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Coxeter groups

Finite Coxeter groups «—— Finite reflection groups (i.e., groups
generated by orthogonal reflections in hyperplanes)

0



Coxeter groups

The dodecahedron as a reflection group
0



Coxeter groups

The pair (W,S) is a Coxeter group (Coxeter system) if W is a
group with presentation

Generators: S, such that

32=e, for all s € S,

Relations: for s,s’ € S
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Coxeter groups

Examples

1. The symmetric group Sh.
Coxeter generators = Adjacent transpositions (7,7 + 1)

2. Affine reflection groups
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The A5, C> and G- tesselations of the affine plane.
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Coxeter groups

3 classifications

finite Coxeter groups: type An, Bn, ... e€tc.
affine Coxeter groups: type Ay, Bn, . ..etc.
hyperbolic Coxeter groups

Definition: (W,S) is crystallographic if m(s,t) € {2,3,4,6,00}
for all distinct generators s and ¢t.

E.g., finite and affine Weyl groups are crystallographic.



Coxeter groups

The finite irreducible Coxeter systems

Name Diagram Order | T | Exponents
A, | L o n—+1
oo n—+ 1)! ( ) 1,2, ....n
(n>1) (n+1) 5
Bn 4
e 2"n! n? 1,3 ...,2n—-1
(n>2)
Dy,
2n—1p) n? —n 1,3,...,2n—3, n—1
(n>4) | o—o—o —o—o




Coxeter groups

Fs 273%5 36 1,4,5,7,8,11
E7 2103457 63 1,5,7,9, 11,13, 17
Es 21435527 | 120 1,7,11,13, 17,19, 23, 29
Fy 1152 24 1,5,7, 11
Go 12 §) 1.5
Hs S DN 120 15 1,5,9
Hy 14400 60 1,11, 19, 29
I>(m) 1
(m > 3) 2m m 1, m—1







Bruhat order

Bruhat order: For w,w e W:

def .
u<w <= forV reduced expression w = s152...5q

J a reduced subexpression u = s;,s;, . .
1< <... <1, <q.

abab = baba
aba bab
ab ¢ > ba
a b

e

Bruhat order of B>
0
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Bruhat order
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Bruhat order of Sj4.



Bruhat order

Bruhat order of Bs.
O



Bruhat order

Some global properties of Bruhat order of a finite W, as a poset:
** Bottom element e, top element wg

** Graded (all maximal chains of same size)

** Poset rank = Group-theoretic length 2( - )

** Rank-generating function

S W= T Q4+q+FP+--¢%)

weW 1<i<d

** Anti-automorphic under map w — wwg

O



Bruhat order

Quotients W‘]: Minimal coset representatives modulo parabolic subgroups
W; =< J>, JCS, with induced order.

The Bruhat poset Eg modulo Ds.
0



Bruhat order

Global poset properties of Bruhat order of finite quotients w:
** Graded
** Bottom element e, top element wg

** Poset rank = Group-theoretic length £( - )

ZwEW qaw)

** Rank-generating function 3 _yrs ¢/ (%) =

** Anti-automorphic under map w — W J oWWQ



Bruhat order

A special case of quotient W Young's lattice

4

.
-

Lower intervals [0, \]: Ferrers' diagrams contained
in shape A\, and ordered by containment

# maximal chains = # standard Young tableaux of shape A
0



Bruhat order

General Problem:

Study the combinatorial structure of intervals

[u,w]Jdéf{z:ugzgw}ﬂW‘]



Bruhat order

TOPIC 1: f-vectors of Bruhat intervals

— Joint work with T.Ekedahl

If asking for global interval structure is too hard, study the
enumerative ‘“‘shadow’ .



Bruhat interval f-vectors

o om.,/ A '\"n "\
W i A

f*-vector of Bruhat interval [e, w]
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Bruhat interval f-vectors

Shape (or f-vector) of lower interval [e, w]”:
J_ pwd pwlJ J
fw, _{féu 7fiu Yttt gléw)}a

def ,
f;w"] = number of elements z < w, z € W/, of length s.

Special case of full group:

W =w"
def

fo= e



Bruhat interval f-vectors

Another example of f%-vector of Bruhat interval [e, w]
Here w € Cy, {(w) = 13:

f¥=1(1,4,9,16,24,32,39,44,46,42,31,17,6,1)



Bruhat interval f-vectors

Another example of f%-vector of Bruhat interval [e, w]
Here w € Cy, £(w) = 13:

f¥=1(1,4,9,16,24,32,39 | 44,46,42,31,17,6,1)

1
MID



Bruhat interval f-vectors

4 analogy

Intervals [e,w] in Bruhat order

Weyl group
Schubert variety
Kazhdan-Lusztig polynomial

r111

Face lattices of convex polytopes

rational polytope
toric variety
g-polynomial

Also: Both determine regular CW decompositions of a sphere
Intersection cohomology lurks in the background

Remark:

For all polytopes: 4 combinatorial intersection cohomology the-
ory satisfying hard Lefschetz (recent work of K. Karu and others)

Question: 3 7?77 combinatorial intersection cohomology theory
for all Coxeter groups (" virtual Schubert varieties” )7

0




Bruhat interval f-vectors

Note: Analogy with f-vector of convex polytope Compare:

for f-vector of simplicial (d 4+ 1)-dimensional polytope:
(1) i < f;ifi<j<d-—i. In particular,
e folfis--<fg and f; < fa-
(2) f3dq/a = f(3d/a)-1 2> 2 fd
(3) The bounds d/2 and 3d/4 are best possible.

