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A motivating application

(W, S) Coxeter group

Operations on words in the Coxeter generators S = {a, b, c, . . .}

nil-move: deleting or adding a factor of the form aa

braid-move: replacement of a factor ababa... by babab....

Ex: a sequence of two nil-moves and two braid-moves in H3:

cbc acbabac ∼ cbac cbabac ∼ cb a b a bac ∼ cababa ac ∼ cababc
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A motivating application

Let A ⊆ W \ {e} and w ∈ W \ A. An expression w = s1 · · · sk,

si ∈ S, is A-avoiding if s1 · · · si /∈ A for i = 1,2, . . . , k.

Theorem 1. Suppose that |S| = r, and let w ∈ W \ A.

(1) If |A| ≤ r − 1 there exists an A-avoiding expression

w = s1 · · · sk

(2) If |A| ≤ r − 2 then every pair of such A-avoiding expressions

for w are connected by a sequence of A-avoiding nil-moves and

braid moves.
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Intuitive idea of connected

BA

Higher connectivity:

• Graph theory: “k-connected”

• Topology: “k-connected”
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Graph-theoretic k-connectivity

Def: Graph is k-connected if |V (G)| ≥ k + 1 and removal of

any ≤ k − 1 vertices leaves connected induced subgraph.

Theorem. (Menger, 1927): Graph G is k-connected

⇐⇒ any pair of vertices is connected by k vertex-disjoint paths.

Theorem. (Balinski, 1961) The graph (1-skeleton) of a

convex d-polytope is d-connected.

Theorem. (Barnette, 1973) The graph (1-skeleton) of a

(d − 1)-dimensional ”graph-manifold” is d-connected.

Theorem. (Steinitz 1922) A graph G is the 1-skeleton of a

convex 3-polytope

⇐⇒ G is planar and 3-connected.
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Topological k-connectivity

Def: Topological space X is k-connected if for all j ≤ k

every mapping Sj → X extends from the j-sphere Sj = ∂Bj+1

to the entire (j + 1)-ball Bj+1.

Ex: j = 0 ⇐⇒ connected.

Ex: j = 1 ⇐⇒ simply-connected (i.e., fundamental group =0).

Concept fundamental in topological combinatorics,

e..g. in applications of Borsuk-Ulam
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Topological k-connectivity

We now define “cell complex”

Not used to this stuff? Don’t worry, just let

cell complex = simplicial complex
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Topological k-connectivity

In this talk:

Cell complex
def
= regular CW complex

“with the intersection property” (∩ cells = cell),

e.g. simplicial complex, polyhedral complex, ...

Example:

1243 1324 2134

1342 2143 2314 3124

2341 3142 3214

a

a

b
b c

c

α

α

β

β γγ

δ

δ
A

A BB

C

C

Regular CW complex (from the Bruhat interval [1234,3241] in S4).

Does not have the intersection property.
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Topological k-connectivity

Lemma 1. Cell complex Γ is k-connected

⇐⇒ its (k + 1)-skeleton Γ≤k+1 is k-connected.
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Mixed connectivity

Definition 1. A cell complex is

(k, t)-biconnected

if removal of any set of ≤ k − 1 open cells (and the cells that

contain any one of them in their closure) leaves a topologically

t-connected induced subcomplex of the same dimension.

Remark 1. Just removing vertices gives a weaker concept.

Counterex: 2 tetrahedron boundaries glued along edge.

Remark 2. Baclawski’s concept of k-CM-connectivity earlier idea

in this direction.
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Mixed connectivity

Theorem. The boundary complex of a convex d-polytope

is (d − j, j)-connected, for j = 0,1, . . . , d − 2.

• j = 0 case ⇐⇒ Balinski’s theorem

• Homology version due to Fløystad (2005), using ”enriched

homology” and ring theory

• Proof method here based on poset homotopy tools applied

to the face lattice

• Important point: method works also for other lattices,

e.g. geometric lattices.
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PLAN

First: A general theorem for posets

Then: three applications

• Cell complexes, polytopes and manifolds

• Coxeter groups

• Matroid basis graphs
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Posets

Poset notions:

Order complex ∆(P) — simplicial complex of chains

x0 < x1 < · · · < xp

Length — ℓ(P), length (card -1) of longest chain

Length of interval — ℓ(x, y), length of (x, y) = {z : x < z < y}

Filter — up-directed subposet

Width of filter — number of its minimal elements
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Review of topol. notions

Fact for d-dimensional simplicial complex ∆:

• (d−1)-connected ⇐⇒ homotopy equiv to wedge of d-spheres

Def: ∆ is d-spherical if dim∆ = d and ∆ is (d − 1)-connected

∆ is spherical if it is (dim∆)-spherical.
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Poset rigidity

Definition 2.A pure poset P is locally rigid ⇐⇒ for all x < y ≤ z

in P the order complex of (x, z) \ [y, z) is (ℓ(x, z) − 2)-spherical.

x

z

y
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Locally rigid posets

Examples of locally rigid posets:

• face posets of simplicial and polyhedral complexes (via Alexan-

der duality ...)

