FLAG-MAJOR INDEX AND FLAG-INVERSION NUMBER ON COLORED WORDS AND WREATH PRODUCT

Hilarion L. M. Faliharimalala ${ }^{1}$
and
Arthur Randrianarivony ${ }^{2}$
${ }^{1}$ Université de Lyon, Université Lyon 1, Institut Camille Jordan, UMR 5208 du CNRS, F-69622, Villeurbanne Cedex, France
E-mail: heritianamihanta@yahoo.fr
${ }^{2}$ Département de Mathématiques, Université d'Antananarivo BP 906 Antananarivo Madagascar
WWW: arthur@univ-antananarivo.mg

Abstract

In [Proc. Amer. Math. Soc. 19 (1968), 236-240], Dominique Foata constructed a map Φ, called second fundamental transformation, exchanging the integervalued statistics inversion number "inv" and major index "maj" on words whose letters are integers. Later, Foata and Han introduced the flag-inversion number "finv" and extended Φ on signed words and permutations, showing that the flag major index "fmaj" and "finv" were equidistributed. In this paper we give an extension of Φ to ℓ-colored words. Using this extension, we show that the bistatistics (fmaj, des*) and (finv, pcol) are equidistributed, where "pcol" is the sum of color powers and "des*" is a new statistic derived from "des".

1. Introduction

The second fundamental transformation, denoted by Φ and described in [5] by Foata, is defined on finite words whose letters are integers. If $\mathbf{m}=\left(m_{1}, \cdots, m_{r}\right)$ is a sequence of nonnegative integers, let $R_{\mathbf{m}}$ be the set of all rearrangements $w=x_{1} x_{2} \cdots x_{m}$ of the sequence $1^{m_{1}} 2^{m_{2}} \ldots n^{m_{r}}$ where $m=m_{1}+m_{2}+\cdots+m_{r}$. The transformation Φ maps each word w to another word $\Phi(w)$ and has the following properties:
(1) maj $w=\operatorname{inv} \Phi(w)$;
(2) $\Phi(w)$ is a rearrangement of w and the restriction of Φ to $R_{\mathbf{m}}$ is a bijection of $R_{\mathbf{m}}$ onto itself.
Further properties were proved later on by Foata and Schützenberger [7], and by Björner and Wachs [3], in particular, when the transformation is restricted to act on the symmetric group S_{r}.

The purpose of this paper is to extend the transformation Φ to ℓ-colored words.

Let C_{ℓ} be the ℓ-cyclic group generated by $\zeta=e^{2 i \pi / \ell}$. By an ℓ-colored word, we understand a pair (ε, x), where $\varepsilon \in\left(C_{\ell}\right)^{m}$ and x is a word of length m whose letters are nonnegative integers. For reasons which will appear later, if $w:=(\varepsilon, x)$ is an ℓ-colored word where $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{m}\right)$ and $x=x_{1} x_{2} \cdots x_{m}$, we write $w:=w_{1} w_{2} \cdots w_{m}$ where $w_{j}=\varepsilon_{j} x_{j}(1 \leq j \leq m)$. For any j with $1 \leq j \leq m, \varepsilon_{j}$ is called the color of w_{j} and, if $\varepsilon_{j}=\zeta^{k_{j}}, k_{j}$ is the power of this color. For small values of ℓ, we shall use k_{j} bars over x_{j} instead of $\zeta^{k_{j}} x_{j}$.

For example, if $w=\zeta^{2} 3 \zeta^{2} 1 \zeta^{0} 4 \zeta 1 \zeta^{2} 3$, then we write $w=\overline{\overline{3}} \overline{\overline{1}} 4 \overline{\overline{3}} \overline{\overline{3}}$.
Any ℓ-colored word can be considered as a finite word over the alphabet $\Sigma_{\ell}:=\{\xi j ; \xi \in$ $\left.C_{\ell}, j \geq 1\right\}$.

