FLAG-MAJOR INDEX AND FLAG-INVERSION NUMBER ON COLORED WORDS AND WREATH PRODUCT

HILARION L. M. FALIHARIMALALA¹ and ARTHUR RANDRIANARIVONY²

¹Université de Lyon, Université Lyon 1, Institut Camille Jordan, UMR 5208 du CNRS, F-69622, Villeurbanne Cedex, France E-mail: heritianamihanta@yahoo.fr

²Département de Mathématiques, Université d'Antananarivo BP 906 Antananarivo Madagascar WWW: arthur@univ-antananarivo.mg

ABSTRACT. In [Proc. Amer. Math. Soc. 19 (1968), 236–240], Dominique Foata constructed a map Φ , called second fundamental transformation, exchanging the integervalued statistics inversion number "inv" and major index "maj" on words whose letters are integers. Later, Foata and Han introduced the flag-inversion number "finv" and extended Φ on signed words and permutations, showing that the flag major index "fmaj" and "finv" were equidistributed. In this paper we give an extension of Φ to ℓ -colored words. Using this extension, we show that the bistatistics (fmaj, des*) and (finv, pcol) are equidistributed, where "pcol" is the sum of color powers and "des*" is a new statistic derived from "des".

1. INTRODUCTION

The second fundamental transformation, denoted by Φ and described in [5] by Foata, is defined on finite words whose letters are integers. If $\mathbf{m} = (m_1, \dots, m_r)$ is a sequence of nonnegative integers, let $R_{\mathbf{m}}$ be the set of all rearrangements $w = x_1 x_2 \cdots x_m$ of the sequence $1^{m_1}2^{m_2} \dots n^{m_r}$ where $m = m_1 + m_2 + \dots + m_r$. The transformation Φ maps each word w to another word $\Phi(w)$ and has the following properties:

- (1) maj $w = \text{inv } \Phi(w);$
- (2) $\Phi(w)$ is a rearrangement of w and the restriction of Φ to $R_{\mathbf{m}}$ is a bijection of $R_{\mathbf{m}}$ onto itself.

Further properties were proved later on by Foata and Schützenberger [7], and by Björner and Wachs [3], in particular, when the transformation is restricted to act on the symmetric group S_r .

The purpose of this paper is to extend the transformation Φ to ℓ -colored words.

Let C_{ℓ} be the ℓ -cyclic group generated by $\zeta = e^{2i\pi/\ell}$. By an ℓ -colored word, we understand a pair (ε, x) , where $\varepsilon \in (C_{\ell})^m$ and x is a word of length m whose letters are nonnegative integers. For reasons which will appear later, if $w := (\varepsilon, x)$ is an ℓ -colored word where $\varepsilon = (\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_m)$ and $x = x_1 x_2 \cdots x_m$, we write $w := w_1 w_2 \cdots w_m$ where $w_j = \varepsilon_j x_j$ $(1 \le j \le m)$. For any j with $1 \le j \le m$, ε_j is called the color of w_j and, if $\varepsilon_j = \zeta^{k_j}, k_j$ is the power of this color. For small values of ℓ , we shall use k_j bars over x_j instead of $\zeta^{k_j} x_j$.

For example, if $w = \zeta^2 3 \zeta^2 1 \zeta^0 4 \zeta 1 \zeta^2 3$, then we write $w = \overline{3}\overline{1}\overline{4}\overline{1}\overline{3}$.

Any ℓ -colored word can be considered as a finite word over the alphabet $\Sigma_{\ell} := \{\xi j; \xi \in C_{\ell}, j \geq 1\}.$

Let $w := w_1 w_2 \cdots w_m := \varepsilon_1 x_1 \varepsilon_2 x_2 \cdots \varepsilon_m x_m$ be an ℓ -colored word. We write

$$|w_i| := x_i, \qquad 1 \le i \le m; |w| := |w_1||w_2| \cdots |w_m|;$$
(1.1)

and we define the statistic *power-color* "pcol" by

$$\operatorname{pcol}_{i} w := \sum_{\substack{0 \le j \le \ell - 1 \\ p < 0 \le w \le m}} j\chi(\varepsilon_{i} = \zeta^{j}), \qquad 1 \le i \le m;$$

$$\operatorname{pcol} w := \sum_{\substack{1 \le i \le m \\ p < 0 \le i \le m}} \operatorname{pcol}_{i} w.$$
(1.2)

