Mixed connectivity

* * * * * *

Anders Björner Institut Mittag-Leffler

* * * * * *

Séminaire Lotharingien de Combinatoire 61 Curia, September, 2008 (W,S) Coxeter group

Operations on words in the Coxeter generators $S = \{a, b, c, \ldots\}$

nil-move: deleting or adding a factor of the form *aa braid-move*: replacement of a factor *ababa*... by *babab*....

Ex: a sequence of two nil-moves and two braid-moves in H_3 :

 $cb\underline{c}\underline{a}cbabac \sim cb\underline{a}\underline{c}\underline{c}babac \sim c\underline{b}\underline{a}\underline{b}\underline{a}\underline{b}ac \sim cabab\underline{a}\underline{a}c \sim cababc$

Let $A \subseteq W \setminus \{e\}$ and $w \in W \setminus A$. An expression $w = s_1 \cdots s_k$, $s_i \in S$, is *A*-avoiding if $s_1 \cdots s_i \notin A$ for $i = 1, 2, \ldots, k$.

Theorem 1. Suppose that |S| = r, and let $w \in W \setminus A$. (1) If $|A| \leq r - 1$ there exists an A-avoiding expression

 $w = s_1 \cdots s_k$

(2) If $|A| \leq r - 2$ then every pair of such A-avoiding expressions for w are connected by a sequence of A-avoiding nil-moves and braid moves.

Intuitive idea of **connected**

Higher connectivity:

- Graph theory: "k-connected"
- Topology: "k-connected"

Def: Graph is k-connected if $|V(G)| \ge k + 1$ and removal of any $\le k - 1$ vertices leaves connected induced subgraph.

Theorem. (Menger, 1927): Graph G is k-connected \iff any pair of vertices is connected by k vertex-disjoint paths.

Theorem. (Balinski, 1961) The graph (1-skeleton) of a convex *d*-polytope is *d*-connected.

Theorem. (Barnette, 1973) The graph (1-skeleton) of a (d-1)-dimensional "graph-manifold" is d-connected.

Theorem. (Steinitz 1922) A graph G is the 1-skeleton of a convex 3-polytope

 \iff G is planar and 3-connected.

Def: Topological space X is *k*-connected if for all $j \le k$ every mapping $S^j \to X$ extends from the *j*-sphere $S^j = \partial B^{j+1}$ to the entire (j + 1)-ball B^{j+1} .

Ex: $j = 0 \iff$ connected.

Ex: $j = 1 \iff$ simply-connected (i.e., fundamental group =0).

Concept fundamental in topological combinatorics, e..g. in applications of Borsuk-Ulam

We now define "cell complex"

Not used to this stuff? Don't worry, just let

cell complex = simplicial complex

Example:

Regular CW complex (from the Bruhat interval [1234, 3241] in S_4). Does not have the intersection property.

Lemma 1. Cell complex Γ is k-connected \iff its (k + 1)-skeleton $\Gamma^{\leq k+1}$ is k-connected.

Definition 1. A cell complex is

(k,t)-biconnected

if removal of any set of $\leq k - 1$ open cells (and the cells that contain any one of them in their closure) leaves a topologically *t*-connected induced subcomplex of the same dimension.

Remark 1. Just removing vertices gives a weaker concept. Counterex: 2 tetrahedron boundaries glued along edge.

Remark 2. Baclawski's concept of k-CM-connectivity earlier idea in this direction.

Theorem. The boundary complex of a convex *d*-polytope is (d - j, j)-connected, for j = 0, 1, ..., d - 2.

- j = 0 case \iff Balinski's theorem
- Homology version due to Fløystad (2005), using "enriched homology" and ring theory
- Proof method here based on poset homotopy tools applied to the face lattice
- Important point: method works also for other lattices, e.g. geometric lattices.

First: A general theorem for posets

Then: three applications

- Cell complexes, polytopes and manifolds
- Coxeter groups
- Matroid basis graphs

Poset notions:

Order complex $\Delta(P)$ — simplicial complex of chains $x_0 < x_1 < \cdots < x_p$

Length — $\ell(P)$, length (card -1) of longest chain

Length of interval — $\ell(x, y)$, length of $(x, y) = \{z : x < z < y\}$

Filter — up-directed subposet

Width of filter — number of its minimal elements

Fact for *d*-dimensional simplicial complex Δ :

• (d-1)-connected \iff homotopy equiv to wedge of d-spheres

Def: Δ is *d*-spherical if dim $\Delta = d$ and Δ is (d-1)-connected Δ is spherical if it is $(\dim \Delta)$ -spherical.

