Linear time equivalent Littlewood-Richardson coefficient symmetry maps

O. Azenhas, A. Conflitti, R. Mamede

CMUC, Centre for Mathematics, University of Coimbra
SLC62, February 23, 2009

Contents

(1) Reduction of LR-symmetry maps: An outline
(2) LR-coefficient conjugation symmetry map is linearly reducible to the Schützenberger involution/fundamental symmetry
(3) LR-tableaux, Knutson-Tao puzzles, and Purbhoo mosaics: conjugation symmetry maps coincide

Sources

- Conjugation symmetry maps on LR tableaux

HS Philip Hanlon, Sheila Sundaram, On a bijection between Littlewood-Richardson fillings of conjugate shape J. Combin. Theory Ser. A 60 (1992), no. 1, 1-18.
BSS Georgia Benkart, Frank Sottile, Jeffrey Stroomer, Tableau switching: algorithms and applications, J. of Combin. Theory Ser. A 76 (1996), no.1, 11-34.
Z Ion Zaballa, Increasing and decreasing Littlewood-Richardson sequences and duality, preprint, University of Basque Country, 1996.
A Olga Azenhas, The admissible interval for the invariant factors of a product of matrices, Linear and Multilinear Algebra 46 (1999), no. 1-2, 51-99.
ACM O. Azenhas, A. Conflitti, R. Mamede, Linear time equivalent Littlewood-Richardson coefficient symmetry maps, extended abstract, 2008.

- Symmetries of Hives
- Ronald C. King, Littlewood-Richardson coefficients, the hive model and Horn Inequalities, available at http://www.personal.soton.ac.uk/rck/coimbra.pdf

Sources

- Puzzles and mosaics

KTW A. Knutson, T. Tao and C. Woodward, The honeycomb model of $\mathrm{GLn}(\mathrm{C})$ tensor products. II: Puzzles determine facets of the Littlewood-Richardson cone, Amer. Math. Soc. 17 (2004) 1948
Pu Kevin Purbhoo, Puzzles, tableaux, and mosaics, J. Algebraic Combin., 28 (2008), 461-480.

- Linear reduction of Young tableau bijections

PV1 Igor Pak, Ernesto Vallejo, Combinatorics and geometry of Littlewood-Richardson cones, Europ. J. Combinatorics, vol. 26 (2005)
PV2 Igor Pak, Ernesto Vallejo, Reductions of Young tableau bijections, to appear in Discrete Mathematics (SIAM), available at arXiv:math/0408171

Littlewood-Richardson number symmetries

- A product of Schur functions $s_{\mu} s_{\nu}$ can be expressed as a nonnegative integer linear sum of Schur functions:

$$
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda}
$$

Littlewood-Richardson number symmetries

- A product of Schur functions $s_{\mu} s_{\nu}$ can be expressed as a nonnegative integer linear sum of Schur functions:

$$
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda}
$$

- $c_{\mu \nu}^{\lambda}=: c_{\mu \nu \lambda^{v}}$.

Littlewood-Richardson number symmetries

- A product of Schur functions $s_{\mu} s_{\nu}$ can be expressed as a nonnegative integer linear sum of Schur functions:

$$
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda}
$$

- $c_{\mu \nu}^{\lambda}=: c_{\mu \nu \lambda^{v}}$.
- Each Littlewood-Richardson coefficient $c_{\mu \nu \lambda} \vee$ is a non-negative integer that may be evaluated by counting combinatorial objects with boundary data $\left(\mu, \nu, \lambda^{\vee}\right)$:

Littlewood-Richardson number symmetries

- A product of Schur functions $s_{\mu} s_{\nu}$ can be expressed as a nonnegative integer linear sum of Schur functions:

$$
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda} .
$$

- $c_{\mu \nu}^{\lambda}=: c_{\mu \nu \lambda^{v}}$.
- Each Littlewood-Richardson coefficient $c_{\mu \nu \lambda} \vee$ is a non-negative integer that may be evaluated by counting combinatorial objects with boundary data (μ, ν, λ^{\vee}):
- Littlewood-Richardson tableaux

Littlewood-Richardson number symmetries

- A product of Schur functions $s_{\mu} s_{\nu}$ can be expressed as a nonnegative integer linear sum of Schur functions:

$$
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda} .
$$

- $c_{\mu \nu}^{\lambda}=: c_{\mu \nu \lambda^{v}}$.
- Each Littlewood-Richardson coefficient $c_{\mu \nu \lambda} \vee$ is a non-negative integer that may be evaluated by counting combinatorial objects with boundary data $\left(\mu, \nu, \lambda^{\vee}\right)$:
- Littlewood-Richardson tableaux
- Berenstein-Zelevinsky triangles

Littlewood-Richardson number symmetries

- A product of Schur functions $s_{\mu} s_{\nu}$ can be expressed as a nonnegative integer linear sum of Schur functions:

$$
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda} .
$$

- $c_{\mu \nu}^{\lambda}=: c_{\mu \nu \lambda^{v}}$.
- Each Littlewood-Richardson coefficient $c_{\mu \nu \lambda \vee}$ is a non-negative integer that may be evaluated by counting combinatorial objects with boundary data $\left(\mu, \nu, \lambda^{\vee}\right)$:
- Littlewood-Richardson tableaux
- Berenstein-Zelevinsky triangles
- Knutson-Tao-Woodward Hives

Littlewood-Richardson number symmetries

- A product of Schur functions $s_{\mu} s_{\nu}$ can be expressed as a nonnegative integer linear sum of Schur functions:

$$
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda}
$$

- $c_{\mu \nu}^{\lambda}=: c_{\mu \nu \lambda^{v}}$.
- Each Littlewood-Richardson coefficient $c_{\mu \nu \lambda \vee}$ is a non-negative integer that may be evaluated by counting combinatorial objects with boundary data (μ, ν, λ^{\vee}):
- Littlewood-Richardson tableaux
- Berenstein-Zelevinsky triangles
- Knutson-Tao-Woodward Hives
- Knutson-Tao-Woodward puzzles