If $\mathbf{m} = (m_1, \dots, m_r)$ is a sequence of nonnegative integers such that $m_1 + \dots + m_r = m$, let $G_{\ell,\mathbf{m}}$ be the set of all ℓ -colored words $w = w_1 w_2 \cdots w_m$ such that $|w| \in R_{\mathbf{m}}$. The class $G_{\ell,\mathbf{m}}$ contains $\ell^m \binom{m}{m_1,m_2,\dots,m_r} \ell$ -colored words. When $m_1 = m_2 = \dots = m_r = 1$, the class $G_{\ell,\mathbf{m}}$ is the wreath product $C_{\ell} \wr S_r$ denoted by $G_{\ell,r}$. We define an order relation on Σ_{ℓ} as follows:

$$\zeta^{j}i > \zeta^{j'}i' \iff [j < j'] \quad \text{or} \quad [(j = j') \quad \text{and} \quad (i > i')].$$
 (1.3)

The restriction of this order to the class of ordinary words (with nonnegative letters) is the usual order.

As in [6], the statistics "inv" and "maj" must be adapted to ℓ -colored words and correspond to classical statistics when applied to ordinary words. Let

$$(\omega; q)_n := \begin{cases} 1 & \text{if } n = 0; \\ (1 - \omega)(1 - \omega q) \cdots (1 - \omega q^{n-1}) & \text{if } n \ge 1; \end{cases}$$

denote the usual q-shifted factorial, and let

$$\begin{bmatrix} m_1 + m_2 + \dots + m_r \\ m_1, m_2, \dots, m_r \end{bmatrix}_q := \frac{(q; q)_{m_1 + m_2 + \dots + m_r}}{(q; q)_{m_1} (q; q)_{m_2} \cdots (q; q)_{m_r}}$$

be the *q*-multinomial coefficient.

With the order relation defined in (1.3), the natural extensions of the *flag-major index* "fmaj" and the *flag-inversion number* "finv" introduced by Foata and Han [6] to ℓ -colored

words are defined as follows: for all ℓ -colored word $w := w_1 w_2 \cdots w_m$,

fmaj
$$w := \ell \sum_{i=1}^{m-1} i\chi(w_i > w_{i+1}) + \text{pcol } w;$$

finv $w := \sum_{\substack{1 \le i < j \le m \\ \xi \in C_\ell}} \chi(\xi w_i > w_j) + \text{pcol } w.$

Foata and Han defined $(-q;q)_m \begin{bmatrix} m \\ m_1,m_2,\dots,m_r \end{bmatrix}_q$ as a q-analog of $2^m \begin{pmatrix} m \\ m_1,m_2,\dots,m_r \end{pmatrix}$. By analogy, $\frac{(q^\ell;q^\ell)_m}{(q;q)_m} \begin{bmatrix} m \\ m_1,m_2,\dots,m_r \end{bmatrix}_q$ is a natural q-analog of $\ell^m \begin{pmatrix} m \\ m_1,m_2,\dots,m_r \end{pmatrix}$. We claim that

$$\frac{(q^{\ell};q^{\ell})_m}{(q;q)_m} \begin{bmatrix} m\\ m_1, m_2, \dots, m_r \end{bmatrix}_q = \sum_{w \in G_{\ell,\mathbf{m}}} q^{\text{finv}\,w}.$$
(1.4)

This can be established by induction on m. Indeed, let us consider the bijective transformation

$$\varphi: \quad G_{\ell,\mathbf{m}} \longrightarrow \{0, 1, \dots, \ell - 1\} \times \bigcup_{k=1}^{r} G_{\ell,\mathbf{m}-\mathbf{1}_{k}},$$
$$w := w_{1}w_{2}\cdots w_{m} \longmapsto (s, w') := (\operatorname{pcol}_{m} w, w_{1}w_{2}\cdots w_{m-1})$$

where $\mathbf{m-1}_k = (m_1, m_2, \dots, m_{k-1}, m_k - 1, m_{k+1}, \dots, m_r)$. We have $k = |w_m|$ and

finv
$$w = \text{finv } w' + s + \sum_{\substack{1 \le i \le m-1 \\ 0 \le j \le \ell-1}} \chi(\zeta^j |w_i| > w_m)$$

