Mixed connectivity

\author{

* * * * * *
 Anders Björner
 Institut Mittag-Leffler
}

$$
* * * * * *
$$

Séminaire Lotharingien de Combinatoire 61
Curia, September, 2008
(W, S) Coxeter group

Operations on words in the Coxeter generators $S=\{a, b, c, \ldots\}$
nil-move: deleting or adding a factor of the form $a a$ braid-move: replacement of a factor $a b a b a \ldots$ by babab....

Ex: a sequence of two nil-moves and two braid-moves in H_{3} :

$$
c b \underline{c} \underline{a} c b a b a c \sim c b a \underline{c} \underline{c} b a b a c \sim c \underline{b} \underline{a} \underline{b} \underline{a} \underline{b} \underline{a c} \sim c a b a b \underline{a} \underline{a} c \sim c a b a b c
$$

Let $A \subseteq W \backslash\{e\}$ and $w \in W \backslash A$. An expression $w=s_{1} \cdots s_{k}$, $s_{i} \in S$, is A-avoiding if $s_{1} \cdots s_{i} \notin A$ for $i=1,2, \ldots, k$.

Theorem 1. Suppose that $|S|=r$, and let $w \in W \backslash A$.
(1) If $|A| \leq r-1$ there exists an A-avoiding expression

$$
w=s_{1} \cdots s_{k}
$$

(2) If $|A| \leq r-2$ then every pair of such A-avoiding expressions for w are connected by a sequence of A-avoiding nil-moves and braid moves.

Intuitive idea of connected

Higher connectivity:

- Graph theory: " k-connected"
- Topology: " k-connected"

Graph-theoretic k-connectivity

Def: Graph is k-connected if $|V(G)| \geq k+1$ and removal of any $\leq k-1$ vertices leaves connected induced subgraph.

Theorem. (Menger, 1927): Graph G is k-connected \Longleftrightarrow any pair of vertices is connected by k vertex-disjoint paths.

Theorem. (Balinski, 1961) The graph (1-skeleton) of a convex d-polytope is d-connected.

Theorem. (Barnette, 1973) The graph (1-skeleton) of a ($d-1$)-dimensional "graph-manifold" is d-connected.

Theorem. (Steinitz 1922) A graph G is the 1-skeleton of a convex 3-polytope
$\Longleftrightarrow G$ is planar and 3-connected.

Def: Topological space \mathbf{X} is k-connected if for all $j \leq k$ every mapping $S^{j} \rightarrow \mathbf{X}$ extends from the j-sphere $S^{j}=\partial B^{j+1}$ to the entire $(j+1)$-ball B^{j+1}.

Ex: $j=0 \Longleftrightarrow$ connected.

Ex: $j=1 \Longleftrightarrow$ simply-connected (i.e., fundamental group $=0$).

Concept fundamental in topological combinatorics, e..g. in applications of Borsuk-Ulam

Topological k-connectivity

We now define "cell complex"

Not used to this stuff? Don't worry, just let

$$
\text { cell complex }=\text { simplicial complex }
$$

In this talk:
Cell complex $\stackrel{\text { def }}{=}$ regular CW complex
"with the intersection property" (\cap cells $=$ cell), e.g. simplicial complex, polyhedral complex, ...

Example:

Regular CW complex (from the Bruhat interval [1234, 3241] in S_{4}).
Does not have the intersection property.

Topological k-connectivity

Lemma 1. Cell complex Γ is k-connected
\Longleftrightarrow its $(k+1)$-skeleton $\Gamma \leq k+1$ is k-connected.

Definition 1. A cell complex is (k, t)-biconnected
if removal of any set of $\leq k-1$ open cells (and the cells that contain any one of them in their closure) leaves a topologically t-connected induced subcomplex of the same dimension.

Remark 1. Just removing vertices gives a weaker concept.
Counterex: 2 tetrahedron boundaries glued along edge.

Remark 2. Baclawski's concept of k-CM-connectivity earlier idea in this direction.

Theorem. The boundary complex of a convex d-polytope is $(d-j, j)$-connected, for $j=0,1, \ldots, d-2$.

- $j=0$ case \Longleftrightarrow Balinski's theorem
- Homology version due to Fløystad (2005), using "enriched homology" and ring theory
- Proof method here based on poset homotopy tools applied to the face lattice
- Important point: method works also for other lattices, e.g. geometric lattices.

PLAN

First: A general theorem for posets

Then: three applications

- Cell complexes, polytopes and manifolds
- Coxeter groups
- Matroid basis graphs

Poset notions:

Order complex $\Delta(P)$ - simplicial complex of chains

$$
x_{0}<x_{1}<\cdots<x_{p}
$$

Length $-\ell(P)$, length (card -1) of longest chain

Length of interval - $\ell(x, y)$, length of $(x, y)=\{z: x<z<y\}$

Filter - up-directed subposet

Width of filter - number of its minimal elements

Review of topol. notions

Fact for d-dimensional simplicial complex Δ :

- $(d-1)$-connected \Longleftrightarrow homotopy equiv to wedge of d-spheres

Def: Δ is d-spherical if $\operatorname{dim} \Delta=d$ and Δ is $(d-1)$-connected Δ is spherical if it is $(\operatorname{dim} \Delta)$-spherical.