Let $w:=w_{1} w_{2} \cdots w_{m}:=\varepsilon_{1} x_{1} \varepsilon_{2} x_{2} \cdots \varepsilon_{m} x_{m}$ be an ℓ-colored word. We write

$$
\begin{align*}
& \left|w_{i}\right|:=x_{i}, \quad 1 \leq i \leq m ; \tag{1.1}\\
& |w|:=\left|w_{1}\right|\left|w_{2}\right| \cdots\left|w_{m}\right| ;
\end{align*}
$$

and we define the statistic power-color "pcol" by

$$
\begin{align*}
\operatorname{pcol}_{i} w & :=\sum_{0 \leq j \leq \ell-1} j \chi\left(\varepsilon_{i}=\zeta^{j}\right), \quad 1 \leq i \leq m \\
\operatorname{pcol} w & :=\sum_{1 \leq i \leq m}^{0} \operatorname{pcol}_{i} w \tag{1.2}
\end{align*}
$$

If $\mathbf{m}=\left(m_{1}, \cdots, m_{r}\right)$ is a sequence of nonnegative integers such that $m_{1}+\cdots+m_{r}=m$, let $G_{\ell, \mathbf{m}}$ be the set of all ℓ-colored words $w=w_{1} w_{2} \cdots w_{m}$ such that $|w| \in R_{\mathbf{m}}$. The class $G_{\ell, \mathbf{m}}$ contains $\ell^{m}\binom{m}{m_{1}, m_{2}, \ldots, m_{r}} \ell$-colored words. When $m_{1}=m_{2}=\cdots=m_{r}=1$, the
 Σ_{ℓ} as follows:

$$
\begin{equation*}
\zeta^{j} i>\zeta^{j^{\prime}} i^{\prime} \Longleftrightarrow\left[j<j^{\prime}\right] \quad \text { or } \quad\left[\left(j=j^{\prime}\right) \quad \text { and } \quad\left(i>i^{\prime}\right)\right] . \tag{1.3}
\end{equation*}
$$

The restriction of this order to the class of ordinary words (with nonnegative letters) is the usual order.

As in [6], the statistics "inv" and "maj" must be adapted to ℓ-colored words and correspond to classical statistics when applied to ordinary words. Let

$$
(\omega ; q)_{n}:= \begin{cases}1 & \text { if } n=0 \\ (1-\omega)(1-\omega q) \cdots\left(1-\omega q^{n-1}\right) & \text { if } n \geq 1\end{cases}
$$

denote the usual q-shifted factorial, and let

$$
\left[\begin{array}{c}
m_{1}+m_{2}+\cdots+m_{r} \\
m_{1}, m_{2}, \ldots, m_{r}
\end{array}\right]_{q}:=\frac{(q ; q)_{m_{1}+m_{2}+\cdots+m_{r}}}{(q ; q)_{m_{1}}(q ; q)_{m_{2}} \cdots(q ; q)_{m_{r}}}
$$

be the q-multinomial coefficient.
With the order relation defined in (1.3), the natural extensions of the flag-major index "fmaj" and the flag-inversion number "finv" introduced by Foata and Han [6] to ℓ-colored
words are defined as follows: for all ℓ-colored word $w:=w_{1} w_{2} \cdots w_{m}$,

$$
\begin{aligned}
\text { fmaj } w & :=\ell \sum_{i=1}^{m-1} i \chi\left(w_{i}>w_{i+1}\right)+\operatorname{pcol} w ; \\
\text { finv } w & :=\sum_{\substack{1 \leq i<j \leq m \\
\xi \in C_{\ell}}} \chi\left(\xi w_{i}>w_{j}\right)+\operatorname{pcol} w .
\end{aligned}
$$

Foata and Han defined $(-q ; q)_{m}\left[\underset{m_{1}, m_{2}, \ldots, m_{r}}{m}\right]_{q}$ as a q-analog of $2^{m}\left(\underset{m_{1}, m_{2}, \ldots, m_{r}}{m}\right)$. By analogy, $\frac{\left(q^{\ell} ; q^{\ell}\right)_{m}}{(q ; q)_{m}}\left[\underset{m_{1}, m_{2}, \ldots, m_{r}}{m}\right]_{q}$ is a natural q-analog of $\ell^{m}\left(\underset{m_{1}, m_{2}, \ldots, m_{r}}{m}\right)$.