= finv $w' + ms + (m_{k+1} + \dots + m_r)\chi(k < r).$

So,

$$\sum_{w \in G_{\ell,\mathbf{m}}} q^{\text{finv}\,w} = \sum_{0 \le s \le \ell-1} q^{ms} \left(\sum_{w' \in G_{\ell,\mathbf{m-1}_r}} q^{\text{finv}\,w'} + \sum_{1 \le k \le r-1} q^{m_{k+1}+\dots+m_r} \sum_{w' \in G_{\ell,\mathbf{m-1}_k}} q^{\text{finv}\,w'} \right)$$
$$= \frac{1 - q^{\ell m}}{1 - q^m} \left(\sum_{w' \in G_{\ell,\mathbf{m-1}_r}} q^{\text{finv}\,w'} + \sum_{1 \le k \le r-1} q^{m_{k+1}+\dots+m_r} \sum_{w' \in G_{\ell,\mathbf{m-1}_k}} q^{\text{finv}\,w'} \right).$$

By induction, for each $1 \le k \le r$, we have

$$\sum_{w'\in G_{\ell,\mathbf{m-1}_k}} q^{\text{finv}\,w'} = \frac{(q^\ell;q^\ell)_{m-1}}{(q;q)_{m-1}} \frac{(q;q)_{m-1}}{(q;q)_{m_1}\cdots(q;q)_{m_{k-1}}(q;q)_{m_k-1}(q;q)_{m_{k+1}}\cdots(q;q)_{m_r}}$$
$$= \frac{(q^\ell;q^\ell)_{m-1}(1-q^{m_k})}{(q;q)_m} \frac{(q;q)_m}{(q;q)_{m_1}\cdots(q;q)_{m_k}\cdots(q;q)_{m_r}}.$$

Thus,

$$\sum_{1 \le k \le r-1} q^{m_{k+1} + \dots + m_r} \sum_{w' \in G_{\ell, \mathbf{m}^{-1}k}} q^{\text{finv}\,w'}$$

$$= \frac{(q^\ell; q^\ell)_{m-1}}{(q; q)_m} \frac{(q; q)_m}{(q; q)_{m_1} \cdots (q; q)_{m_k} \cdots (q; q)_{m_r}} \sum_{1 \le k \le r-1} q^{m_{k+1} + \dots + m_r} (1 - q^{m_k})$$

$$= \frac{(q^\ell; q^\ell)_{m-1} (q^{m_r} - q^m)}{(q; q)_m} \frac{(q; q)_m}{(q; q)_{m_1} \cdots (q; q)_{m_k} \cdots (q; q)_{m_r}}$$

and

$$\sum_{w \in G_{\ell,\mathbf{m}}} q^{\text{finv}\,w} = \frac{1 - q^{\ell m}}{1 - q^m} \left(\frac{(q^\ell; q^\ell)_{m-1}(1 - q^{m_r})}{(q; q)_m} \frac{(q; q)_m}{(q; q)_{m_1} \cdots (q; q)_{m_k} \cdots (q; q)_{m_r}} \right. \\ \left. + \frac{(q^\ell; q^\ell)_{m-1}(q^{m_r} - q^m)}{(q; q)_m} \frac{(q; q)_m}{(q; q)_m} \frac{(q; q)_m}{(q; q)_{m_1} \cdots (q; q)_{m_k} \cdots (q; q)_{m_r}} \right) \\ \left. = \frac{(q^\ell; q^\ell)_m}{(q; q)_m} \frac{(q; q)_m}{(q; q)_{m_1} \cdots (q; q)_{m_k} \cdots (q; q)_{m_r}} \\ \left. = \frac{(q^\ell; q^\ell)_m}{(q; q)_m} \left[\begin{array}{c} m \\ m_1, m_2, \dots, m_r \end{array} \right]_q. \right.$$

This concludes the proof of the claim in (1.4).

We construct the extension $\widehat{\Phi}$ of the second fundamental transformation Φ to ℓ -colored words in the next section. Define

$$\operatorname{des}^* w = \ell \operatorname{des} w - \operatorname{des} |w| + \operatorname{pcol}_1 w, \tag{1.5}$$

where des $w := \sum_{i=1}^{m-1} \chi(w_i > w_{i+1}).$

The main purpose of this paper is to prove the following theorem.

