks 2, 3)
- $X=$ multisets
- $X=$ Polya colorings
- $X=$ polygon triangulations/dissections
($\rightsquigarrow W$-clusters)
- $X=$ noncrossing partitions
($\rightsquigarrow W$-noncrossing partitions)
- $X=$ nonnesting partitions
($\rightsquigarrow W$-nonnesting partitions)
$-X=r e c t a n g u l a r-s h a p e d ~ t a b l e a u x ~$
$-X=$ alternating sign matrices
IV. "Bad" versus "Good" proofs

Given ($X, X(t), C$), a "bad" way to prove

$$
\left|X^{c^{m}}\right|=[X(t)]{ }_{t=\left(e^{\frac{2 \pi i}{n}}\right)^{m}}
$$

(i) evaluates the right side
(often via a product formula for $X(t)$,
(ii) counts the left side, (often via good ol' combinatorics),
(iii) equates the answers!

Here's a "good" way to prove

$$
\left|X^{c^{m}}\right|=[X(t)]_{t=\left(e^{\frac{2 \pi i}{n}}\right)^{m} .}
$$

(i) Find a natural graded vector space

$$
U=\oplus_{d \geq 0} U_{d}
$$

with

$$
X(t)=\operatorname{Hilb}(U, t)
$$

Then the C-action on U defined by having c act as the scalar $\left(e^{\frac{2 \pi i}{n}}\right)^{d}$ on U_{d} has the trace of c^{m} on U equal to

$$
\sum_{d \geq 0} \operatorname{dim}\left(U_{d}\right)\left(e^{\frac{2 \pi i}{n}}\right)^{d m}=[X(t)]_{t=\left(e^{\frac{2 \pi i}{n}}\right)^{m}}
$$

(ii) Define a permutation representation $\mathbb{C}[X]$ of C having \mathbb{C}-basis elements

$$
\left\{e_{x}\right\}_{x \in X}
$$

and C-action by permuting the basis:

$$
c\left(e_{x}\right)=e_{c(x)} .
$$

Then the trace of c^{m} on $\mathbb{C}[X]$ equals $\left|X^{c^{m}}\right|$.
(iii) Prove that as C-representations,

$$
\mathbb{C}[X] \cong U .
$$

Then c^{m} should have the same trace in both:

$$
\left|X^{c^{m}}\right|=[X(t)]{ }_{t=\left(e^{\frac{2 \pi i}{n}}\right)^{m} .}
$$

Harder than it looks, of course!

Sadly, many of our CSP proofs are"bad", but some have been replaced by "good" ones.

MORAL: t is a grading variable in many CSP's.

$$
\begin{aligned}
& \text { V. Example } 1 \text {, the "good" way } \\
& \text { via invariant theory }
\end{aligned}
$$

Let $V=\mathbb{C}^{n}$, and
W a finite subgroup of $G L(V)=G L_{n}(\mathbb{C})$.
Then W acts on $S=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ via linear substitutions variables.

THM (Shephard-Todd, Chevalley 1955)
When the group W is generated by reflections ($=$ elements r with V^{r} a hyperplane), there is an isomorphism of W-representations between the coinvariant algebra and the leftregular represenation:

$$
S /\left(S_{+}^{W}\right) \cong \mathbb{C}[W]
$$

We need more....

Say that an element c in a finite reflection group W is regular if it has an eigenvector v that avoids all of the reflection hyperplanes. Hence $c(v)=\omega \cdot v$ for a root-of-unity ω in \mathbb{C}.

THM (T.A. Springer 1972)
Let $C=\langle c\rangle$ be generated by a regular element c in a finite reflection group W.

Then the Shephard-Todd/Chevalley isomorphism

$$
S /\left(S_{+}^{W}\right) \cong \mathbb{C}[W]
$$

extends to one of $W \times C$-representations, with W acting as before, but C acting...

- on left, via scalar substitutions

$$
c\left(x_{i}\right)=\omega x_{i}
$$

- on right, via right-translation: $c\left(e_{w}\right)=e_{w c}$.