We claim that

$$
\frac{\left(q^{\ell} ; q^{\ell}\right)_{m}}{(q ; q)_{m}}\left[\begin{array}{c}
m \tag{1.4}\\
m_{1}, m_{2}, \ldots, m_{r}
\end{array}\right]_{q}=\sum_{w \in G_{\ell, \mathbf{m}}} q^{\operatorname{finv} w}
$$

This can be established by induction on m. Indeed, let us consider the bijective transformation

$$
\begin{aligned}
\varphi: & G_{\ell, \mathbf{m}} \longrightarrow\{0,1, \ldots, \ell-1\} \times \bigcup_{k=1}^{r} G_{\ell, \mathbf{m}-\mathbf{1}_{k}} \\
& w:=w_{1} w_{2} \cdots w_{m} \longmapsto\left(s, w^{\prime}\right):=\left(\operatorname{pcol}_{m} w, w_{1} w_{2} \cdots w_{m-1}\right)
\end{aligned}
$$

where $\mathbf{m} \mathbf{- 1} \mathbf{1}_{k}=\left(m_{1}, m_{2}, \ldots, m_{k-1}, m_{k}-1, m_{k+1}, \ldots, m_{r}\right)$. We have $k=\left|w_{m}\right|$ and

$$
\text { finv } \begin{aligned}
w & =\text { finv } w^{\prime}+s+\sum_{\substack{1 \leq i \leq m-1 \\
0 \leq j \leq \ell-1}} \chi\left(\zeta^{j}\left|w_{i}\right|>w_{m}\right) \\
& =\text { finv } w^{\prime}+m s+\left(m_{k+1}+\cdots+m_{r}\right) \chi(k<r) .
\end{aligned}
$$

So,

$$
\begin{aligned}
\sum_{w \in G_{\ell, \mathbf{m}}} q^{\operatorname{finv} w} & =\sum_{0 \leq s \leq \ell-1} q^{m s}\left(\sum_{w^{\prime} \in G_{\ell, \mathbf{m}-\mathbf{1}_{r}}} q^{\mathrm{finv} w^{\prime}}+\sum_{1 \leq k \leq r-1} q^{m_{k+1}+\cdots+m_{r}} \sum_{w^{\prime} \in G_{\ell, \mathbf{m}-1_{k}}} q^{\text {finv } w^{\prime}}\right) \\
& =\frac{1-q^{\ell m}}{1-q^{m}}\left(\sum_{w^{\prime} \in G_{\ell, \mathbf{m}-1_{r}}} q^{\text {finv } w^{\prime}}+\sum_{1 \leq k \leq r-1} q^{m_{k+1}+\cdots+m_{r}} \sum_{w^{\prime} \in G_{\ell, \mathbf{m}-1_{k}}} q^{\text {finv } w^{\prime}}\right) .
\end{aligned}
$$

By induction, for each $1 \leq k \leq r$, we have

$$
\begin{aligned}
\sum_{w^{\prime} \in G_{\ell, \mathbf{m}-\mathbf{1}_{k}}} q^{\operatorname{finv} w^{\prime}} & =\frac{\left(q^{\ell} ; q^{\ell}\right)_{m-1}}{(q ; q)_{m-1}} \frac{(q ; q)_{m-1}}{(q ; q)_{m_{1}} \cdots(q ; q)_{m_{k-1}}(q ; q)_{m_{k}-1}(q ; q)_{m_{k+1}} \cdots(q ; q)_{m_{r}}} \\
& =\frac{\left(q^{\ell} ; q^{\ell}\right)_{m-1}\left(1-q^{m_{k}}\right)}{(q ; q)_{m}} \frac{(q ; q)_{m}}{(q ; q)_{m_{1}} \cdots(q ; q)_{m_{k}} \cdots(q ; q)_{m_{r}}} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \sum_{1 \leq k \leq r-1} q^{m_{k+1}+\cdots+m_{r}} \sum_{w^{\prime} \in G_{\ell, \mathbf{m}-1_{k}}} q^{\text {finv } w^{\prime}} \\
& \quad=\frac{\left(q^{\ell} ; q^{\ell}\right)_{m-1}}{(q ; q)_{m}} \frac{(q ; q)_{m}}{(q ; q)_{m_{1}} \cdots(q ; q)_{m_{k}} \cdots(q ; q)_{m_{r}}} \sum_{1 \leq k \leq r-1} q^{m_{k+1}+\cdots+m_{r}}\left(1-q^{m_{k}}\right) \\
& \quad=\frac{\left(q^{\ell} ; q^{\ell}\right)_{m-1}\left(q^{m_{r}}-q^{m}\right)}{(q ; q)_{m}} \frac{(q ; q)_{m}}{(q ; q)_{m_{1}} \cdots(q ; q)_{m_{k}} \cdots(q ; q)_{m_{r}}}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{w \in G_{\ell, \mathbf{m}}} q^{\mathrm{finv} w} & =\frac{1-q^{\ell m}}{1-q^{m}}\left(\frac{\left(q^{\ell} ; q^{\ell}\right)_{m-1}\left(1-q^{m_{r}}\right)}{(q ; q)_{m}} \frac{(q ; q)_{m}}{(q ; q)_{m_{1}} \cdots(q ; q)_{m_{k}} \cdots(q ; q)_{m_{r}}}\right. \\
& \left.+\frac{\left(q^{\ell} ; q^{\ell}\right)_{m-1}\left(q^{m_{r}}-q^{m}\right)}{(q ; q)_{m}} \frac{(q ; q)_{m}}{(q ; q)_{m_{1}} \cdots(q ; q)_{m_{k}} \cdots(q ; q)_{m_{r}}}\right) \\
= & \frac{\left(q^{\ell} ; q^{\ell}\right)_{m}}{(q ; q)_{m}} \frac{(q ; q)_{m}}{(q ; q)_{m_{1}} \cdots(q ; q)_{m_{k}} \cdots(q ; q)_{m_{r}}} \\
= & \frac{\left(q^{\ell} ; q^{\ell}\right)_{m}}{(q ; q)_{m}}\left[\begin{array}{c}
m \\
m_{1}, m_{2}, \ldots, m_{r}
\end{array}\right]_{q} .
\end{aligned}
$$