Littlewood-Richardson number symmetries

- A product of Schur functions $s_{\mu} s_{\nu}$ can be expressed as a nonnegative integer linear sum of Schur functions:

$$
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda}
$$

- $c_{\mu \nu}^{\lambda}=: c_{\mu \nu \lambda^{v}}$.
- Each Littlewood-Richardson coefficient $c_{\mu \nu} \lambda^{\vee}$ is a non-negative integer that may be evaluated by counting combinatorial objects with boundary data $\left(\mu, \nu, \lambda^{\vee}\right)$:
- Littlewood-Richardson tableaux
- Berenstein-Zelevinsky triangles
- Knutson-Tao-Woodward Hives
- Knutson-Tao-Woodward puzzles
- Purbhoo mosaics

Littlewood-Richardson number symmetries

- Littlewood-Richardson coefficients $c_{\mu \nu \lambda}$ are invariant under the action of $\mathbb{Z}_{2} \oplus S_{3}$ as follows: the non-identity element of \mathbb{Z}_{2} transposes simultaneously μ, ν and λ, and S_{3} permutes μ, ν and λ

$$
c_{\mu \nu \lambda}=c_{\lambda \mu \nu}=c_{\nu \lambda \mu}
$$

Littlewood-Richardson number symmetries

- Littlewood-Richardson coefficients $c_{\mu \nu \lambda}$ are invariant under the action of $\mathbb{Z}_{2} \oplus S_{3}$ as follows: the non-identity element of \mathbb{Z}_{2} transposes simultaneously μ, ν and λ, and S_{3} permutes μ, ν and λ

$$
\begin{aligned}
c_{\mu \nu \lambda}= & c_{\lambda \mu \nu}=c_{\nu \lambda \mu} \\
& c_{\mu \nu \lambda}
\end{aligned}=c_{\nu \mu \lambda}
$$

Littlewood-Richardson number symmetries

- Littlewood-Richardson coefficients $c_{\mu \nu \lambda}$ are invariant under the action of $\mathbb{Z}_{2} \oplus S_{3}$ as follows: the non-identity element of \mathbb{Z}_{2} transposes simultaneously μ, ν and λ, and S_{3} permutes μ, ν and λ

$$
\begin{aligned}
& c_{\mu \nu \lambda}= c_{\lambda \mu \nu}=c_{\nu \lambda \mu} \\
& c_{\mu \nu \lambda}
\end{aligned}=c_{\nu \mu \lambda}
$$

Littlewood-Richardson number symmetries

- Littlewood-Richardson coefficients $c_{\mu \nu \lambda}$ are invariant under the action of $\mathbb{Z}_{2} \oplus S_{3}$ as follows: the non-identity element of \mathbb{Z}_{2} transposes simultaneously μ, ν and λ, and S_{3} permutes μ, ν and λ

$$
\begin{aligned}
c_{\mu \nu \lambda}= & c_{\lambda \mu \nu}=c_{\nu \lambda \mu} \\
& c_{\mu \nu \lambda} \\
c_{\nu \mu \lambda}= & c_{\mu \lambda \nu}=c_{\lambda \nu \mu} \\
& c_{\mu \nu \lambda}
\end{aligned}=c_{\nu \mu \lambda}
$$

Littlewood-Richardson number symmetries

- Littlewood-Richardson coefficients $c_{\mu \nu \lambda}$ are invariant under the action of $\mathbb{Z}_{2} \oplus S_{3}$ as follows: the non-identity element of \mathbb{Z}_{2} transposes simultaneously μ, ν and λ, and S_{3} permutes μ, ν and λ

$$
\begin{aligned}
c_{\mu \nu \lambda}= & c_{\lambda \mu \nu}=c_{\nu \lambda \mu} \\
c_{\mu \nu \lambda}= & c_{\nu \mu \lambda} \\
c_{\nu \mu \lambda}= & c_{\mu \lambda \nu}=c_{\lambda \nu \mu}= \\
& c_{\mu \nu \lambda}
\end{aligned}
$$

- The previous Littlewood-Richardson rules manifest at most three of the six S_{3}-symmetries.

Littlewood-Richardson number symmetries

- Littlewood-Richardson coefficients $c_{\mu \nu \lambda}$ are invariant under the action of $\mathbb{Z}_{2} \oplus S_{3}$ as follows: the non-identity element of \mathbb{Z}_{2} transposes simultaneously μ, ν and λ, and S_{3} permutes μ, ν and λ

$$
\begin{aligned}
c_{\mu \nu \lambda}= & c_{\lambda \mu \nu}=c_{\nu \lambda \mu} \\
c_{\mu \nu \lambda}= & c_{\nu \mu \lambda} \\
c_{\nu \mu \lambda}= & c_{\mu \lambda \nu}=c_{\lambda \nu \mu}= \\
& c_{\mu \nu \lambda}
\end{aligned}
$$

- The previous Littlewood-Richardson rules manifest at most three of the six S_{3}-symmetries.
None of them manifests neither the conjugation symmetry nor the commutativity.

Littlewood-Richardson number symmetries

- Littlewood-Richardson coefficients $c_{\mu \nu \lambda}$ are invariant under the action of $\mathbb{Z}_{2} \oplus S_{3}$ as follows: the non-identity element of \mathbb{Z}_{2} transposes simultaneously μ, ν and λ, and S_{3} permutes μ, ν and λ

$$
\begin{aligned}
c_{\mu \nu \lambda}= & c_{\lambda \mu \nu}=c_{\nu \lambda \mu} \\
c_{\mu \nu \lambda}= & c_{\nu \mu \lambda} \\
c_{\nu \mu \lambda}= & c_{\mu \lambda \nu}=c_{\lambda \nu \mu}= \\
& c_{\mu \nu \lambda}
\end{aligned}
$$

- The previous Littlewood-Richardson rules manifest at most three of the six S_{3}-symmetries.
None of them manifests neither the conjugation symmetry nor the commutativity.
- While for tableaux we have several operations to our disposal revealing the Litlewood-Richardson symmetries this is not the case for the other models...