Definition 2. A pure poset P is locally rigid \Longleftrightarrow for all $x<y \leq z$ in P the order complex of $(x, z) \backslash[y, z)$ is $(\ell(x, z)-2)$-spherical.

Examples of locally rigid posets:

- face posets of simplicial and polyhedral complexes (via Alexander duality ...)
- geometric (semi)lattices (via lex. shellability ...)
- the order duals of these

Definition 3. A pure poset P is (k, t)-rigid if $P \backslash F$ is topologically t-connected, pure and of the same length as P, for every filter $F \subset P$ of width at most $k-1$ elements.

Poset rigidity, main theorem

Theorem 2. Let P be a pure poset of length r, and let
$0 \leq t \leq r-1$. Assume that
(i) $P \cup\{\hat{0}\}$ is a semilattice,
(ii) $P \cup\{\hat{0}\}$ is locally rigid,
(iii) the upper interval $P_{>x}$ is $\min \{t, r-2-\operatorname{rk}(x)\}$-connected, for all $x \in P \cup\{\hat{0}\}$.

Then, the truncated poset $P \leq(s+1)$ is $(r-s, s)$-rigid, $\forall s \leq t$.

Proof. A bit technical

Comment "for the experts" :

Comparison of conditions on intervals (x, y) in \hat{P} in Thm 1 with the Cohen-Macaulay case:

	$y<\hat{1}$	$y=\hat{1}$
Thm 1	(x, y) locally rigid	$(x, \hat{1}) \ldots$-connected
CM	(x, y) spherical	$(x, \widehat{1})$ spherical

Stronger condition in red

Application 1: Polytopes and manifolds

Recall:
Cell complex $=\left\{\begin{array}{l}\bullet \text { regular CW complex } \\ \bullet \text { intersection property: } \cap \text { cells }=\text { cell } \\ \Longleftrightarrow \text { face poset is meet-semilattice }\end{array}\right.$

Examples:

- simplicial complexes
- polyhedral complexes

Theorem. The face semilattice of a cell complex is locally rigid

Application 1: Polytopes and manifolds

Method yields

Theorem 3. Let Γ be a pure cell complex.
(1) If Γ is a d-dimensional compact manifold, then its 1 -skeleton is graph-theoretically $(d+1)$-connected.
(2) If Γ is a d-dimensional compact manifold with boundary, then
its 1 -skeleton is graph-theoretically d-connected.

If Γ is polytope boundary: $(1) \Longrightarrow$ Balinski's theorem
If Γ is "graph-manifold": (1) \Longrightarrow Barnette's theorem

- All that's needed: graph-theor. connectivity of links

Application 2: Coxeter groups

Consider a group W, and subset $S \subseteq W$ such that

$$
s^{2}=e, \quad \text { for all } s \in S
$$

(W, S) is Coxeter group \Longleftrightarrow has Coxeter presentation:

Generators: S

Braid relations: for $s \neq s^{\prime} \in S$

$$
\underbrace{s s^{\prime} s s^{\prime} s \ldots}_{m\left(s, s^{\prime}\right)}=\underbrace{s^{\prime} s s^{\prime} s s^{\prime} \ldots}_{m\left(s, s^{\prime}\right)}
$$

Application 2: Coxeter groups

Build 2-dim'l cell complex $\Gamma_{(W, S)}$:
\{vertices $\}=W$
\{edges $\}=$ pairs $w-w s, s \in S$
$\{2$-cells $\}=$ braid relations

So, we glue some membranes (2-cells) into the Cayley graph.

FACT: (W, S) has the Coxeter presentation
\Longleftrightarrow the complex $\Gamma_{(W, S)}$ is 1-connected.

Application 2: Coxeter groups

The complex $\Gamma_{(W, S)}$ for S_{4}

$$
\text { 4-gons } \leftrightarrow s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} \quad \text { 6-gons } \leftrightarrow s_{i} s_{j}=s_{j} s_{i}
$$

Application 2: Coxeter groups

Operations on words in the Coxeter generators $S=\{a, b, c, \ldots\}$
nil-move: deleting or adding a factor of the form $a a$ braid-move: replacement of a factor $a b a b a \ldots$ by babab....

Basic facts:

- Closed paths in the 1-skeleton of $\Gamma_{(W, S)}$ (the Cayley graph) correspond to relations in W (i.e., words evaluating to the identity)
- A homotopy in $\Gamma_{(W, S)}$ from one such path to another corresponds to a sequence of nil-moves and braid-moves.