Now given any subgroup W^{\prime} of W
(think $W=\mathfrak{S}_{n}$ and $W^{\prime}=\mathfrak{S}_{k} \times \mathfrak{S}_{n-k}$)
take the W^{\prime}-fixed spaces
in Springer's $W \times C$-isomorphism, leaving a C-isomorphism:

$$
\left(S /\left(S_{+}^{W}\right)\right)^{W^{\prime}} \cong \mathbb{C}[W]^{W^{\prime}}
$$

Then say some magic words turning this into...

$$
S^{W^{\prime}} /\left(S^{W}+\right) \cong \mathbb{C}\left[W^{\prime} \backslash W\right]
$$

The left side is our U modelling

$$
X(t)=\operatorname{Hilb}\left(S^{W^{\prime}} /\left(S_{+}^{W}\right), t\right)=\frac{\operatorname{Hilb}\left(S^{W^{\prime}}, t\right)}{\operatorname{Hilb}\left(S^{W}, t\right)}
$$

The right side is $\mathbb{C}[X]$ where $X=W^{\prime} \backslash W$, and C acts by right-translating cosets:

$$
c\left(W^{\prime} w\right)=W^{\prime} w c .
$$

Equating traces of c^{m} on both sides gives...

COR(-,Stanton,White 2004)
For a regular element c in a complex reflection group W, and any subgroup W^{\prime}, the triple $(X, X(t), C)$ in which

$$
\begin{aligned}
& X=W / W^{\prime} \\
& C=\langle c\rangle \text { left-translating cosets }
\end{aligned}
$$

$$
X(t)=\operatorname{Hilb}\left(S^{W^{\prime}} /\left(S_{+}^{W}\right), t\right)=\frac{\operatorname{Hilb}\left(S^{W^{\prime}}, t\right)}{\operatorname{Hilb}\left(S^{W}, t\right)}
$$

always exhibits the CSP.

Example 1 comes from
$W=\mathfrak{S}_{n}$,
$W^{\prime}=\mathfrak{S}_{k} \times \mathfrak{S}_{n-k}$,
$c=(123 \cdots n)$ or $c=(123 \cdots n-1)(n)$:

Note that setting $\zeta_{n}:=e^{\frac{2 \pi i}{n}}$, then $c=(123 \cdots n)$ is regular because it has ζ_{n}-eigenvector

$$
\left(1, \zeta_{n}^{1}, \zeta_{n}^{2}, \ldots, \zeta_{n}^{n-1}\right)
$$

while $c=(123 \cdots n-1)(n)$ is regular because it has ζ_{n-1}-eigenvector

$$
\left(1, \zeta_{n-1}^{1}, \zeta_{n-1}^{2}, \ldots, \zeta_{n-1}^{n-2}, 0\right)
$$

Talk 2: Invariant theory Outline

I. Example 1: subsets.
II. q-Example 1: subspaces.
III. A general Springer-type theorem
(with Bram Broer, Larry Smith, and Peter Webb)

I. Recall the CSP and Example 1

Recall ($X, X(t), C$) exhibits the CSP if for any element c^{m} in C, the number of elements of X which c^{m} fixes is

$$
\left|X^{c^{m}}\right|=[X(t)]{ }_{t=\left(e^{\frac{2 \pi i}{n}}\right)^{m}}
$$

Example 1 was

$$
\begin{aligned}
X & =k \text {-subsets of }\{1,2, \ldots, n\}=\mathfrak{S}_{n} /\left(\mathfrak{S}_{k} \times \mathfrak{S}_{n-k}\right) \\
C & =\langle(123 \cdots n)\rangle
\end{aligned}
$$

$$
\begin{aligned}
X(t) & =\left[\begin{array}{l}
n \\
k
\end{array}\right]_{t}=\frac{\operatorname{Hilb}\left(S^{\left.\mathfrak{S}_{k} \times \mathfrak{S}_{n-k}, t\right)}\right.}{\operatorname{Hilb}\left(S^{\left.\mathfrak{S}_{n}, t\right)}\right.} \\
& =\frac{1}{(1-t) \cdots\left(1-t^{k}\right) \cdot(1-t) \cdots\left(1-t^{n-k}\right)} \\
& / \frac{1}{(1-t) \cdots\left(1-t^{n}\right)}
\end{aligned}
$$

where $S=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$
and $S^{\mathfrak{G}_{n}}=\mathbb{C}\left[e_{1}(\mathrm{x}), e_{2}(\mathrm{x}), \ldots, e_{n}(\mathrm{x})\right]$ with

$$
e_{i}(\mathrm{x})=\sum_{|I|=i}\left(\prod_{i \in I} x_{i}\right)
$$

I. q-Example 1

For the q-analogue, we take
$X=k$-dimensional subspaces of $\mathbb{F}_{q}^{n}=G / P$ which carries a transitive action of

$$
G:=G L_{n}\left(\mathbb{F}_{q}\right)=G L_{\mathbb{F}_{q}}\left(\mathbb{F}_{q}^{n}\right)
$$

and P is the parabolic subgroup fixing some particular k-subspace.