Littlewood-Richardson number symmetries

- Littlewood-Richardson coefficients $c_{\mu \nu \lambda}$ are invariant under the action of $\mathbb{Z}_{2} \oplus S_{3}$ as follows: the non-identity element of \mathbb{Z}_{2} transposes simultaneously μ, ν and λ, and S_{3} permutes μ, ν and λ

$$
\begin{aligned}
c_{\mu \nu \lambda}= & c_{\lambda \mu \nu}=c_{\nu \lambda \mu} \\
c_{\mu \nu \lambda}= & c_{\nu \mu \lambda} \\
c_{\nu \mu \lambda}= & c_{\mu \lambda \nu}=c_{\lambda \nu \mu}= \\
& c_{\mu \nu \lambda}
\end{aligned}
$$

- The previous Littlewood-Richardson rules manifest at most three of the six S_{3}-symmetries.
None of them manifests neither the conjugation symmetry nor the commutativity.
- While for tableaux we have several operations to our disposal revealing the Litlewood-Richardson symmetries this is not the case for the other models...
- Purbhoo has defined the operation migration on mosaics a sort of jeu de taquin moves on puzzles.

Linear time reductions

- Let $\delta: \mathcal{A} \longrightarrow \mathcal{B}$ be an explicit map. δ has linear cost if δ computes $\delta(A) \in \mathcal{B}$ in linear time $O(\langle A\rangle)$ for all $A \in \mathcal{A}$, where $\langle A\rangle$ is the bit-size of A.

Linear time reductions

- Let $\delta: \mathcal{A} \longrightarrow \mathcal{B}$ be an explicit map. δ has linear cost if δ computes $\delta(A) \in \mathcal{B}$ in linear time $O(\langle A\rangle)$ for all $A \in \mathcal{A}$, where $\langle A\rangle$ is the bit-size of A.
- A tableau A is encoded through its recording matrix $\left(c_{i, j}\right)$, where $c_{i, j}$ is the number of j 's in the i th row of A.

Linear time reductions

- Let $\delta: \mathcal{A} \longrightarrow \mathcal{B}$ be an explicit map. δ has linear cost if δ computes $\delta(A) \in \mathcal{B}$ in linear time $O(\langle A\rangle)$ for all $A \in \mathcal{A}$, where $\langle A\rangle$ is the bit-size of A.
- A tableau A is encoded through its recording matrix $\left(c_{i, j}\right)$, where $c_{i, j}$ is the number of j 's in the i th row of A.
- A function f reduces linearly to g, if it is possible to compute f in time linear in the time it takes to compute $g ; f$ and g are linearly equivalent if f reduces linearly to g and vice versa. This defines an equivalence relation on functions.

Linear time reductions

- Let $\delta: \mathcal{A} \longrightarrow \mathcal{B}$ be an explicit map. δ has linear cost if δ computes $\delta(A) \in \mathcal{B}$ in linear time $O(\langle A\rangle)$ for all $A \in \mathcal{A}$, where $\langle A\rangle$ is the bit-size of A.
- A tableau A is encoded through its recording matrix $\left(c_{i, j}\right)$, where $c_{i, j}$ is the number of j 's in the i th row of A.
- A function f reduces linearly to g, if it is possible to compute f in time linear in the time it takes to compute $g ; f$ and g are linearly equivalent if f reduces linearly to g and vice versa. This defines an equivalence relation on functions.
- A map β is an α-based ps-circuit \beth if there is a parallel sequential algorithm which uses only a finite number of linear cost maps and a finite number of application of $\operatorname{map} \alpha$.

Linear time reductions

- Let $\delta: \mathcal{A} \longrightarrow \mathcal{B}$ be an explicit map. δ has linear cost if δ computes $\delta(A) \in \mathcal{B}$ in linear time $O(\langle A\rangle)$ for all $A \in \mathcal{A}$, where $\langle A\rangle$ is the bit-size of A.
- A tableau A is encoded through its recording matrix $\left(c_{i, j}\right)$, where $c_{i, j}$ is the number of j 's in the i th row of A.
- A function f reduces linearly to g, if it is possible to compute f in time linear in the time it takes to compute $g ; f$ and g are linearly equivalent if f reduces linearly to g and vice versa. This defines an equivalence relation on functions.
- A map β is an α-based ps-circuit \beth if there is a parallel sequential algorithm which uses only a finite number of linear cost maps and a finite number of application of map α.
- A map β is linearly reducible to α, write $\beta \hookrightarrow \alpha$, if there exist a finite α-based ps-circuit \beth which computes β. We say that maps α and β are linearly equivalent, write $\alpha \sim \beta$, if α is linearly reducible to β, and β is linearly reducible to α.

Linear reduction of LR-symmetry maps

- Pak-Vallejo Theorem The following maps are linearly equivalent:
(1) [PV] RSK correspondence.
(2) [PV] Jeu de taquin map.
(3) [PV] Littlewood-Robinson map.
(4) [PV] Tableau switching map s.
(5) [PV] Schützenberger involution E for normal shapes.
(6) [PV] Reversal e.
(7) [PV] Fundamental symmetry map

Linear reduction of LR-symmetry maps

- Pak-Vallejo Theorem The following maps are linearly equivalent:
(1) [PV] RSK correspondence.
(2) [PV] Jeu de taquin map.
(3) [PV] Littlewood-Robinson map.
(4) [PV] Tableau switching map s.
(5) [PV] Schützenberger involution E for normal shapes.
(6) [PV] Reversal e.
(7) [PV] Fundamental symmetry map

$$
\rho: L R(\mu, \nu, \lambda) \longrightarrow L R(\nu, \mu, \lambda) .
$$

Linear reduction of LR-symmetry maps

- Pak-Vallejo Theorem The following maps are linearly equivalent:
(1) [PV] RSK correspondence.
(2) [PV] Jeu de taquin map.
(3) [PV] Littlewood-Robinson map.
(4) [PV] Tableau switching map s.
(5) [PV] Schützenberger involution E for normal shapes.
(6) [PV] Reversal e.
(7) [PV] Fundamental symmetry map

$$
\rho: \operatorname{LR}(\mu, \nu, \lambda) \longrightarrow L R(\nu, \mu, \lambda)
$$