Definition 2. A pure poset P is locally rigid \iff for all $x < y \le z$ in P the order complex of $(x, z) \setminus [y, z)$ is $(\ell(x, z) - 2)$ -spherical.

Examples of locally rigid posets:

- face posets of simplicial and polyhedral complexes (via Alexander duality ...)
- geometric (semi)lattices (via lex. shellability ...)
- the order duals of these

Definition 3. A pure poset P is (k, t)-rigid if $P \setminus F$ is topologically *t*-connected, pure and of the same length as P, for every filter $F \subset P$ of width at most k - 1 elements.

Theorem 2. Let P be a pure poset of length r, and let $0 \le t \le r - 1$. Assume that

(i) $P \cup \{\hat{0}\}$ is a semilattice,

(ii) $P \cup \{\hat{0}\}$ is locally rigid,

(iii) the upper interval $P_{>x}$ is min $\{t, r - 2 - rk(x)\}$ -connected, for all $x \in P \cup \{\hat{0}\}$.

Then, the truncated poset $P^{\leq (s+1)}$ is (r-s,s)-rigid, $\forall s \leq t$.

Proof. A bit technical

Comment "for the experts":

Comparison of conditions on intervals (x, y) in \hat{P} in Thm 1 with the Cohen-Macaulay case:

	$y < \widehat{1}$	$y = \hat{1}$
Thm 1	(x,y) locally rigid	$(x, \widehat{1})$ connected
CM	(x,y) spherical	$(x, \widehat{1})$ spherical

Stronger condition in red

Recall:

$$Cell \ complex = \begin{cases} \bullet \ regular \ CW \ complex \\ \bullet \ intersection \ property: \cap cells = cell \\ \Leftrightarrow \ face \ poset \ is \ meet-semilattice \end{cases}$$

Examples:

- simplicial complexes
- polyhedral complexes

Theorem. The face semilattice of a cell complex is locally rigid

Method yields

Theorem 3. Let Γ be a pure cell complex. (1) If Γ is a d-dimensional compact manifold, then its 1-skeleton is graph-theoretically (d + 1)-connected. (2) If Γ is a d-dimensional compact manifold with boundary, then its 1-skeleton is graph-theoretically d-connected.

If Γ is polytope boundary: (1) \Longrightarrow Balinski's theorem If Γ is "graph-manifold": (1) \Longrightarrow Barnette's theorem

- All that's needed: graph-theor. connectivity of links

Consider a group W, and subset $S \subseteq W$ such that

$$s^2 = e$$
, for all $s \in S$,

(W,S) is Coxeter group \iff has Coxeter presentation:

Generators: S

Braid relations: for $s \neq s' \in S$

$$\underbrace{s \, s' \, s \, s' \, s \dots}_{m(s,s')} = \underbrace{s' \, s \, s' \, s \, s' \dots}_{m(s,s')}$$

```
Build 2-dim'l cell complex \Gamma_{(W,S)}:
```

 $\{\text{vertices}\} = W$ $\{\text{edges}\} = \text{pairs } w - ws, s \in S$ $\{2\text{-cells}\} = \text{braid relations}$

So, we glue some membranes (2-cells) into the Cayley graph.

FACT: (W, S) has the Coxeter presentation \iff the complex $\Gamma_{(W,S)}$ is 1-connected. Application 2: Coxeter groups

The complex $\Gamma_{(W,S)}$ for S_4 4-gons $\leftrightarrow s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$ 6-gons $\leftrightarrow s_i s_j = s_j s_i$. Operations on words in the Coxeter generators $S = \{a, b, c, \ldots\}$

nil-move: deleting or adding a factor of the form *aa braid-move*: replacement of a factor *ababa*... by *babab*....

Basic facts:

- Closed paths in the 1-skeleton of $\Gamma_{(W,S)}$ (the Cayley graph) correspond to relations in W (i.e., words evaluating to the identity)
- A homotopy in $\Gamma_{(W,S)}$ from one such path to another corresponds to a sequence of nil-moves and braid-moves.

Let $A \subseteq W \setminus \{e\}$ and $w \in W \setminus A$. An expression $w = s_1 \cdots s_k$, $s_i \in S$, is *A*-avoiding if $s_1 \cdots s_i \notin A$ for $i = 1, 2, \ldots, k$.