This concludes the proof of the claim in (1.4).
We construct the extension $\widehat{\Phi}$ of the second fundamental transformation Φ to ℓ-colored words in the next section. Define

$$
\begin{equation*}
\operatorname{des}^{*} w=\ell \operatorname{des} w-\operatorname{des}|w|+\operatorname{pcol}_{1} w, \tag{1.5}
\end{equation*}
$$

where des $w:=\sum_{i=1}^{m-1} \chi\left(w_{i}>w_{i+1}\right)$.
The main purpose of this paper is to prove the following theorem.
Theorem 1.1. The transformation $\widehat{\Phi}$ constructed in Section 2 has the following properties
(1) For every ℓ-colored word w, (fmaj, des*) $w=($ finv, $\operatorname{pcol}) \widehat{\Phi}(w)$;
(2) The restriction of $\widehat{\Phi}$ to each class $G_{\ell, m}$ is a bijection of $G_{\ell, m}$ onto itself.

Corollary 1.2. For each $m=\left(m_{1}, m_{2}, \ldots, m_{r}\right)$, the bistatistics (fmaj, des*) and (finv, $\mathrm{pcol})$ are equidistributed on $G_{\ell, m}$.

Example 1.3. Let us consider the hyperoctahedral group of order 2.

w	12	$\overline{1} 2$	$1 \overline{2}$	$\overline{1} \overline{2}$	21	$\overline{2} 1$	$2 \overline{1}$	$\overline{2} \overline{1}$
fmaj w	0	1	3	2	2	1	3	4
$\operatorname{des}^{*} w$	0	1	2	1	1	0	1	2
finv w	0	1	2	3	1	2	3	4
pcol w	0	1	1	2	0	1	1	2

Now consider the statistic Rfinv defined on the hyperoctahedral group of order n as follows:

$$
\text { Rfinv } w=\operatorname{inv} w+\sum_{i=1}^{n}\left|w_{i}\right| \chi\left(w_{i}<0\right)
$$

If one uses the natural order relation on $[-n, n]$ given by

$$
\begin{equation*}
-n<-(n-1)<\cdots<-1<1<\cdots<(n-1)<n \tag{1.6}
\end{equation*}
$$

Brenti [4] shows that finv coincides with the traditional length function, and Adin and Roichman [1] proved that Rfinv and fmaj are equidistributed on the hyperoctahedral group.

Back to the order relation (1.3) on $[-n, n]$, i.e.,

$$
-1<\cdots<-(n-1)<-n<1<\cdots<(n-1)<n
$$

one has

$$
\text { length function } \neq R \text { finv } \quad \text { and } \quad \text { finv } \neq R \text { finv },
$$

but we observe that Rfinv remains equidistributed with fmaj, and we prove that its extension to the wreath product is also Mahonian. We have the following theorem.