- First and second fundamental symmetry maps are identical (Koshevoy);

Linear reduction of LR-symmetry maps

- Pak-Vallejo Theorem The following maps are linearly equivalent:
(1) [PV] RSK correspondence.
(2) [PV] Jeu de taquin map.
(3) [PV] Littlewood-Robinson map.
(4) [PV] Tableau switching map s.
(5) [PV] Schützenberger involution E for normal shapes.
(6) [PV] Reversal e.
(7) [PV] Fundamental symmetry map

$$
\rho: \operatorname{LR}(\mu, \nu, \lambda) \longrightarrow L R(\nu, \mu, \lambda)
$$

- First and second fundamental symmetry maps are identical (Koshevoy);
first and third fundamental symmetry maps are identical.

Pak-Vallejo's question

- The conjugation symmetry on LR tableaux is any bijection

$$
\varrho: L R(\mu, \nu, \lambda) \longrightarrow L R\left(\mu^{t}, \nu^{t}, \lambda^{t}\right)
$$

Pak-Vallejo's question

- The conjugation symmetry on LR tableaux is any bijection

$$
\varrho: L R(\mu, \nu, \lambda) \longrightarrow L R\left(\mu^{t}, \nu^{t}, \lambda^{t}\right)
$$

- Conjugation symmetry maps

Pak-Vallejo's question

- The conjugation symmetry on LR tableaux is any bijection

$$
\varrho: L R(\mu, \nu, \lambda) \longrightarrow L R\left(\mu^{t}, \nu^{t}, \lambda^{t}\right)
$$

- Conjugation symmetry maps
- White-Hanlon-Sundaram bijection $\varrho^{H S}$ (1992)

Pak-Vallejo's question

- The conjugation symmetry on LR tableaux is any bijection

$$
\varrho: L R(\mu, \nu, \lambda) \longrightarrow L R\left(\mu^{t}, \nu^{t}, \lambda^{t}\right)
$$

- Conjugation symmetry maps
- White-Hanlon-Sundaram bijection $\varrho^{H S}$ (1992)
- Benkart-Sottile-Stroomer bijection $\varrho^{B S S}$ (1996)

Pak-Vallejo's question

- The conjugation symmetry on LR tableaux is any bijection

$$
\varrho: L R(\mu, \nu, \lambda) \longrightarrow L R\left(\mu^{t}, \nu^{t}, \lambda^{t}\right)
$$

- Conjugation symmetry maps
- White-Hanlon-Sundaram bijection $\varrho^{H S}$ (1992)
- Benkart-Sottile-Stroomer bijection $\varrho^{B S S}$ (1996)
- $\varrho^{A Z}$ (1999)

Pak-Vallejo's question

- The conjugation symmetry on LR tableaux is any bijection

$$
\varrho: L R(\mu, \nu, \lambda) \longrightarrow L R\left(\mu^{t}, \nu^{t}, \lambda^{t}\right)
$$

- Conjugation symmetry maps
- White-Hanlon-Sundaram bijection $\varrho^{H S}$ (1992)
- Benkart-Sottile-Stroomer bijection $\varrho^{B S S}$ (1996)
- $\varrho^{A Z}$ (1999)
- $\varrho^{W H S}, \varrho^{B S S}$ and $\varrho^{A Z}$ are identical.

Pak-Vallejo's question

- Are $\varrho^{H S}, \varrho^{B S S}$ and $\varrho^{A Z}$ linearly reducible to any of the following maps?

Pak-Vallejo's question

- Are $\varrho^{H S}, \varrho^{B S S}$ and $\varrho^{A Z}$ linearly reducible to any of the following maps?

Theorem The following maps are linearly equivalent:
(1) $[P V]$ RSK correspondence.
(2) $[P V]$ Jeu de taquin map.
(3) [PV] Littlewood-Robinson map.
(4) [PV] Tableau switching map s.
(5) [PV] Schützenberger involution E for normal shapes.
(6) $[P V]$ Reversal e.
(7) [PV] Fundamental symmetry map

Pak-Vallejo's question

- Are $\varrho^{H S}, \varrho^{B S S}$ and $\varrho^{A Z}$ linearly reducible to any of the following maps?

Theorem The following maps are linearly equivalent:
(1) $[P V]$ RSK correspondence.
(2) [PV] Jeu de taquin map.
(3) [PV] Littlewood-Robinson map.
(4) [PV] Tableau switching map s.
(5) [PV] Schützenberger involution E for normal shapes.
(6) [PV] Reversal e.
(7) [PV] Fundamental symmetry map

$$
\rho: L R(\mu, \nu, \lambda) \longrightarrow L R(\nu, \mu, \lambda)
$$

Contents

(1) Reduction of LR-symmetry maps: An outline
(2) LR-coefficient conjugation symmetry map is linearly reducible to the Schützenberger involution/fundamental symmetry
(3) LR-tableaux, Knutson-Tao puzzles, and Purbhoo mosaics: conjugation symmetry maps coincide

LR-coefficient conjugation symmetry map is linearly reducible to the Schützenberger involution

Partitions

- Fix positive integers $0<d<n$ and consider a $d \times(n-d)$ rectangle.