Theorem 4. Suppose that W is finite and |S| = r. (1) If $|A| \le r - 1$ there exists an A-avoiding expression

 $w = s_1 \cdots s_k$

(2) If $|A| \leq r - 2$ then every pair of such A-avoiding expressions are connected by a sequence of A-avoiding nil-moves and braid moves.

Proof. $\Gamma_{(W,S)}$ is the 2-skeleton of a polytope boundary, namely the *r*-dimensional dual zonotope, which is (r - j, j)-biconnected. For (1), use the j = 0 case (the 1-skeleton) (Balinski) For (2), use the j = 1 case (the 2-skeleton)

Comments on Theorem 5

• Part (1) holds for all (W,S) whose Coxeter diagram has no ∞ -labeled edges.

Combinatorial (non-topological) proof.

• Part (2) does not hold for infinite groups, e.g. fails for \tilde{A}_3 . Reason: affine plane minus point is not simply-connected.

Comments on Theorem 5

• Does there exist an A-avoiding "Tits word theorem", i.e. demanding that all intermediate expressions are A-avoiding and reduced? If so, for what size of A?

• Observation: $|A| \leq r - 2$ will not work. For example, let $W = D_4$, $S = \{a, b, c, d\}$ with a, b and c commuting, $A = \{b, ac\}$. Then

 $abc \sim cba$

but not via A-avoiding length-preserving braid moves.

Motivating problem:

Say we have a finite set V of vectors spanning \mathbb{R}^d .

Want to define "orientation" +1 or -1 for ordered bases (b_1, b_2, \ldots, b_d) .

Using determinants not allowed.

How to do it?

The basis graph $\Gamma^1(M)$ of a matroid M has

vertices = the bases of Medges = pairs of bases (B_1, B_2) such that $|B_1 \cap B_2| = \operatorname{rk}(M) - 1$

Connectivity?

Theorem. (G.Z. Liu, 1990) $\Gamma^1(M)$ is δ -connected, where δ is the minimal vertex-degree.

Note: best possible

Let M be a matroid of rank r on the ground set E.

Def: *M* has the *disjoint basis property* if for \forall basis $B \exists$ a basis *C* such that $B \cap C = \emptyset$, or else $E \setminus B$ is independent.

Def: For a basis B, an edge (B_1, B_2) is *B*-related if $B_1 \cap B_2 \subset B$.

Example of basis graph

Example of basis graph: 125-related edges

Theorem 5. Let M be a matroid of rank r with the disjoint basis property. Then any collection of at most r-1 vertices and all related edges can be removed from its basis graph $\Gamma^1(M)$ without losing connectivity.

Compare Liu's theorem: $\Gamma^1(M)$ is (graph-theoretically) δ -connected

Comment: In Liu's theorem one removes all incident edges — fewer edges, but more vertices $\delta \ge r, \ldots$

Neither result implies the other.

Example of basis graph

Example of basis graph: 125-related edges

Example of basis graph: 125-related edges removed

Example of basis graph: 134-related edges

Example of basis graph: 125- and 134-related edges removed

The basis complex $\Gamma^2(M)$ of a matroid M is the polyhedral complex obtained from the basis graph by gluing 2-cells (or "membranes") into all 3- and 4-cycles of the basis graph.

Theorem. (Maurer, 1973) $\Gamma^2(M)$ is simply connected.

Given a basis B, an 1-cell (edge) or a 2-cell is B-related if the intersection (as sets) of its vertices is a subset of B.

Theorem 6. Let M be a matroid of rank r with the disjoint basis property. Then, if any collection of at most r - 2 vertices and all related cells are removed from its basis complex $\Gamma^2(M)$, the remaining cell complex is 1-connected.

Remark. These results can fail for matroids without the disjoint basis property.

Let *M* be a matroid of rank *r* with the disjoint basis property. $P \stackrel{\text{def}}{=} (IN(M), \supseteq)$ — independent sets ordered by reverse inclusion (minimal elements = bases)

- $P \cup \{\hat{0}\}$ is locally rigid
- $P^{\leq 1}$ is (r, 0)-rigid, by main theorem
- \exists order-pres map $f: \Gamma^1(M) \to P^{\leq 1}$
- fibers $f^{-1}((P^{\leq 1})_{\leq p})$ are sufficiently connected
- rigidity transfers back from $P^{\leq 1}$ to $\Gamma^1(M)$