Where do we get a cyclic action on X ?

Any element c inside $G=G L_{n}\left(\mathbb{F}_{q}\right)$ could be taken to generate the cyclic group C.

But the correct q-analogue of $c=(123 \cdots n)$ turns out to be a Singer cycle c, that is, a generator for the (cyclic!) group

$$
\mathbb{F}_{q^{n}}^{\times} \cong \mathbb{Z} /\left(q^{n}-1\right) / \mathbb{Z}
$$

embedded into

$$
G:=G L_{n}\left(\mathbb{F}_{q}\right) \cong G L_{\mathbb{F}_{q}}\left(\mathbb{F}_{q}^{n}\right) \cong G L_{\mathbb{F}_{q}}\left(\mathbb{F}_{q^{n}}\right)
$$

by picking any \mathbb{F}_{q}-vector space isomorphism $\mathbb{F}_{q}^{n} \cong \mathbb{F}_{q^{n}}$.

What $X(t)$ will we take with $X=G / P$?

Let $S:=\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$.

Then the group $G=G L_{n}\left(\mathbb{F}_{q}\right)$ acts on S by linear substitutions of variables, and so does the subgroup P.

Not surprisingly perhaps, we choose

$$
X(t)=\frac{\operatorname{Hilb}\left(S^{P}, t\right)}{\operatorname{Hilb}\left(S^{G}, t\right)}
$$

But what is this $X(t)$ explicitly?

THM (L.E. Dickson 1911) The invariant ring

$$
S^{G}=\mathbb{F}_{q}\left[D_{n, 0}, D_{n, 1}, \ldots, D_{n, n-1}\right]
$$

for $G=G L_{n}\left(\mathbb{F}_{q}\right)$ is a polynomial algebra, whose generators $D_{n, i}$ have degrees $q^{n}-q^{i}$, and can be written

$$
D_{n, i}=\sum_{\substack{i-\mathrm{dim}{ }^{\prime} \text { I subspaces } \\ U \subset\left(\mathbb{F}_{q}^{n}\right)^{*}}}\left(\prod_{\ell(\mathrm{x}) \notin U} \ell(\mathrm{x})\right)
$$

Hence one has $\operatorname{Hilb}\left(S^{G}, t\right)=\frac{1}{n!q, t}$ where

$$
n!_{q, t}=\left(1-t^{q^{n}-1}\right)\left(1-t^{q^{n}-q}\right) \cdots\left(1-t^{q^{n}-q^{n-1}}\right)
$$

This was generalized by Mui (1975) to a result for all of the parabolic subgroups P, showing that

$$
\operatorname{Hilb}\left(S^{P}, t\right)=\frac{1}{k!_{q, t} \cdot(n-k)!_{q, t^{k}}}
$$

Hence their quotient gives an explicit product formula for

$$
\begin{aligned}
X(t) & =\frac{\operatorname{Hilb}\left(S^{P}, t\right)}{\operatorname{Hilb}\left(S^{G}, t\right)} \\
& =\frac{1}{k!_{q, t} \cdot(n-k)!_{q, t^{k}}{ }^{k}} \\
& =:\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q, t} \\
& =\text { the }(q, t) \text {-binomial coefficient. }
\end{aligned}
$$

THM

(-, Stanton, White 2004, via "bad" proof!)

The triple

$$
\begin{aligned}
X & =G / P=k \text {-subspaces of } \mathbb{F}_{q}^{n} \\
X(t) & =\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q, t} \\
C & =\mathbb{F}_{q^{n}}^{\times}=\langle c\rangle \cong \mathbb{Z} /\left(q^{n}-1\right) \mathbb{Z}
\end{aligned}
$$

exhibits the CSP.