LR-coefficient conjugation symmetry map is linearly

 reducible to the Schützenberger involutionPartitions

- Fix positive integers $0<d<n$ and consider a $d \times(n-d)$ rectangle.
- $d=4 n=10$

Conjugate partitions

$$
\begin{aligned}
& \lambda=(4,2,1,0) \leftrightarrow 0010010101 \\
& \lambda^{\vee}=(6,5,4,2) \leftrightarrow 1010100100
\end{aligned}
$$

$$
\begin{array}{cr}
\lambda^{t}=(3,2,1,1,0,0) & 1101101010 \\
\left(\lambda^{v}\right)^{t}=(4,4,3,3,2,1) & 0101011011
\end{array}
$$

Littlewood-Richardson rule

- $c_{\mu \nu \lambda}$ is the number of semistandard Young tableaux with shape λ^{\vee} / μ and content ν, with the following property:
- If one reads the labeled entries in reverse reading order, that is, from right to left across rows taken in turn from bottom to top, at any stage, the number of i 's encountered is at least as large as the number of $(i+1)$'s encountered, $\# 1^{\prime} s \geq \# 2^{\prime} s \ldots$.

$$
v=(5,3,2)
$$

Benkart-Sottile-Stroomer bijection $\varrho^{B S S}$

$$
\begin{array}{clc}
\varrho^{B S S}: \operatorname{LR}(\mu, \nu, \lambda) & \longrightarrow & L R\left(\mu^{t}, \nu^{t}, \lambda^{t}\right) \\
T & \mapsto & \varrho(T)=\left[Y\left(\nu^{t}\right)\right]_{K} \cap\left[\widehat{T}^{t}\right]_{d K}
\end{array}
$$

Benkart-Sottile-Stroomer bijection $\varrho^{B S S}$

$$
\begin{array}{ccc}
\varrho^{B S S}: \operatorname{LR}(\mu, \nu, \lambda) & \longrightarrow & L R\left(\mu^{t}, \nu^{t}, \lambda^{t}\right) \\
T & \mapsto & \varrho(T)=\left[Y\left(\nu^{t}\right)\right]_{K} \cap\left[\widehat{T}^{t}\right]_{d K}
\end{array}
$$

- Facts: [Haiman] Consider two equivalence relations on a pair of tableaux. Two tableaux are Knuth equivalent if one can be obtained from the other by a sequence of (reverse) jeu de taquin slides. They are dual Knuth equivalent if such a (any) sequence results in tableaux of the same shape.

Benkart-Sottile-Stroomer bijection $\varrho^{B S S}$

$$
\begin{array}{ccc}
\varrho^{B S S}: L R(\mu, \nu, \lambda) & \longrightarrow & L R\left(\mu^{t}, \nu^{t}, \lambda^{t}\right) \\
T & \mapsto & \varrho(T)=\left[Y\left(\nu^{t}\right)\right]_{K} \cap\left[\widehat{T}^{t}\right]_{d K}
\end{array}
$$

- Facts: [Haiman] Consider two equivalence relations on a pair of tableaux. Two tableaux are Knuth equivalent if one can be obtained from the other by a sequence of (reverse) jeu de taquin slides. They are dual Knuth equivalent if such a (any) sequence results in tableaux of the same shape.
- Tableaux of the same (anti) normal shape are dual equivalent. A pair of tableaux that are both Knuth and dual Knuth equivalent must be equal. If \mathcal{D} is a dual Knuth equivalence class and \mathcal{K} is a Knuth equivalence class, both corresponding to the same straight shape. Then, there is a unique tableau in $\mathcal{D} \cap \mathcal{K}$.
$\varrho^{B S S}$ bijection
- $L R(\mu \nu \lambda) \mapsto L R\left(\mu^{t} \lambda^{t} \nu^{t}\right)$

$\varrho^{B S S}$ bijection
- $L R(\mu \nu \lambda) \mapsto L R\left(\mu^{t} \lambda^{t} \nu^{t}\right)$

$$
\begin{array}{|l|l|l|l|}
\hline 2 & \overline{\mathbf{1}} & \overline{\mathbf{1}} & \mathbf{\mathbf { 2 }} \\
\hline & 3 & 4 & \mathbf{\mathbf { 1 }} \\
\hline & & 1 & 5 \\
\hline & & \mathbf{1} \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|l|}
\hline 2 & 3 & 4 & 5 \\
\hline & \overline{\mathbf{1}} & \overline{\mathbf{2}} & 1 \\
\hline & & \overline{\mathbf{1}} & \overline{\mathbf{1}} \\
\hline
\end{array}=Z \cup \widehat{Y}\left(\nu^{t}\right)^{\mathrm{a}}
$$

- $L R\left(\mu^{t} \lambda^{t} \nu^{t}\right) \mapsto L R\left(\mu^{t} \nu^{t} \lambda^{t}\right)$

$$
Z \cup Y\left(\nu^{t}\right)^{\mathrm{a}}=\begin{array}{|c|c|c|c|}
\hline 1 & 1 & 1 & 2 \\
\hline & \overline{\mathbf{1}} & \overline{\mathbf{2}} & 1 \\
\hline & & \overline{\mathbf{1}} & \overline{\mathbf{1}} \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|l|}
\hline 1 & \overline{\mathbf{1}} & \overline{\mathbf{1}} & \overline{\mathbf{2}} \\
\hline & 1 & 2 & \overline{\mathbf{1}} \\
\hline & & 1 & 1 \\
\hline
\end{array}=\varrho^{B S S}(T) \cup Y\left(\lambda^{t}\right)
$$

Bijection $\varrho^{A Z}$

- $L R(\mu \nu \lambda) \mapsto \operatorname{LR}(\lambda \nu \mu)$

$$
\begin{array}{ccccc}
L R(\mu, \nu, \lambda) & \longrightarrow & L R\left(\mu, \nu^{*}, \lambda\right) & \longrightarrow & L R(\lambda, \nu, \mu) \\
T & \longrightarrow & T^{e} & \longrightarrow & T^{e \bullet}
\end{array}
$$

Bijection $\varrho^{A Z}$

- $L R(\mu \nu \lambda) \mapsto \operatorname{LR}(\lambda \nu \mu)$

$$
\begin{array}{ccccc}
L R(\mu, \nu, \lambda) & \longrightarrow & L R\left(\mu, \nu^{*}, \lambda\right) & \longrightarrow & L R(\lambda, \nu, \mu) \\
T & \longrightarrow & T^{e} & \longrightarrow & T^{e \bullet}
\end{array}
$$