Theorem 1.1. The transformation $\widehat{\Phi}$ constructed in Section 2 has the following properties

- (1) For every ℓ -colored word w, $(\text{fmaj}, \text{des}^*) w = (\text{finv}, \text{pcol}) \widehat{\Phi}(w)$;
- (2) The restriction of $\widehat{\Phi}$ to each class $G_{\ell,m}$ is a bijection of $G_{\ell,m}$ onto itself.

Corollary 1.2. For each $m = (m_1, m_2, \ldots, m_r)$, the bistatistics (fmaj, des^{*}) and (finv, pcol) are equidistributed on $G_{\ell,m}$.

Example 1.3. Let us consider the hyperoctahedral group of order 2.

w	12	$\bar{1}2$	$1\bar{2}$	$\bar{1}\bar{2}$	21	$\bar{2}1$	$2\overline{1}$	$\bar{2}\bar{1}$
fmaj w	0	1	3	2	2	1	3	4
$des^* w$	0	1	2	1	1	0	1	2
finv w	0	1	2	3	1	2	3	4
pcol w	0	1	1	2	0	1	1	2

Now consider the statistic Rfinv defined on the hyperoctahedral group of order n as follows:

Rfinv
$$w = \operatorname{inv} w + \sum_{i=1}^{n} |w_i| \chi(w_i < 0).$$

If one uses the natural order relation on [-n, n] given by

$$-n < -(n-1) < \dots < -1 < 1 < \dots < (n-1) < n,$$
(1.6)

Brenti [4] shows that finv coincides with the traditional *length function*, and Adin and Roichman [1] proved that Rfinv and fmaj are equidistributed on the hyperoctahedral group.

Back to the order relation (1.3) on [-n, n], i.e.,

$$-1 < \dots < -(n-1) < -n < 1 < \dots < (n-1) < n$$

one has

length function \neq Rfinv and finv \neq Rfinv,

but we observe that Rfinv remains equidistributed with fmaj, and we prove that its extension to the wreath product is also Mahonian. We have the following theorem.

Theorem 1.4. The statistic Rfinv defined on the wreath product $C_{\ell} \wr S_n$ by

Rfinv
$$w = \operatorname{inv} w + \sum_{i=1}^{n} |w_i| \operatorname{pcol}_i w$$
 (1.7)

is Mahonian.

By a result of Haglund, Loehr and Remmel [8], we obtain the following corollary.

Corollary 1.5. We have

$$\sum_{\sigma \in G_{\ell,n}} q^{\operatorname{Rfinv}\sigma} = \sum_{\sigma \in G_{\ell,n}} q^{\operatorname{finv}\sigma} = \frac{(q^{\ell}; q^{\ell})_n}{(1-q)^n}.$$
(1.8)

2. The construction of the transformation $\widehat{\Phi}$

Let us recall the second fundamental transformation Φ from [5]. First, for each integer x, we recall the transformation γ_x . Let $w = x_1 x_2 \cdots x_m$ be a word with positive letters. The first (respectively last) letter x_1 (respectively x_m) is denoted by F(w) (respectively L(w)). If $L(w) \leq x$ (respectively L(w) > x), w admits the unique factorization

$$(u_1y_1, u_2y_2, \cdots, u_py_p)$$

called its *x-right-to-left factorization* having the following properties:

- (1) each y_i $(1 \le i \le p)$ is a letter verifying $y_i \le x$ (respectively $y_i > x$);
- (2) each u_i $(1 \le i \le p)$ is a factor which is either empty or has all its letters greater than (respectively smaller than or equal to) x.