We wanted a better proof, that explained more examples over \mathbb{F}_{q}, involving other subgroups of $G=G L_{n}\left(\mathbb{F}_{q}\right)$.

III. A more general Springer theorem

Recall that Springer's theorem was about (complex) reflection groups.

INTERESTING FACT:
$G=G L_{n}\left(\mathbb{F}_{q}\right)$ is a reflection group!

THM (Serre 1967)
For any field \mathbb{F},
if a finite subgroup G of $G L_{n}(\mathbb{F})$
acting on $S:=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ has the invariant ring S^{G} a polynomial algebra, then G must be generated by reflections.

The converse is false generally,
but true in characteristic zero (Chevalley 1955)

Here "reflections" are still elements r
for which the fixed space $\left(\mathbb{F}^{n}\right)^{r}$ is a hyperplane.

But in positive characteristic, it allows for r to be a transvection, that is, non-semisimple, of determinant 1, e.g.

$$
r=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Note one can generate $G=G L_{n}\left(\mathbb{F}_{q}\right)$ using transvections and semisimple reflections.

When S^{G} is polynomial, so that G is generated by reflections, define a regular element c in G (as before) to be one with an eigenvector v that avoids all the reflecting hyperplanes.

PROP

An element c in $G L_{n}\left(\mathbb{F}_{q}\right)$ is regular $\Leftrightarrow c$ is a power of a Singer cycle, that is, c is in the image of some embedding

$$
\mathbb{F}_{q^{n}}^{\times} \hookrightarrow G L_{n}\left(\mathbb{F}_{q}\right)
$$

THM (Broer, -, Smith, Webb, 2007)
Let \mathbb{F} be any field, and $S=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$.
Let G be a finite subgroup of $G L_{n}(\mathbb{F})$ with S^{G} polynomial.
Let C be the cyclic subgroup generated by a regular element c in G. Let H be any subgroup of G.

Then the triple

$$
\begin{aligned}
X & =G / H \\
X(t) & =\frac{\operatorname{Hilb}\left(S^{H}, t\right)}{\operatorname{Hilb}\left(S^{G}, t\right)} \\
C & =\langle c\rangle \text { left-translating cosets } g H
\end{aligned}
$$

always exhibits the CSP.

MORAL:
This $X(t)$ is the right way to
introduce a grading variable into a set $X=G / H$ that has a transitive G-action.

Some ideas of the proof...
IDEA 1 Because char (\mathbb{F}) might not be zero, and S^{H} is not always Cohen-Macaulay,

$$
\begin{aligned}
X(t) & =\frac{\operatorname{Hilb}\left(S^{H}, t\right)}{\operatorname{Hilb}\left(S^{G}, t\right)} \\
& \neq \operatorname{Hilb}(\underbrace{S^{H} /\left(S_{+}^{G}\right)}_{\operatorname{Tor}_{0}^{G}\left(S^{H}, \mathbb{F}\right)}, t)
\end{aligned}
$$

However the following corrects this:

$$
\begin{aligned}
X(t)= & \operatorname{Hilb}\left(\operatorname{Tor}_{0}^{S^{G}}\left(S^{H}, \mathbb{F}\right), t\right) \\
& -\operatorname{Hilb}\left(\operatorname{Tor}_{1}^{S^{G}}\left(S^{H}, \mathbb{F}\right), t\right) \\
& +\operatorname{Hilb}\left(\operatorname{Tor}_{2}^{S^{G}}\left(S^{H}, \mathbb{F}\right), t\right)-\cdots \\
= & \sum_{i=0}^{n}(-1)^{i} \operatorname{Hilb}\left(\operatorname{Tor}_{i}^{S^{G}}\left(S^{H}, \mathbb{F}\right), t\right)
\end{aligned}
$$

So work with all of $\operatorname{Tor}_{*}^{S^{G}}\left(S^{H}, \mathbb{F}\right)$ not just $\operatorname{Tor}_{0}^{S^{G}}\left(S^{H}, \mathbb{F}\right)=S^{H} /\left(S_{+}^{G}\right)$ as in Springer.

IDEA 2
Let $G \subset G L_{n}(\mathbb{F})$ act on $V:=\mathbb{F}^{n}$,
and on $S=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$.