- $\operatorname{LR}(\mu \nu \lambda) \rightarrow \operatorname{LR}\left(\lambda^{t} \nu^{t} \mu^{t}\right)$

$$
\begin{array}{ccc}
L R(\mu, \nu, \lambda) & \longrightarrow & L R\left(\lambda^{t}, \nu^{t}, \mu^{t}\right) \\
T & \longrightarrow & T
\end{array}
$$

Bijection $\varrho^{A Z}$

- $L R(\mu \nu \lambda) \mapsto L R(\lambda \nu \mu)$

$$
\begin{array}{ccccc}
L R(\mu, \nu, \lambda) & \xrightarrow{e} & L R\left(\mu, \nu^{*}, \lambda\right) & \stackrel{\bullet}{l} & L R(\lambda, \nu, \mu) \\
T & \longrightarrow & T^{e} & \longrightarrow & T^{e \bullet}
\end{array}
$$

- $L R(\mu \nu \lambda) \rightarrow L R\left(\lambda^{t} \nu^{t} \mu^{t}\right)$

$$
\begin{array}{rlc}
L R(\mu, \nu, \lambda) & \longrightarrow & \angle R\left(\lambda^{t}, \nu^{t}, \mu^{t}\right) \\
T & \longrightarrow & T
\end{array}
$$

$$
\begin{array}{ccccccc}
\varrho^{A Z}: L R(\mu, \nu, \lambda) & \longrightarrow & \text { e } \\
T & \longrightarrow & T^{e} & \longrightarrow & \left.\longrightarrow, \nu^{*}, \lambda\right) & \longrightarrow & L R(\lambda, \nu, \mu) \\
T^{e \bullet} & \longrightarrow & \longrightarrow R\left(\mu^{t}, \nu^{t}, \lambda^{t}\right) \\
T^{e}
\end{array}
$$

Bijection

- $L R(\mu, \nu, \lambda) \xrightarrow{\bullet} L R\left(\lambda^{t}, \nu^{t}, \mu^{t}\right)$;

Bijection

- $L R(\mu, \nu, \lambda) \xrightarrow{\bullet} L R\left(\lambda^{t}, \nu^{t}, \mu^{t}\right)$;
- $c_{\mu \nu \lambda}=c_{\lambda^{t} \nu^{t} \mu^{t}}$

Bijection

- $\operatorname{LR}(\mu, \nu, \lambda) \xrightarrow{\longrightarrow} L R\left(\lambda^{t}, \nu^{t}, \mu^{t}\right)$;
- $c_{\mu \nu \lambda}=c_{\lambda^{t} \nu^{t} \mu^{t}}$

$\mathrm{T}=$| 1 | 1 | 3 | 3 | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | 2 | 2 | 2 | |
| | | | 1 | 1 | 1 |

$T^{\star}=$| 5 | | |
| :--- | :--- | :--- |
| 4 | | |
| 2 | 3 | |
| 1 | 2 | 3 |
| | 1 | 2 |
| | | 1 |

Bijection

- $\operatorname{LR}(\mu, \nu, \lambda) \xrightarrow{\longrightarrow} L R\left(\lambda^{t}, \nu^{t}, \mu^{t}\right)$;
- $c_{\mu \nu \lambda}=c_{\lambda^{t} \nu^{t} \mu^{t}}$

Complexity of bijection \downarrow

Algorithm (Bijection \downarrow.)

Input: $L R$ tableau T of skew shape λ / μ, with $\lambda=\left(\lambda_{1} \geq \ldots \geq \lambda_{n}\right)$,
$\mu=\left(\mu_{1} \geq \ldots \geq \mu_{n}\right)$, and filling $\nu=\left(\nu_{1} \geq \ldots \geq \nu_{n}\right)$, having $A=\left(a_{i, j}\right) \in M_{n \times n}(\mathbb{N}) \quad\left(a_{i, j}=0\right.$ if $j>i$) as (lower triangular) recording matrix.
Write \widetilde{A}, a copy of the matrix A.
For $j:=n$ down to 2 do
For $i:=1$ to n do
Begin

$$
\begin{aligned}
& \text { If } i=j \text { then } \widetilde{a}_{i, i}:=\widetilde{a}_{i, i}+\lambda_{1}-\lambda_{i} \\
& \text { else } \\
& \qquad \text { If } j>i \text { then } \widetilde{a}_{i, j}=0 \text { else } \widetilde{a}_{i, j}:=\widetilde{a}_{i, j}+\widetilde{a}_{i, j+1} .
\end{aligned}
$$

End
So far the computational cost is $O\left(n^{2}\right)=O(\langle A\rangle)$.
Remark: For all $1 \leq i \leq n$ and $0 \leq j \leq n-i+1$, we have

$$
\tilde{a}_{i+j+1, i}-\widetilde{a}_{i+j, i} \geq a_{i+j+1, i} .
$$

Complexity of bijection continued

Algorithm (Bijection \downarrow.)

```
Set a matrix \(B=\left(b_{i, j}\right) \in M_{\lambda_{1} \times \lambda_{1}}(\mathbb{N})\) such that \(b_{i, j}=0\) for all \(i, j\).
For \(i:=1\) to \(n\) do
    Begin
    Set \(c:=0\).
    For \(j:=0\) to \(n\) do
        Begin
```

 \(r:=\widetilde{a}_{i+j, i}-a_{i+j, i}\).
 For \(t:=1\) to \(a_{i+j, i}\) do \(b_{r+t, c+t}:=b_{r+t, c+t}+1\).
 \(c:=c+a_{i+j, i}\).
 End
 End
 This part has total computational cost at most equal to

$$
O\left(\sum_{1 \leq i . j \leq n} a_{i, j}\right)=O(|\lambda \backslash \mu|)=O(|\lambda|-|\mu|)=O(\langle T\rangle)
$$

Output: B recording matrix of the output tableau.