• geometric (semi)lattices (via lex. shellability ...)

• the order duals of these
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Poset rigidity

Definition 3.A pure poset P is (k, t)-rigid if P \F is topologically

t-connected, pure and of the same length as P , for every filter

F ⊂ P of width at most k − 1 elements.
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Poset rigidity, main theorem

Theorem 2. Let P be a pure poset of length r, and let

0 ≤ t ≤ r − 1. Assume that

(i) P ∪ {0̂} is a semilattice,

(ii) P ∪ {0̂} is locally rigid,

(iii) the upper interval P>x is min{t, r − 2− rk(x)}-connected, for

all x ∈ P ∪ {0̂}.

Then, the truncated poset P≤(s+1) is (r − s, s)-rigid, ∀s ≤ t.
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Poset rigidity, main theorem

Proof. A bit technical .............

Comment “for the experts”:

Comparison of conditions on intervals (x, y) in P̂ in Thm 1 with

the Cohen-Macaulay case:

y < 1̂ y = 1̂

Thm 1 (x, y) locally rigid (x, 1̂) . . . -connected

CM (x, y) spherical (x, 1̂) spherical

Stronger condition in red
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Application 1: Polytopes and manifolds

Recall:

Cell complex =






• regular CW complex

• intersection property:
⋂

cells = cell

⇐⇒ face poset is meet-semilattice

Examples:

• simplicial complexes

• polyhedral complexes

Theorem. The face semilattice of a cell complex is locally rigid
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Application 1: Polytopes and manifolds

Method yields

Theorem 3. Let Γ be a pure cell complex.

(1) If Γ is a d-dimensional compact manifold, then its 1-skeleton

is graph-theoretically (d + 1)-connected.

(2) If Γ is a d-dimensional compact manifold with boundary, then

its 1-skeleton is graph-theoretically d-connected.

If Γ is polytope boundary: (1) =⇒ Balinski’s theorem

If Γ is ”graph-manifold”: (1) =⇒ Barnette’s theorem

— All that’s needed: graph-theor. connectivity of links
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Application 2: Coxeter groups

Consider a group W , and subset S ⊆ W such that

s2 = e, for all s ∈ S,

(W, S) is Coxeter group ⇐⇒ has Coxeter presentation:

Generators: S

Braid relations: for s 6= s′ ∈ S

s s′ s s′ s . . .︸ ︷︷ ︸
m(s,s′)

= s′ s s′ s s′ . . .︸ ︷︷ ︸
m(s,s′)
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Application 2: Coxeter groups

Build 2-dim’l cell complex Γ(W,S):

{vertices} = W

{edges} = pairs w − ws, s ∈ S

{2-cells} = braid relations

So, we glue some membranes (2-cells) into the Cayley graph.

FACT: (W, S) has the Coxeter presentation

⇐⇒ the complex Γ(W,S) is 1-connected.
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Application 2: Coxeter groups

4132

4123 1423

1243

1432

13424312

3412
3142

3421
3124

1324 2134

1234

2143

2314

32143241

The complex Γ(W,S) for S4

4-gons ↔ sisi+1si = si+1sisi+1 6-gons ↔ sisj = sjsi.
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Application 2: Coxeter groups

Operations on words in the Coxeter generators S = {a, b, c, . . .}

nil-move: deleting or adding a factor of the form aa

braid-move: replacement of a factor ababa... by babab....

Basic facts:

• Closed paths in the 1-skeleton of Γ(W,S) (the Cayley graph)

correspond to relations in W (i.e., words evaluating to the

identity)

• A homotopy in Γ(W,S) from one such path to another corre-

sponds to a sequence of nil-moves and braid-moves.
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Application 2: Coxeter groups

Let A ⊆ W \ {e} and w ∈ W \ A. An expression w = s1 · · · sk,

si ∈ S, is A-avoiding if s1 · · · si /∈ A for i = 1,2, . . . , k.

Theorem 4. Suppose that W is finite and |S| = r.