Then, the bijective transformation γ_x maps $w = u_1 y_1 u_2 y_2 \dots u_p y_p$ to the word

$$\gamma_x(w) = y_1 u_1 y_2 u_2 \cdots y_p u_p.$$

Foata defined $\Phi(w)$ by induction on the length of w. If w has length one, then $\Phi(w) = w$. If it has more than one letter, write the word as vx where x is the last letter and define $\Phi(vx)$ to be the juxtaposition product

$$\Phi(vx) := \gamma_x(\Phi(v))x. \tag{2.1}$$

We now define $\widehat{\Phi}$ as follows. For each word $u = x_1 x_2 \cdots x_m$ with nonnegative letters and each element $\epsilon := (\epsilon_1, \cdots, \epsilon_m)$ of $(\mathcal{C}_{\ell})^m$, we denote by $\Psi_u(\epsilon)$ the element $\epsilon' = (\epsilon'_1, \cdots, \epsilon'_m)$ of $(\mathcal{C}_{\ell})^m$ defined as follows:

$$\begin{cases} \epsilon'_i = \frac{\epsilon_i}{\epsilon_{i+1}} \zeta^{-\chi(x_i > x_{i+1})} & \text{if } i < m, \\ \epsilon'_m = \epsilon_m & \text{if } i = m. \end{cases}$$

$$(2.2)$$

Let $w := (\epsilon, u)$ be an ℓ -colored word (u = |w|). Define

$$\widehat{\Phi}(w) = (\Psi_u(\epsilon), \Phi(u)).$$
(2.3)

Example 2.1. Let us take $\ell = 4$ and $w = \overline{3}\overline{1}4\overline{1}\overline{3}$. We have

$$w = ((\zeta^2, \zeta, 1, \zeta, \zeta^2), 31413).$$

By construction of Φ (relation (2.1)), we have

$$\begin{split} \Phi(3) &= 3, \\ \Phi(31) &= \gamma_1(\Phi(3))1 = \gamma_1(3)1 = 31, \\ \Phi(314) &= \gamma_4(\Phi(31))4 = \gamma_4(31)4 = 314, \\ \Phi(3141) &= \gamma_1(\Phi(314))1 = \gamma_1(314)1 = 3411, \\ \Phi(31413) &= \gamma_3(\Phi(3141))3 = \gamma_3(3411)3 = 31413 \end{split}$$

In the other hand,

$$\epsilon_1' = \frac{\zeta^2}{\zeta} \zeta^{-1} = 1, \quad \epsilon_2' = \frac{\zeta}{1} = \zeta, \quad \epsilon_3' = \frac{1}{\zeta^1} \zeta^{-1} = \zeta^2, \quad \epsilon_4' = \frac{\zeta^1}{\zeta^2} = \zeta^3, \quad \epsilon_5' = \zeta^2.$$

Therefore,

$$w' = \widehat{\Phi}(\overline{\overline{3}}\overline{1}4\overline{1}\overline{\overline{3}}) = 3\overline{1}\overline{\overline{4}}\overline{\overline{1}}\overline{\overline{3}}.$$

We have $(\text{fmaj}, \text{des}^*)w = (\text{finv}, \text{pcol})w' = (34, 8).$

3. Proof of Theorem 1.1

Lemma 3.1. Let $w := w_1 w_2 \cdots w_m$ be an ℓ -colored word. With notation in relation (1.2), we have

finv
$$w = \operatorname{inv} |w| + \sum_{i=1}^{m} i \operatorname{pcol}_{i} w.$$
 (3.1)

Proof. For all integers i, j, k such that $1 \le i < j \le m$ and $0 \le k \le \ell - 1$, one has:

$$\chi(\zeta^k | w_i | > w_j) = \chi(k < \operatorname{pcol}_j w) + \chi(k = \operatorname{pcol}_j w)\chi(|w_i| > |w_j|).$$

Thus,

finv
$$w = \sum_{j=1}^{m} (j-1) \operatorname{pcol}_{j} w + \operatorname{inv} |w| + \sum_{j=1}^{m} \operatorname{pcol}_{j} w = \operatorname{inv} |w| + \sum_{j=1}^{m} j \operatorname{pcol}_{j} w.$$

Now, slightly abusing notation, let $w = (\epsilon, |w|)$ be an ℓ -colored word of length m and $w' = (\epsilon', |w'|) := \widehat{\Phi}(w)$. For each i such that $1 \le i \le m - 1$, we have

$$- \text{ if } |w_i| \le |w_{i+1}|, \text{ then } \epsilon'_i = \frac{\epsilon_i}{\epsilon_{i+1}} = \zeta^{\operatorname{pcol}_i w - \operatorname{pcol}_{i+1} w}; \\ - \text{ if } |w_i| > |w_{i+1}|, \text{ then } \epsilon'_i = \frac{\epsilon_i}{\epsilon_{i+1}} \zeta^{-1} = \zeta^{\operatorname{pcol}_i w - \operatorname{pcol}_{i+1} w - 1}.$$