Relative Complexity of map $\varrho=\varrho^{A Z}=\varrho^{B S S}=\varrho^{W H S}$

Theorem The conjugation symmetry maps $\varrho^{B S S}, \varrho^{W H S}$ and $\varrho^{A Z}$ are identical, and linear equivalent to the Schützenberger involution E,

Relative Complexity of map $\varrho=\varrho^{A Z}=\varrho^{B S S}=\varrho^{W H S}$

Theorem The conjugation symmetry maps $\varrho^{B S S}, \varrho^{W H S}$ and $\varrho^{A Z}$ are identical, and linear equivalent to the Schützenberger involution E,

Word of $T^{e \bullet}=\left(\sigma_{0} w\right)^{* \diamond}$.
$\sigma_{0}=s_{1} s_{2} s_{1}$

$$
\begin{gathered}
w=11(1(12) 2)(1332) \longrightarrow 22(1(12) 2)(1332) \longrightarrow 2211(2(213) 3) 2 \longrightarrow 3311(2(213) 3) 3 \\
\longrightarrow 33(1(12) 2) 1333 \longrightarrow \sigma_{0} w=3311222333
\end{gathered}
$$

Relative Complexity of map $\varrho=\varrho^{A Z}=\varrho^{B S S}=\varrho^{W H S}$

Theorem The conjugation symmetry maps $\varrho^{B S S}, \varrho^{W H S}$ and $\varrho^{A Z}$ are identical, and linear equivalent to the Schützenberger involution E,

Word of $T^{e \bullet}=\left(\sigma_{0} w\right)^{* \diamond}$.
$\sigma_{0}=s_{1} s_{2} s_{1}$

$$
\begin{gathered}
w=11(1(12) 2)(1332) \longrightarrow 22(1(12) 2)(1332) \longrightarrow 2211(2(213) 3) 2 \longrightarrow 3311(2(213) 3) 3 \\
\longrightarrow 33(1(12) 2) 1333 \longrightarrow \sigma_{0} w=3311222333 \\
\quad{ }^{*} 1112223311
\end{gathered}
$$

Relative Complexity of map $\varrho=\varrho^{A Z}=\varrho^{B S S}=\varrho^{W H S}$

Theorem The conjugation symmetry maps $\varrho^{B S S}, \varrho^{W H S}$ and $\varrho^{A Z}$ are identical, and linear equivalent to the Schützenberger involution E,

Word of $T^{e \bullet}=\left(\sigma_{0} w\right)^{* \diamond}$.
$\sigma_{0}=s_{1} s_{2} s_{1}$

$$
\begin{gathered}
w=11(1(12) 2)(1332) \longrightarrow 22(1(12) 2)(1332) \longrightarrow 2211(2(213) 3) 2 \longrightarrow 3311(2(213) 3) 3 \\
\longrightarrow 33(1(12) 2) 1333 \longrightarrow \sigma_{0} w=3311222333 \\
\quad{ }^{*} 1112223311 \stackrel{\diamond}{\longrightarrow} 1231231245 .
\end{gathered}
$$

The $\mathbb{Z}_{2} \oplus \underline{S}_{3}$-symmetries are linearly equivalent modulus the fundamental symmetry

$$
c_{\mu \nu \lambda}=c_{\lambda \mu \nu}=c_{\nu \lambda \mu}
$$

The $\mathbb{Z}_{2} \oplus \underline{S}_{3}$-symmetries are linearly equivalent modulus the fundamental symmetry

$$
\begin{aligned}
c_{\mu \nu \lambda}= & c_{\lambda \mu \nu}=c_{\nu \lambda \mu} \\
& c_{\mu \nu \lambda}
\end{aligned}=c_{\nu \mu \lambda}
$$

The $\mathbb{Z}_{2} \oplus \underline{S}_{3}$-symmetries are linearly equivalent modulus the fundamental symmetry

$$
\begin{aligned}
c_{\mu \nu \lambda}= & c_{\lambda \mu \nu}=c_{\nu \lambda \mu} \\
& c_{\mu \nu \lambda} \\
c_{\nu \mu \lambda}= & c_{\mu \lambda \nu}=c_{\lambda \nu \mu}
\end{aligned}
$$

The $\mathbb{Z}_{2} \oplus \underline{S}_{3}$-symmetries are linearly equivalent modulus the fundamental symmetry

$$
\begin{aligned}
c_{\mu \nu \lambda}= & c_{\lambda \mu \nu}=c_{\nu \lambda \mu} \\
& c_{\mu \nu \lambda} \\
c_{\nu \mu \lambda}= & c_{\mu \lambda \nu}=c_{\lambda \nu \mu}
\end{aligned} \quad c_{\nu \mu \lambda}
$$

Contents

(1) Reduction of LR-symmetry maps: An outline
(2) LR-coefficient conjugation symmetry map is linearly reducible to the Schützenberger involution/fundamental symmetry
(3) LR-tableaux, Knutson-Tao-Woodward puzzles, and Purbhoo mosaics: conjugation symmetry maps coincide

Puzzle rule

- A puzzle of size n is a tiling of an equilateral triangle of side length n with puzzle pieces each of unit side length.
- Puzzle pieces may be rotated in any orientation but not reflected, and wherever two pieces share an edge, the numbers on the edge must agree.

Puzzle rule

- A puzzle of size n is a tiling of an equilateral triangle of side length n with puzzle pieces each of unit side length.
- Puzzle pieces may be rotated in any orientation but not reflected, and wherever two pieces share an edge, the numbers on the edge must agree.

Puzzle rule

- (Knutson-Tao-Woodward) $c_{\mu \nu \lambda}$ is the number of puzzles with μ, ν and λ appearing clockwise as 01 -strings along the boundary.