(1) If |A| ≤ r − 1 there exists an A-avoiding expression

w = s1 · · · sk

(2) If |A| ≤ r − 2 then every pair of such A-avoiding expressions

are connected by a sequence of A-avoiding nil-moves and braid

moves.

Proof. Γ(W,S) is the 2-skeleton of a polytope boundary, namely

the r-dimensional dual zonotope, which is (r − j, j)-biconnected.

For (1), use the j = 0 case (the 1-skeleton) (Balinski)

For (2), use the j = 1 case (the 2-skeleton)

0



Application 2: Coxeter groups

Comments on Theorem 5

• Part (1) holds for all (W, S) whose Coxeter diagram has no

∞-labeled edges.

Combinatorial (non-topological) proof.

• Part (2) does not hold for infinite groups, e.g. fails for Ã3.

Reason: affine plane minus point is not simply-connected.
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Application 2: Coxeter groups

Comments on Theorem 5

• Does there exist an A-avoiding “Tits word theorem”, i.e. de-

manding that all intermediate expressions are A-avoiding and

reduced? If so, for what size of A?

• Observation: |A| ≤ r − 2 will not work. For example, let

W = D4, S = {a, b, c, d} with a, b and c commuting, A = {b, ac}.

Then

abc ∼ cba

but not via A-avoiding length-preserving braid moves.
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Application 3: Matroid basis graphs

Motivating problem:

Say we have a finite set V of vectors spanning R
d.

Want to define ”orientation” +1 or −1 for ordered bases (b1, b2, . . . , bd).

Using determinants not allowed.

How to do it?
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Application 3: Matroid basis graphs

The basis graph Γ1(M) of a matroid M has





vertices = the bases of M

edges = pairs of bases (B1, B2) such that |B1 ∩ B2| = rk(M) − 1

Connectivity?

Theorem. (G.Z. Liu, 1990) Γ1(M) is δ-connected, where δ is

the minimal vertex-degree.

Note: best possible
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Application 3: Matroid basis graphs

Let M be a matroid of rank r on the ground set E.

Def: M has the disjoint basis property if

for ∀ basis B ∃ a basis C such that B ∩ C = ∅,

or else E \ B is independent.

Def: For a basis B, an edge (B1, B2) is B-related

if B1 ∩ B2 ⊂ B.
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Example of basis graph: A graphic matroid

3
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2

1
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Example of basis graph

125

235

234

145

135

245

134

124
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Example of basis graph: 125-related edges

125

235

234

145

135

245

134

124
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Matroid basis graph

Theorem 5. Let M be a matroid of rank r with the disjoint

basis property. Then any collection of at most r−1 vertices and

all related edges can be removed from its basis graph Γ1(M)

without losing connectivity.

Compare Liu’s theorem: Γ1(M) is (graph-theoretically) δ-connected

Comment: In Liu’s theorem one removes all incident edges

— fewer edges, but more vertices δ ≥ r, . . .

Neither result implies the other.
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Example of basis graph

125

235

234

145

135

245

134

124
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Example of basis graph: 125-related edges
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235

234

145
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245
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Example of basis graph: 125-related edges removed

145

235

234

124

135

245

134
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Example of basis graph: 134-related edges

145

235

234

124

135

245

134
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Example of basis graph: 125- and 134-related edges removed

124

235

234

145

135

245
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Matroid basis complex

The basis complex Γ2(M) of a matroid M is the polyhedral com-

plex obtained from the basis graph by gluing 2-cells (or “mem-

branes”) into all 3- and 4-cycles of the basis graph.

Theorem. (Maurer, 1973) Γ2(M) is simply connected.

0



Matroid basis complex

Given a basis B, an 1-cell (edge) or a 2-cell is B-related if the

intersection (as sets) of its vertices is a subset of B.

Theorem 6. Let M be a matroid of rank r with the disjoint basis

property. Then, if any collection of at most r − 2 vertices and

all related cells are removed from its basis complex Γ2(M), the

remaining cell complex is 1-connected.

Remark. These results can fail for matroids without the disjoint

basis property.
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Matroid basis graph — sketch of proof

Let M be a matroid of rank r with the disjoint basis property.

P
def
= (IN(M),⊇) — independent sets ordered by reverse in-

clusion (minimal elements = bases)

• P ∪ {0̂} is locally rigid

• P≤1 is (r,0)-rigid, by main theorem

• ∃ order-pres map f : Γ1(M) → P≤1

• fibers f−1((P≤1)≤p) are sufficiently connected

• rigidity transfers back from P≤1 to Γ1(M)
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