So,

$$\begin{aligned} \operatorname{pcol}_{i} w' &= [\operatorname{pcol}_{i} w - \operatorname{pcol}_{i+1} w + \ell \chi(\operatorname{pcol}_{i} w < \operatorname{pcol}_{i+1} w)] \chi(|w_{i}| \leq |w_{i+1}|) \\ &+ [\operatorname{pcol}_{i} w - \operatorname{pcol}_{i+1} w - 1 + \ell \chi(\operatorname{pcol}_{i} w \leq \operatorname{pcol}_{i+1} w)] \chi(|w_{i}| > |w_{i+1}|) \\ &= \operatorname{pcol}_{i} w - \operatorname{pcol}_{i+1} w + \ell \chi(\operatorname{pcol}_{i} w < \operatorname{pcol}_{i+1} w) \\ &+ \ell \chi(\operatorname{pcol}_{i} w = \operatorname{pcol}_{i+1} w) \chi(|w_{i}| > |w_{i+1}|) - \chi(|w_{i}| > |w_{i+1}|). \end{aligned}$$

Thus, we have

$$\begin{aligned} \operatorname{pcol} w' &= \sum_{i=1}^{m} \operatorname{pcol}_{i} w' \\ &= \sum_{i=1}^{m} \operatorname{pcol}_{i} w - \sum_{i=2}^{m} \operatorname{pcol}_{i} w + \ell \sum_{i=1}^{m-1} [\chi(\operatorname{pcol}_{i} w < \operatorname{pcol}_{i+1} w) \\ &+ \chi(\operatorname{pcol}_{i} w = \operatorname{pcol}_{i+1} w) \chi(|w_{i}| > |w_{i+1}|)] - \sum_{i=1}^{m-1} \chi(|w_{i}| > |w_{i+1}|) \\ &= \operatorname{pcol}_{1} w + \ell \operatorname{des} w - \operatorname{des} |w| \\ &= \operatorname{des}^{*} w, \end{aligned}$$

and, by Φ ,

finv
$$w' = \operatorname{inv} |w'| + \sum_{i=1}^{m} i \operatorname{pcol}_{i} w'$$

$$= \operatorname{maj} |w| + \sum_{i=1}^{m} i \operatorname{pcol}_{i} w - \sum_{i=1}^{m} (i-1) \operatorname{pcol}_{i} w$$

$$+ \ell \sum_{i=1}^{m-1} i [\chi(\operatorname{pcol}_{i} w < \operatorname{pcol}_{i+1} w) + \chi(\operatorname{pcol}_{i} w = \operatorname{pcol}_{i+1} w)\chi(|w_{i}| > |w_{i+1}|)]$$

$$- \sum_{i=1}^{m-1} i \chi(|w_{i}| > |w_{i+1}|)$$

$$= \operatorname{maj} |w| + \sum_{i=1}^{m} \operatorname{pcol}_{i} w + \ell \sum_{i=1}^{m-1} i \chi(w_{i} > w_{i+1}) - \operatorname{maj} |w|$$

$$= \ell \sum_{i=1}^{m-1} i \chi(w_{i} > w_{i+1}) + \operatorname{pcol} w$$

$$= \operatorname{fmaj} w.$$

Finally, we show that $\widehat{\Phi}$ is a bijection of $G_{\ell,\mathbf{m}}$ onto itself. Indeed, let $w' := (\epsilon', u)$ be an element of $G_{\ell,\mathbf{m}}$. By the relation (2.2), if $w := (\epsilon, u')$ is an element of $G_{\ell,\mathbf{m}}$ such that $\widehat{\Phi}(w) = w'$, then $u = \Phi^{-1}(u')$, $\epsilon_m = \epsilon'_m$ and, for i < m,

$$\epsilon_i = \epsilon'_m \prod_{i \le j \le m-1} \epsilon'_j \zeta^{\chi(x_j > x_{j+1})},$$

where $u := x_1 x_2 \cdots x_m$.

This concludes the proof of Theorem 1.1.