Then the surjection $V \xrightarrow{\pi} V / G$
corresponds to the inclusion $S^{G} \hookrightarrow S$.
(Same for $V \rightarrow V / H \rightarrow V / G$ and $S^{G} \hookrightarrow S^{H} \rightarrow S$.)

Then $S /\left(S_{+}^{G}\right)$ is the coordinate ring of the fiber $\pi^{-1}(\pi(0))$.

Compare it with the fiber $\pi^{-1}(\pi(v))$, where v is the eigenvector of the regular element c.

The latter fiber $\pi^{-1}(\pi(v))$ has a free G-action, and even a fairly simple $G \times C$-action.

Talk 3: q - and t-analogues Outline

We'll see examples of ...

$$
X_{q}(t)
$$

with CSP for $(X, X(t), C)$ in which $C=\langle c\rangle$ for c an n-cycle in \mathfrak{S}_{n},
and CSP for ($X_{q}, X_{q}(t), C_{q}$) in which $C_{q}=\left\langle c_{q}\right\rangle$ for c_{q} a Singer cycle in $G L_{n}\left(\mathbb{F}_{q}\right)$.

$$
\begin{aligned}
& |X| \in \mathbb{N} \\
& q=1 \nearrow \\
& \left|X_{q}\right| \in \mathbb{N}[q] \quad \stackrel{t \leftrightarrow q}{\longleftrightarrow} \quad X(t) \in \mathbb{N}[t] \\
& t=1 \nwarrow \\
& \nearrow t \mapsto t^{\frac{1}{q-1}}, q=1
\end{aligned}
$$

We've seen one such example already with $\begin{aligned} & X=k \text {-subsets of }\{1,2, \ldots, n\}=\mathfrak{S}_{n} /\left(\mathfrak{S}_{k} \times \mathfrak{S}_{n-k}\right) \\ & X_{q}=k \text {-subspaces of } \mathbb{F}_{q}^{n} \\ &=G / P\end{aligned}$

$$
\begin{aligned}
& |X|=\binom{n}{k} \\
& q=1 \nearrow \\
& \left|X_{q}\right|=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \quad \stackrel{t \leftrightarrow q}{\longleftrightarrow} \quad X(t)=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{t} \\
& \begin{array}{r}
=\frac{\operatorname{Hilb}\left(S^{\mathfrak{S}_{k}} \times \mathfrak{S}_{n-k}, t\right)}{\operatorname{Hilb}\left(S^{\mathfrak{S}_{n}}, t\right)} \\
\nearrow t \mapsto t^{\frac{1}{q-1}}, q=1
\end{array} \\
& X_{q}(t)=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q, t} \\
& =\frac{\operatorname{Hilb}\left(S^{P}, q\right)}{\operatorname{Hilb}\left(S^{G}, t\right)}
\end{aligned}
$$

E.g. $n=2$ and $k=1$ looks like this...

$$
\begin{aligned}
& |X|=\binom{2}{1} \\
& q=1 \nearrow \\
& \begin{array}{rll}
\left|X_{q}\right|=\left[\begin{array}{l}
2 \\
1
\end{array}\right]_{q} & \stackrel{t \leftrightarrow q}{\longleftrightarrow} & \\
=q(t)=\left[\begin{array}{l}
2 \\
1
\end{array}\right]_{t} \\
& =q+1 &
\end{array} \\
& t=1 \nwarrow \\
& \nearrow t \mapsto t^{\frac{1}{q-1}}, q=1 \\
& X_{q}(t)=\left[\begin{array}{l}
2 \\
1
\end{array}\right]_{q, t} \\
& =\frac{2!q, t}{1!q, t+l_{q, t}} \\
& =\frac{\left(1-t^{q^{2}-1}\right)\left(1-t^{q^{2}-q}\right)}{\left(1-t^{q-1}\right)\left(1-t^{\left.q^{2}-q\right)}\right.} \\
& =\frac{1-t^{(q-1)(q+1)}}{1-t^{q-1}} \\
& =[q+1]_{t^{q-1}}
\end{aligned}
$$