Theorem 1.4. The statistic Rfinv defined on the wreath product $C_{\ell} 2 S_{n}$ by

$$
\begin{equation*}
\text { Rfinv } w=\operatorname{inv} w+\sum_{i=1}^{n}\left|w_{i}\right| \operatorname{pcol}_{i} w \tag{1.7}
\end{equation*}
$$

is Mahonian.
By a result of Haglund, Loehr and Remmel [8], we obtain the following corollary.
Corollary 1.5. We have

$$
\begin{equation*}
\sum_{\sigma \in G_{\ell, n}} q^{\mathrm{Rfinv} \sigma}=\sum_{\sigma \in G_{\ell, n}} q^{\operatorname{finv} \sigma}=\frac{\left(q^{\ell} ; q^{\ell}\right)_{n}}{(1-q)^{n}} \tag{1.8}
\end{equation*}
$$

2. The construction of the transformation $\widehat{\Phi}$

Let us recall the second fundamental transformation Φ from [5]. First, for each integer x, we recall the transformation γ_{x}. Let $w=x_{1} x_{2} \cdots x_{m}$ be a word with positive letters. The first (respectively last) letter x_{1} (respectively x_{m}) is denoted by $F(w)$ (respectively $L(w)$). If $L(w) \leq x$ (respectively $L(w)>x$), wadmits the unique factorization

$$
\left(u_{1} y_{1}, u_{2} y_{2}, \cdots, u_{p} y_{p}\right)
$$

called its x-right-to-left factorization having the following properties:
(1) each $y_{i}(1 \leq i \leq p)$ is a letter verifying $y_{i} \leq x$ (respectively $y_{i}>x$);
(2) each $u_{i}(1 \leq i \leq p)$ is a factor which is either empty or has all its letters greater than (respectively smaller than or equal to) x.

Then, the bijective transformation γ_{x} maps $w=u_{1} y_{1} u_{2} y_{2} \ldots u_{p} y_{p}$ to the word

$$
\gamma_{x}(w)=y_{1} u_{1} y_{2} u_{2} \cdots y_{p} u_{p}
$$

Foata defined $\Phi(w)$ by induction on the length of w. If w has length one, then $\Phi(w)=w$. If it has more than one letter, write the word as $v x$ where x is the last letter and define $\Phi(v x)$ to be the juxtaposition product

$$
\begin{equation*}
\Phi(v x):=\gamma_{x}(\Phi(v)) x . \tag{2.1}
\end{equation*}
$$

We now define $\widehat{\Phi}$ as follows. For each word $u=x_{1} x_{2} \cdots x_{m}$ with nonnegative letters and each element $\epsilon:=\left(\epsilon_{1}, \cdots, \epsilon_{m}\right)$ of $\left(\mathcal{C}_{\ell}\right)^{m}$, we denote by $\Psi_{u}(\epsilon)$ the element $\epsilon^{\prime}=\left(\epsilon_{1}^{\prime}, \cdots, \epsilon_{m}^{\prime}\right)$ of $\left(\mathcal{C}_{\ell}\right)^{m}$ defined as follows:

$$
\begin{cases}\epsilon_{i}^{\prime}=\frac{\epsilon_{i}}{\epsilon_{i+1}} \zeta^{-\chi\left(x_{i}>x_{i+1}\right)} & \text { if } i<m \tag{2.2}\\ \epsilon_{m}^{\prime}=\epsilon_{m} & \text { if } i=m\end{cases}
$$

Let $w:=(\epsilon, u)$ be an ℓ-colored word $(u=|w|)$. Define

$$
\begin{equation*}
\widehat{\Phi}(w)=\left(\Psi_{u}(\epsilon), \Phi(u)\right) \tag{2.3}
\end{equation*}
$$

Example 2.1. Let us take $\ell=4$ and $w=\overline{\overline{3}} \overline{1} 4 \overline{1} \overline{\overline{3}}$. We have

$$
w=\left(\left(\zeta^{2}, \zeta, 1, \zeta, \zeta^{2}\right), 31413\right)
$$

By construction of Φ (relation (2.1)), we have

$$
\begin{aligned}
\Phi(3) & =3 \\
\Phi(31) & =\gamma_{1}(\Phi(3)) 1=\gamma_{1}(3) 1=31 \\
\Phi(314) & =\gamma_{4}(\Phi(31)) 4=\gamma_{4}(31) 4=314 \\
\Phi(3141) & =\gamma_{1}(\Phi(314)) 1=\gamma_{1}(314) 1=3411 \\
\Phi(31413) & =\gamma_{3}(\Phi(3141)) 3=\gamma_{3}(3411) 3=31413
\end{aligned}
$$