A bijection between Puzzles and LR tableaux: Tao's bijection

Rotation and reflection

- $c_{\mu \nu \lambda}=c_{\lambda \mu \nu}=c_{\nu \lambda \mu}$
- $c_{\mu \nu \lambda}=c_{\nu^{t} \mu^{t} \lambda^{t}}=c_{\lambda^{t} \nu^{t} \mu^{t}}=c_{\mu^{t} \lambda^{t} \nu^{t}}$

$$
c_{\mu \nu \lambda}=c_{\nu \lambda \mu}=c_{\lambda \mu \nu}
$$

- $\varrho^{B S S}=$ rotation+reflection+fundamental symmetry
- $c_{\mu \nu \lambda}=c_{\mu^{t} \lambda^{t} \nu^{t}} \quad c_{\mu^{t} \lambda^{t} \nu^{t}}=c_{\mu^{t} \nu^{t} \lambda^{t}}$
$\varrho^{B S S}$ bijection
- $L R(\mu \nu \lambda) \mapsto L R\left(\mu^{t} \lambda^{t} \nu^{t}\right)$

$\varrho^{B S S}$ bijection
- $L R(\mu \nu \lambda) \mapsto L R\left(\mu^{t} \lambda^{t} \nu^{t}\right)$

$$
\begin{array}{|l|l|l|l|}
\hline 2 & \overline{\mathbf{1}} & \overline{\mathbf{1}} & \mathbf{2} \\
\hline & 3 & 4 & \mathbf{1} \\
\hline & & 1 & 5 \\
\hline & & 1 & \begin{array}{|l|l|l|l|}
\hline 2 & 3 & 4 & 5 \\
\hline & \overline{\mathbf{1}} & \overline{\mathbf{2}} & 1 \\
\hline & & \overline{\mathbf{1}} & \overline{\mathbf{1}} \\
\hline
\end{array}=Z \cup \widehat{Y}\left(\nu^{t}\right)^{\mathrm{a}} \\
\hline
\end{array}
$$

- $L R\left(\mu^{t} \lambda^{t} \nu^{t}\right) \mapsto L R\left(\mu^{t} \nu^{t} \lambda^{t}\right)$

$$
Z \cup Y\left(\nu^{t}\right)^{\mathrm{a}}=\begin{array}{|c|c|c|c|}
\hline 1 & 1 & 1 & 2 \\
\hline & \overline{\mathbf{1}} & \overline{\mathbf{2}} & 1 \\
\hline & & \overline{\mathbf{1}} & \overline{\mathbf{1}} \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|l|}
\hline 1 & \overline{\mathbf{1}} & \overline{\mathbf{1}} & \overline{\mathbf{2}} \\
\hline & 1 & 2 & \overline{\mathbf{1}} \\
\hline & & 1 & 1 \\
\hline
\end{array}=\varrho^{B S S}(T) \cup Y\left(\lambda^{t}\right)
$$

Purbhoo mosaics

A mosaic is a tiling of a hexagon by the following three shapes such that all rhombi are packed into the three nests A, B, and C .

B

Mosaics are in bijection with puzzles

B

Migration

- Migration is an operation that takes a flock to a new nest. The rhombi must move in the standard order.(The standard order in a tableau is the numerical ordering of the entries with priority by the rule left=smaller, right=larger, in case of equality.)

Migration

- Migration is an operation that takes a flock to a new nest. The rhombi must move in the standard order.(The standard order in a tableau is the numerical ordering of the entries with priority by the rule left=smaller, right=larger, in case of equality.)
- Choose the target nest. Rhombi move in the chosen direction of migration, inside a smallest hexagon in which \diamond is contained:

\longrightarrow

The move is such that the rhombus is either in its initial orientation, or its final orientation.

$\operatorname{Migration}(\equiv$ j.t. $) / \varrho^{B S S}$

4		
1	3	
\div	2	
\bullet		
		1

$\operatorname{Migration}(\equiv$ j.t. $) / \varrho^{B S S}$

4		
1	3	
\div	2	
-		
		1

$\operatorname{Migration}(\equiv$ j.t. $) / \varrho^{B S S}$

Migration(三 j.t.) $/ \varrho^{B S S}$

$\operatorname{Migration}(\equiv$ j.t. $) / \varrho^{B S S}$

Migration(三 j.t.) $/ \varrho^{B S S}$

Migration(三 j.t.) $/ \varrho^{B S S}$

Migration(三 j.t.) $/ \varrho^{B S S}$

$\operatorname{Migration}(\equiv$ j.t. $) / \varrho^{B S S}$

$\operatorname{Migration}(\equiv$ j.t. $) / \varrho^{B S S}$

$\operatorname{Migration}(\equiv$ j.t. $) / \varrho^{B S S}$

Migration(三 j.t.) $/ \varrho^{B S S}$

2	3	4	5
	$\overline{\mathbf{1}}$	$\overline{1}$	$\overline{\mathbf{2}}$
		$\overline{\mathbf{1}}$	$\overline{\mathbf{1}}$

Migration(三 j.t.) $/ \varrho^{B S S}$

2	3	4	5
	$\overline{\mathbf{1}}$	$\overline{1}$	$\overline{\mathbf{2}}$
		$\overline{\mathbf{1}}$	$\overline{\mathbf{1}}$

Migration(三 j.t.) $/ \varrho^{B S S}$

2	3	4	5
	$\overline{\mathbf{1}}$	$\overline{1}$	$\overline{\mathbf{2}}$
		$\overline{\mathbf{1}}$	$\overline{\mathbf{1}}$

Migration(三 j.t.) $/ \varrho^{B S S}$

2	3	4	5
	$\overline{\mathbf{1}}$	$\overline{1}$	$\overline{\mathbf{2}}$
		$\overline{\mathbf{1}}$	$\overline{\mathbf{1}}$

Migration(三 j.t.) $/ \varrho^{B S S}$

2	3	4	5
	$\overline{\mathbf{1}}$	$\overline{\mathbf{2}}$	1
		$\overline{1}$	
		$\overline{\mathbf{1}}$	$\overline{\mathbf{1}}$

$\operatorname{Migration}(\equiv$ j.t. $) / \varrho^{B S S}$

2	3	4	5
	$\overline{\mathbf{1}}$	$\overline{\mathbf{2}}$	1
		$\overline{1}$	
		$\overline{\mathbf{1}}$	$\overline{\mathbf{1}}$

Migration(三 j.t.) $/ \varrho^{B S S}$

1	1	1	2
	$\overline{\mathbf{1}}$	$\overline{\mathbf{2}}$	1
			$\overline{1}$
		$\overline{\mathbf{1}}$	$\overline{\mathbf{1}}$