An interesting extra feature in this example... Think of X as partitions λ whose Ferrers diagram fits inside a $k \times(n-k)$ rectangle. Then

$$
\begin{aligned}
X(t) & =\left[\begin{array}{l}
n \\
k
\end{array}\right]_{t}=\sum_{\lambda \in X} t^{|\lambda|} \\
\left|X_{q}\right| & =\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\sum_{\lambda \in X} q^{|\lambda|}
\end{aligned}
$$

THM (-, Stanton 2008) One has

$$
X_{q}(t)=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q, t}=\sum_{\lambda \in X} \mathrm{wt}(\lambda ; q, t)
$$

where

$$
\mathrm{wt}(\lambda ; q, t)=\prod_{\text {cells } x \text { of } \lambda} t^{a(x)}[q]_{t^{q}(x)_{-q}(x)} .
$$

In particular, $\operatorname{wt}(\lambda ; q, t) \rightarrow q^{|\lambda|}, t^{|\lambda|}$ under the two kinds of limits that send $X_{q}(t)$ to $\left|X_{q}\right|, X(t)$.

This all persists in more general examples.

For any composition $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ of n, consider the Young subgroup

$$
\mathfrak{S}_{\alpha}:=\mathfrak{S}_{\alpha_{1}} \times \cdots \times \mathfrak{S}_{\alpha_{\ell}}
$$

inside \mathfrak{S}_{n},
and the corresponding parabolic subgroup P_{α} inside $G=G L_{n}\left(\mathbb{F}_{q}\right)$ that stabilizes some particular flag of subspaces having dimensions

$$
D(\alpha):=\left(\alpha_{1}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}+\alpha_{3}, \ldots\right)
$$

One then finds the same story with

$$
\begin{aligned}
X & =\mathfrak{S}_{n} / \mathfrak{S}_{\alpha} \\
X_{q} & =G / P_{\alpha}
\end{aligned}
$$

together with the usual q - or t-multinomial coefficients

$$
\begin{aligned}
X(t) & =\left[\begin{array}{l}
n \\
\alpha
\end{array}\right]_{t} \\
\left|X_{q}\right| & =\left[\begin{array}{l}
n \\
\alpha
\end{array}\right]_{q}
\end{aligned}
$$

and the (q, t)-multinomial

$$
X_{q}(t)=\left[\begin{array}{l}
n \\
\alpha
\end{array}\right]_{q, t}:=\frac{\operatorname{Hilb}\left(S^{P_{\alpha}}, t\right)}{\operatorname{Hilb}\left(S^{G}, t\right)}
$$

Here one can think of X as

$$
X=\left\{w \in \mathfrak{S}_{n}: \operatorname{Des}(w) \subseteq D(\alpha)\right\}
$$

where $\operatorname{Des}(w)$ is the usual
descent set of a permutation w. Then

$$
\begin{aligned}
X(t) & =\left[\begin{array}{l}
n \\
\alpha
\end{array}\right]_{t}=\sum_{w \in X} t^{\ell(w)} \\
\left|X_{q}\right| & =\left[\begin{array}{l}
n \\
\alpha
\end{array}\right]_{q}=\sum_{w \in X} q^{\ell(w)}
\end{aligned}
$$

with $\ell(w)$ the length/inversion number of w.

THM (-, Stanton 2008) One has

$$
X_{q}(t)=\left[\begin{array}{l}
n \\
\alpha
\end{array}\right]_{q, t}=\sum_{w \in X} \mathrm{wt}(w ; q, t)
$$

where $\mathrm{wt}(w ; q, t)$ has a summation-of-products expression as before.

This suggests consideration of the more refined descent classes

$$
X=\left\{w \in \mathfrak{S}_{n}: \operatorname{Des}(w)=D(\alpha)\right\}
$$

and their length generating functions

$$
\begin{aligned}
X(t) & =\left[\begin{array}{l}
n \\
\alpha
\end{array}\right]_{t}=\sum_{w \in X} t^{\ell(w)} \\
\left|X_{q}\right| & =\left[\begin{array}{l}
n \\
\alpha
\end{array}\right]_{q}=\sum_{w \in X} q^{\ell(w)}
\end{aligned}
$$

as well as

$$
X_{q}(t):=\left[\begin{array}{l}
n \\
\alpha
\end{array}\right]_{q, t}=\sum_{w \in X} w t(w ; q, t)
$$

where $w t(w ; q, t)$ is the same weight that appeared before.

Can we say anything meaningful about these?