In the other hand,

$$
\epsilon_{1}^{\prime}=\frac{\zeta^{2}}{\zeta} \zeta^{-1}=1, \quad \epsilon_{2}^{\prime}=\frac{\zeta}{1}=\zeta, \quad \epsilon_{3}^{\prime}=\frac{1}{\zeta^{1}} \zeta^{-1}=\zeta^{2}, \quad \epsilon_{4}^{\prime}=\frac{\zeta^{1}}{\zeta^{2}}=\zeta^{3}, \quad \epsilon_{5}^{\prime}=\zeta^{2}
$$

Therefore,

$$
w^{\prime}=\widehat{\Phi}(\overline{\overline{3}} \overline{1} 4 \overline{1} \overline{\overline{3}})=3 \overline{1} \overline{\overline{4}} \overline{\overline{1}} \overline{\overline{3}}
$$

We have (fmaj, des*) $w=($ finv, pcol$) w^{\prime}=(34,8)$.

3. Proof of Theorem 1.1

Lemma 3.1. Let $w:=w_{1} w_{2} \cdots w_{m}$ be an ℓ-colored word. With notation in relation (1.2), we have

$$
\begin{equation*}
\text { finv } w=\operatorname{inv}|w|+\sum_{i=1}^{m} i \operatorname{pcol}_{i} w \tag{3.1}
\end{equation*}
$$

Proof. For all integers i, j, k such that $1 \leq i<j \leq m$ and $0 \leq k \leq \ell-1$, one has:

$$
\chi\left(\zeta^{k}\left|w_{i}\right|>w_{j}\right)=\chi\left(k<\operatorname{pcol}_{j} w\right)+\chi\left(k=\operatorname{pcol}_{j} w\right) \chi\left(\left|w_{i}\right|>\left|w_{j}\right|\right)
$$

Thus,

$$
\operatorname{finv} w=\sum_{j=1}^{m}(j-1) \operatorname{pcol}_{j} w+\operatorname{inv}|w|+\sum_{j=1}^{m} \operatorname{pcol}_{j} w=\operatorname{inv}|w|+\sum_{j=1}^{m} j \operatorname{pcol}_{j} w
$$

Now, slightly abusing notation, let $w=(\epsilon,|w|)$ be an ℓ-colored word of length m and $w^{\prime}=\left(\epsilon^{\prime},\left|w^{\prime}\right|\right):=\widehat{\Phi}(w)$. For each i such that $1 \leq i \leq m-1$, we have

- if $\left|w_{i}\right| \leq\left|w_{i+1}\right|$, then $\epsilon_{i}^{\prime}=\frac{\epsilon_{i}}{\epsilon_{i+1}}=\zeta^{\operatorname{pcol}_{i} w-\operatorname{pcol}_{i+1} w} ;$
- if $\left|w_{i}\right|>\left|w_{i+1}\right|$, then $\epsilon_{i}^{\prime}=\frac{\epsilon_{i}}{\epsilon_{i+1}} \zeta^{-1}=\zeta^{\operatorname{pcol}_{i} w-\operatorname{pcol}_{i+1} w-1}$.