Application 2: Coxeter groups

Let $A \subseteq W \backslash\{e\}$ and $w \in W \backslash A$. An expression $w=s_{1} \cdots s_{k}$, $s_{i} \in S$, is A-avoiding if $s_{1} \cdots s_{i} \notin A$ for $i=1,2, \ldots, k$.

Theorem 4. Suppose that W is finite and $|S|=r$.
(1) If $|A| \leq r-1$ there exists an A-avoiding expression

$$
w=s_{1} \cdots s_{k}
$$

(2) If $|A| \leq r-2$ then every pair of such A-avoiding expressions are connected by a sequence of A-avoiding nil-moves and braid moves.

Proof. $\Gamma_{(W, S)}$ is the 2-skeleton of a polytope boundary, namely the r-dimensional dual zonotope, which is $(r-j, j)$-biconnected. For (1), use the $j=0$ case (the 1 -skeleton) (Balinski)
For (2), use the $j=1$ case (the 2 -skeleton)

Application 2: Coxeter groups

Comments on Theorem 5

- Part (1) holds for all (W, S) whose Coxeter diagram has no ∞-labeled edges.
Combinatorial (non-topological) proof.
- Part (2) does not hold for infinite groups, e.g. fails for \tilde{A}_{3}. Reason: affine plane minus point is not simply-connected.

Application 2: Coxeter groups

Comments on Theorem 5

- Does there exist an A-avoiding "Tits word theorem", i.e. demanding that all intermediate expressions are A-avoiding and reduced? If so, for what size of A ?
- Observation: $|A| \leq r-2$ will not work. For example, let $W=D_{4}, S=\{a, b, c, d\}$ with a, b and c commuting, $A=\{b, a c\}$. Then

$$
a b c \sim c b a
$$

but not via A-avoiding length-preserving braid moves.

Application 3: Matroid basis graphs

Motivating problem:

Say we have a finite set V of vectors spanning \mathbb{R}^{d}.

Want to define ' orientation'" +1 or -1 for ordered bases $\left(b_{1}, b_{2}, \ldots, b_{d}\right)$.

Using determinants not allowed.

How to do it?

Application 3: Matroid basis graphs

The basis graph $\Gamma^{1}(M)$ of a matroid M has
$\left\{\begin{array}{l}\text { vertices }=\text { the bases of } M \\ \text { edges }=\text { pairs of bases }\left(B_{1}, B_{2}\right) \text { such that }\left|B_{1} \cap B_{2}\right|=\operatorname{rk}(M)-1\end{array}\right.$

Connectivity?
Theorem. (G.Z. Liu, 1990) $\Gamma^{1}(M)$ is δ-connected, where δ is the minimal vertex-degree.

Note: best possible

Application 3: Matroid basis graphs

Let M be a matroid of rank r on the ground set E.

Def: M has the disjoint basis property if for \forall basis $B \exists$ a basis C such that $B \cap C=\emptyset$, or else $E \backslash B$ is independent.

Def: For a basis B, an edge $\left(B_{1}, B_{2}\right)$ is B-related if $B_{1} \cap B_{2} \subset B$.

Theorem 5. Let M be a matroid of rank r with the disjoint basis property. Then any collection of at most $r-1$ vertices and all related edges can be removed from its basis graph $\Gamma^{1}(M)$ without losing connectivity.

Compare Liu's theorem: $\Gamma^{1}(M)$ is (graph-theoretically) δ-connected

Comment: In Liu's theorem one removes all incident edges

- fewer edges, but more vertices $\delta \geq r, \ldots$

Neither result implies the other.

The basis complex $\Gamma^{2}(M)$ of a matroid M is the polyhedral complex obtained from the basis graph by gluing 2-cells (or "membranes") into all 3- and 4-cycles of the basis graph.

Theorem. (Maurer, 1973) $\Gamma^{2}(M)$ is simply connected.

Given a basis B, an 1-cell (edge) or a 2-cell is B-related if the intersection (as sets) of its vertices is a subset of B.

Theorem 6. Let M be a matroid of rank r with the disjoint basis property. Then, if any collection of at most $r-2$ vertices and all related cells are removed from its basis complex $\Gamma^{2}(M)$, the remaining cell complex is 1-connected.

Remark. These results can fail for matroids without the disjoint basis property.

Matroid basis graph - sketch of proof

Let M be a matroid of rank r with the disjoint basis property. $P \stackrel{\text { def }}{=}(I N(M), \supseteq)-\quad$ independent sets ordered by reverse inclusion (minimal elements $=$ bases)

- $P \cup\{\hat{0}\}$ is locally rigid
- $P \leq 1$ is ($r, 0$)-rigid, by main theorem
- \exists order-pres map $f: \Gamma^{1}(M) \rightarrow P \leq 1$
- fibers $f^{-1}\left(\left(P^{\leq 1}\right)_{\leq p}\right)$ are sufficiently connected
- rigidity transfers back from $P \leq 1$ to $\Gamma^{1}(M)$