Yes- two things. Firstly,
MacMahon's determinantal formula for descent class sizes

$$
|X|=n!\operatorname{det}\left(\frac{1}{\left(\alpha_{i}+\alpha_{i+1}+\cdots+\alpha_{j}\right)!}\right)_{i, j=1, \ldots, \ell}
$$

which was generalized by Stanley to

$$
\begin{aligned}
X(t) & =[n]!_{t} \operatorname{det}\left(\frac{1}{\left[\alpha_{i}+\alpha_{i+1}+\cdots+\alpha_{j}\right]!_{t}}\right)_{i, j=1, \ldots, \ell} \\
\left|X_{q}\right| & =[n]!_{q} \operatorname{det}\left(\frac{1}{\left[\alpha_{i}+\alpha_{i+1}+\cdots+\alpha_{j}\right]!_{q}}\right)_{i, j=1, \ldots, \ell}
\end{aligned}
$$

generalizes further to
THM (-, Stanton 2008)
$X_{q}(t)=[n]!_{q, t} \operatorname{det}\left(\frac{1}{\left[\alpha_{i}+\alpha_{i+1}+\cdots+\alpha_{j}\right]!_{q, t^{q}} \sum_{m=1}^{i-1} \alpha_{i}}\right)$
where

$$
[n]!_{q, t}:=\left(1-t^{q^{n}-1}\right)\left(1-t^{q^{n}-q}\right) \cdots\left(1-t^{q^{n}-q^{n-1}}\right) .
$$

Secondly, one has homological and invariant theory interpretations.

The size of the descent class $|X|$ gives the dimension of the top (and only) homology group for the α-rank-selected subcomplex of the Coxeter complex for \mathfrak{S}_{n}, or the order complex of the Boolean algebra. Call this homology \mathfrak{S}_{n}-representation χ^{α}.

The polynomial $\left|X_{q}\right|=\sum_{w \in X} q^{\ell(w)}$ was shown by Björner (1984) to give the dimension of the top (and only) homology group for the α-rank-selected subcomplex of the of the Tits building for $G L_{n}\left(\mathbb{F}_{q}\right)$, or the order complex of the subspace lattice.
Call this homology $G L_{n}\left(\mathbb{F}_{q}\right)$-representation χ_{q}^{α}.

On the other hand, one can show the following

THM (-, Stanton 2008)

$$
X(t):=\sum_{w \in X} t^{\ell(w)}=\frac{\operatorname{Hilb}(M, t)}{\operatorname{Hilb}\left(S^{\mathfrak{S}_{n}}, t\right)}
$$

where $M:=\operatorname{Hom}_{\mathfrak{S}_{n}}\left(\chi^{\alpha}, S\right)$, and

$$
X_{q}(t):=\sum_{w \in X} \mathrm{wt}(w ; q, t)=\frac{\operatorname{Hilb}\left(M^{q}, t\right)}{\operatorname{Hilb}\left(S^{G}\right), t}
$$

where $M^{q}:=\operatorname{Hom}_{G}\left(\chi_{q}^{\alpha}, S\right)$.

In the special case $\alpha=1^{n}$, this last result is related to work of the topologists N. Kuhn and S. Mitchell (1984).

They were interested in knowing exactly how many copies of the Steinberg module of $G L_{n}\left(\mathbb{F}_{q}\right)$ occur in each graded component of $S=\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$.

An incomplete picture for column-strict tableaux

Let X be all column-strict tableaux of a skew-shape λ / μ with entries in $\{0,1, \ldots, n\}$.

An appropriate t-analogue is the principally specialized Schur function

$$
X(t):=s_{\lambda / \mu}\left(1, t, t^{2}, \ldots, t^{n}\right)
$$

This can then be generalized to a suitable (q, t)-analogue $X_{q}(t)$ that has many of the good properties we have seen, including a product formulae, and $X(t)$ as an appropriate limit.

These polynomials $X_{q}(t)$ in fact are lifts from
$\mathbb{F}_{q}[t]$ to $\mathbb{Z}[t]$ of principal specializations of Macdonald's " 7 th variation" on Schur functions from SLC 1992.

QUESTION
What is the algebraic meaning
(e.g. invariant-theoretic, Hilbert series)
for these (q, t)-analogues $X_{q}(t)$?