So,

$$
\begin{aligned}
& \operatorname{pcol}_{i} w^{\prime}= {\left[\operatorname{pcol}_{i} w-\operatorname{pcol}_{i+1} w+\ell \chi\left(\operatorname{pcol}_{i} w<\operatorname{pcol}_{i+1} w\right)\right] \chi\left(\left|w_{i}\right| \leq\left|w_{i+1}\right|\right) } \\
&+\left[\operatorname{pcol}_{i} w-\operatorname{pcol}_{i+1} w-1+\ell \chi\left(\operatorname{pcol}_{i} w \leq \operatorname{pcol}_{i+1} w\right)\right] \chi\left(\left|w_{i}\right|>\left|w_{i+1}\right|\right) \\
&=\operatorname{pcol}_{i} w-\operatorname{pcol}_{i+1} w+\ell \chi\left(\operatorname{pcol}_{i} w<\operatorname{pcol}_{i+1} w\right) \\
&+\ell \chi\left(\operatorname{pcol}_{i} w=\operatorname{pcol}_{i+1} w\right) \chi\left(\left|w_{i}\right|>\left|w_{i+1}\right|\right)-\chi\left(\left|w_{i}\right|>\left|w_{i+1}\right|\right)
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
\operatorname{pcol} w^{\prime}= & \sum_{i=1}^{m} \operatorname{pcol}_{i} w^{\prime} \\
= & \sum_{i=1}^{m} \operatorname{pcol}_{i} w-\sum_{i=2}^{m} \operatorname{pcol}_{i} w+\ell \sum_{i=1}^{m-1}\left[\chi\left(\operatorname{pcol}_{i} w<\operatorname{pcol}_{i+1} w\right)\right. \\
& \left.\quad+\chi\left(\operatorname{pcol}_{i} w=\operatorname{pcol}_{i+1} w\right) \chi\left(\left|w_{i}\right|>\left|w_{i+1}\right|\right)\right]-\sum_{i=1}^{m-1} \chi\left(\left|w_{i}\right|>\left|w_{i+1}\right|\right) \\
= & \operatorname{pcol}_{1} w+\ell \operatorname{des} w-\operatorname{des}|w| \\
= & \operatorname{des}^{*} w,
\end{aligned}
$$

and, by Φ,

$$
\text { finv } \begin{aligned}
w^{\prime}= & \operatorname{inv}\left|w^{\prime}\right|+\sum_{i=1}^{m} i \operatorname{pcol}_{i} w^{\prime} \\
= & \text { maj }|w|+\sum_{i=1}^{m} i \operatorname{pcol}_{i} w-\sum_{i=1}^{m}(i-1) \operatorname{pcol}_{i} w \\
& +\ell \sum_{i=1}^{m-1} i\left[\chi\left(\operatorname{pcol}_{i} w<\operatorname{pcol}_{i+1} w\right)+\chi\left(\operatorname{pcol}_{i} w=\operatorname{pcol}_{i+1} w\right) \chi\left(\left|w_{i}\right|>\left|w_{i+1}\right|\right)\right] \\
& \quad-\sum_{i=1}^{m-1} i \chi\left(\left|w_{i}\right|>\left|w_{i+1}\right|\right) \\
= & \operatorname{maj}|w|+\sum_{i=1}^{m} \operatorname{pcol}_{i} w+\ell \sum_{i=1}^{m-1} i \chi\left(w_{i}>w_{i+1}\right)-\operatorname{maj}|w| \\
= & \ell \sum_{i=1}^{m-1} i \chi\left(w_{i}>w_{i+1}\right)+\operatorname{pcol} w \\
= & \text { fmaj } w .
\end{aligned}
$$

Finally, we show that $\widehat{\Phi}$ is a bijection of $G_{\ell, \mathbf{m}}$ onto itself. Indeed, let $w^{\prime}:=\left(\epsilon^{\prime}, u\right)$ be an element of $G_{\ell, \mathbf{m}}$. By the relation (2.2), if $w:=\left(\epsilon, u^{\prime}\right)$ is an element of $G_{\ell, \mathbf{m}}$ such that $\widehat{\Phi}(w)=w^{\prime}$, then $u=\Phi^{-1}\left(u^{\prime}\right), \epsilon_{m}=\epsilon_{m}^{\prime}$ and, for $i<m$,

$$
\epsilon_{i}=\epsilon_{m}^{\prime} \prod_{i \leq j \leq m-1} \epsilon_{j}^{\prime} \zeta^{\chi\left(x_{j}>x_{j+1}\right)},
$$

where $u:=x_{1} x_{2} \cdots x_{m}$.
This concludes the proof of Theorem 1.1.

4. Proof of Theorem 1.4

Consider the following transformations:
\triangleright Transformation ρ

$$
\begin{gathered}
\rho: G_{\ell, n} \longrightarrow G_{\ell, n} \\
w=(\epsilon,|w|) \longmapsto \rho(w)=w^{\prime}=\left(\epsilon^{\prime},\left|w^{\prime}\right|\right),
\end{gathered}
$$

where

$$
\left|w^{\prime}\right|=|w|^{-1} \quad \text { and } \quad \epsilon_{i}^{\prime}=\epsilon_{|w|^{-1}(i)}
$$