4. Proof of Theorem 1.4

Consider the following transformations:

\triangleright Transformation ρ

$$\rho: G_{\ell,n} \longrightarrow G_{\ell,n}$$
$$w = (\epsilon, |w|) \longmapsto \rho(w) = w' = (\epsilon', |w'|),$$

$$|w'| = |w|^{-1}$$
 and $\epsilon'_i = \epsilon_{|w|^{-1}(i)};$

\triangleright Transformation τ

For each $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$ in $[0, \ell - 1]^n$, put $\Sigma_{\alpha} = \{\zeta^{\alpha_1}, \zeta^{\alpha_2}2, \dots, \zeta^{\alpha_n}n\}$, and let G_{α} be the class of ℓ -colored permutations whose letters are in Σ_{α} , i.e.,

$$G_{\alpha} = \{ w = w_1 w_2 \cdots w_n \in G_{\ell,n} : \operatorname{pcol}_i w = \alpha_i \text{ for all } i \in [n] \}$$

Note that $\sharp G_{\alpha} = n!$. We denote by I_{α} the increasing bijection from [n] to Σ_{α} , and we define τ for each class G_{α} by $\tau(w) = w'_1 w'_2 \dots w'_n$, where

$$w_i' = I_\alpha(|w_i|).$$

Lemma 4.1. For all $w \in G_{\ell,n}$, we have

finv
$$w = \operatorname{Rfinv} \tau \circ \rho(w)$$
.

Proof of Lemma 4.1. Let $w = w_1 w_2 \cdots w_n \in G_{\ell,n}$. Consider the auxiliary statistics

$$\wp(w) := \sum_{i=1}^{n} i \operatorname{pcol}_{i} w;$$
$$\Im(w) := \sum_{i=1}^{n} |w_{i}| \operatorname{pcol}_{i} w;$$
$$\operatorname{inv} |w| := \operatorname{inv} |w|.$$

It is easy to see that ρ is an involution preserving |inv| and transforming \wp into \Im and vice versa:

$$(|\operatorname{inv}|, \wp)w = (|\operatorname{inv}|, \Im)\rho(w),$$

and τ preserves \Im and transforms |inv| into inv, i.e.,

$$(|\operatorname{inv}|, \Im)w = (\operatorname{inv}, \Im)\rho(w).$$

By Lemma 3.1, we have

finv
$$w = |\operatorname{inv}| w + \wp(w)$$

= $|\operatorname{inv}|\rho(w) + \Im \rho(w) = \operatorname{inv} \tau \circ \rho(w) + \Im \tau \circ \rho(w)$
= Rfinv $\tau \circ \rho(w)$.

Example 4.2. $w = 5\bar{3}\bar{1}2\bar{4}$, finv w = 18; $\rho(w) = \bar{3}4\bar{2}\bar{5}1$. Let $\alpha = (0, 2, 1, 0, 1)$. I_{α} is defined as follows:

i	1	2	3	4	5
$I_{\alpha}(i)$	$\overline{2}$	3	$\overline{5}$	1	4

 So

$$\tau \circ \rho(w) = w' = \overline{5}1\overline{3}4\overline{2} \quad \text{and} \quad \text{Rfinv } w' = 18.$$

References

- R. M. Adin and Y. Roichman, The flag major index and group actions on polynomial rings, Europ. J. Combin. 22 (2001), 431–446.
- [2] R. M. Adin, F. Brenti and Y. Roichman, Descent numbers and major indices for the hyperoctahedral group, Adv. in Appl. Math. 27 (2001), 210–224.
- [3] A. Björner and M. L. Wachs, Permutation statistics and linear extensions of posets, J. Combin. Theory Ser. A 58 (1991), 85–114.
- [4] F. Brenti, q-Eulerian polynomials arising from Coxeter groups, Europ. J. Combin. 15 (1994), 417–441.
- [5] D. Foata, On the Netto inversion number of a sequence, Proc. Amer. Math. Soc. 19 (1968), 236–240.

- [6] D. Foata and G. N. Han, Signed words and permutations, I: A fundamental transformation, Proc. Amer. Math. Soc. 135 (2007), 31–40.
- [7] D. Foata and M.-P. Schützenberger, Major index and inversion number of permutations, Math. Nachr. 83 (1978), 143–159.
- [8] J. Haglund, N. Loehr and J. B. Remmel, Statistics on wreath products, perfect matchings and signed words, European J. Combin. 26 (2005), 835–868.