\triangleright Transformation τ

For each $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ in $[0, \ell-1]^{n}$, put $\Sigma_{\alpha}=\left\{\zeta^{\alpha_{1}}, \zeta^{\alpha_{2}} 2, \ldots, \zeta^{\alpha_{n}} n\right\}$, and let G_{α} be the class of ℓ-colored permutations whose letters are in Σ_{α}, i.e.,

$$
G_{\alpha}=\left\{w=w_{1} w_{2} \cdots w_{n} \in G_{\ell, n}: \operatorname{pcol}_{i} w=\alpha_{i} \text { for all } i \in[n]\right\}
$$

Note that $\sharp G_{\alpha}=n$!. We denote by I_{α} the increasing bijection from $[n]$ to Σ_{α}, and we define τ for each class G_{α} by $\tau(w)=w_{1}^{\prime} w_{2}^{\prime} \ldots w_{n}^{\prime}$, where

$$
w_{i}^{\prime}=I_{\alpha}\left(\left|w_{i}\right|\right)
$$

Lemma 4.1. For all $w \in G_{\ell, n}$, we have

$$
\text { finv } w=\operatorname{Rfinv} \tau \circ \rho(w)
$$

Proof of Lemma 4.1. Let $w=w_{1} w_{2} \cdots w_{n} \in G_{\ell, n}$. Consider the auxiliary statistics

$$
\begin{aligned}
\wp(w) & :=\sum_{i=1}^{n} i \operatorname{pcol}_{i} w ; \\
\Im(w) & :=\sum_{i=1}^{n}\left|w_{i}\right| \operatorname{pcol}_{i} w ; \\
|\operatorname{inv}| w & :=\operatorname{inv}|w| .
\end{aligned}
$$

It is easy to see that ρ is an involution preserving \mid inv \mid and transforming \wp into \Im and vice versa:

$$
(|\operatorname{inv}|, \wp) w=(|\operatorname{inv}|, \Im) \rho(w),
$$

and τ preserves \Im and transforms \mid inv \mid into inv, i.e.,

$$
(|\operatorname{inv}|, \Im) w=(\text { inv, } \Im) \rho(w)
$$

By Lemma 3.1, we have

$$
\text { finv } \begin{aligned}
w & =|\operatorname{inv}| w+\wp(w) \\
& =|\operatorname{inv}| \rho(w)+\Im \rho(w)=\operatorname{inv} \tau \circ \rho(w)+\Im \tau \circ \rho(w) \\
& =\operatorname{Rfinv} \tau \circ \rho(w) .
\end{aligned}
$$

Example 4.2. $w=5 \overline{\overline{3}} \overline{1} 2 \overline{4}$, finv $w=18 ; \rho(w)=\overline{3} 4 \overline{\overline{2}} \overline{5} 1$. Let $\alpha=(0,2,1,0,1)$. I_{α} is defined as follows:

i	1	2	3	4	5
$I_{\alpha}(i)$	$\overline{2}$	$\overline{3}$	$\overline{5}$	1	4

So

$$
\tau \circ \rho(w)=w^{\prime}=\overline{5} 1 \overline{3} 4 \overline{\overline{2}} \quad \text { and } \quad \text { Rfinv } w^{\prime}=18
$$

References

[1] R. M. Adin and Y. Roichman, The flag major index and group actions on polynomial rings, Europ. J. Combin. 22 (2001), 431-446.
[2] R. M. Adin, F. Brenti and Y. Roichman, Descent numbers and major indices for the hyperoctahedral group, Adv. in Appl. Math. 27 (2001), 210-224.
[3] A. Björner and M. L. Wachs, Permutation statistics and linear extensions of posets, J. Combin. Theory Ser. A 58 (1991), 85-114.
[4] F. Brenti, q-Eulerian polynomials arising from Coxeter groups, Europ. J. Combin. 15 (1994), 417441.
[5] D. Foata, On the Netto inversion number of a sequence, Proc. Amer. Math. Soc. 19 (1968), 236-240.
[6] D. Foata and G. N. Han, Signed words and permutations, I: A fundamental transformation, Proc. Amer. Math. Soc. 135 (2007), 31-40.
[7] D. Foata and M.-P. Schützenberger, Major index and inversion number of permutations, Math. Nachr. 83 (1978), 143-159.
[8] J. Haglund, N. Loehr and J. B. Remmel, Statistics on wreath products, perfect matchings and signed words, European J. Combin. 26 (2005), 835-868.