Conjecture: (2) is true for all polytopes.
0

Known



Bruhat interval f-vectors

Does it make sense to ask such questions for f%-vectors of
Bruhat intervals [e, w]?

Perhaps ...— consider this:

THM (Carrell-Peterson 1994)
The Schubert variety Xy is rationally smooth

= Ji" = fytwy—ir 7

THM (Brion 2000)
> fT < Filw)y—

0<i<k 0<i<k

O



Bruhat interval f-vectors

Theorem 1. The f*/-vector f/ = {fo, f1,. ., foquw)} OF an in-
terval [e,fw]J in a crystallographic Coxeter group satisfies:

fi<f; , ifO<i<j<e(w)—i

Equivalently,
® fZ < fﬁ(w)—z" for all 1 < E(’LU)/Q

o fo<f1< < froqw)/2



Bruhat interval f-vectors

Gives new inequalities already for the special case of Young's
lattice:

Lower intervals [0, A\]: Ferrers' diagrams contained
in shape A, and ordered by containment

0



Bruhat interval f-vectors

Recall definition: (W,S) is crystallographic if m(s,s’) € {2,3,4,6,00} for all
distinct generators s and s'.

Fact: Crystallographic < appears as Weyl group of a Kac-
Moody algebra

Fact: Crystallographic = d Schubert varieties



Bruhat interval f-vectors

Let (W,S) be crystallographic, J C S.

For each w € W there exists a complex projective variety (called
Schubert variety) X, containing closed subvarieties X, for all
u € [e,w]’, which are disjoint unions

qu/ — H‘JXz,
z
where z € [e, u]”.

Furthermore, X, is a subvariety of X, isomorphic to affine space
Al(u),



Bruhat interval f-vectors

Idea of proof of Thm:

* Use (-adic étale cohomology H*(X,Qy) and intersection coho-
mology TH*(X,Qy).

* There is a H*(X,Qy)-module map ¢ : H*(X,Q)) — ITH*(X,Qy)

* For Schubert varieties X = X, this map ¢ is injective.

¥ fif = dimg, H*'(Xuw, Q)



Bruhat interval f-vectors
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Bruhat interval f-vectors

Idea of proof of Thm (cont'd)

Let X = Xy. The map ¢ is an H*(X,Qy)-module map
= for + < j < m — 4 it commutes with multiplication by ¢1(£)7~*
= commutative diagram

H?(X,Qp) — IH?(X,Qy)
lﬂq(ﬁ)j_i Jﬂ61(£)j_i
H?I(X,Q) — ITH?%I(X,Qy).

The horisontal maps ¢ are injective, and the right vertical map
IS an injection by hard Lefschetz.



Bruhat interval f-vectors

Idea of proof of Thm (cont'd)

For : <353 <m —1, we have a commutative diagram
H?(X,Q) — IH*(X,Qy)
lﬂq(ﬁ)j_i Jﬂq(/l)j_i
H?1(X,Qp) — ITH(X,Qy).

The horisontal maps ¢ are injective, and the right vertical map
IS an injection by hard Lefschetz. Hence the left vertical map is
injective, giving

fi" = dimg, H*(X, Q) < dimg, H(X,Qp) = f}".



Bruhat interval f-vectors

w 0o N N B~

1

Theorem 2. Let (W, S) be crystallographic, J C S. Fix w € W/
and i such that 0 < i < £(w)/2. Then, in [e,w]’ there exist f;”“’J
pairwise disjoint chains

Up < Ujgq < -0 < Up(gp)—g
such that £(u;) = j.



Bruhat interval f-vectors

References:

Stanley (1980) did the J = S, w = wq case for finite groups



Interpretation of Theorem 2 for Young's lattice:

Given a partition A of n and k < n/2. Suppose that there are
b = b(\, k) partitions of k£ below A. Then there exist b standard
Young tableaux of shape A, Tl,...,Tb, such that

shape(1}) # shape(T)
forallt#=jand all p=k,k+1,...,n— k.

Here T} is the subtableau gotten by erasing the boxes with num-
bers > p.

33



Bruhat interval f-vectors

Question: what about the case of equality in some of the rela-
tions f; < fE(w)—z?

From now on: Only the J = () case.
Then WY = W, so we drop "J" from the notation.



Bruhat interval f-vectors

Fix we W, and let m .= [(Y/(w) —1)/2]. Let

Pe,w(Q):1+5lq+"'+5mqm

be the Kazhdan-Lusztig polynomial of the interval [e, w].
Known:

* 3; > 0 if W is crystallographic,

* Peaw(q) =1 < Xy is rationally smooth

* Xy is rationally smooth < [ = fg‘éw)_i, V4
(Carrell-Peterson '94)

* For simply-laced W: smooth < rationally smooth
0



Bruhat interval f-vectors

Theorem 3. Suppose that W is crystallographic, w € W and
1 < k<m. Then the following conditions are equivalent:

(a) fi¥ = fg‘(’w)_i, fori=1,...,k,

(b) 3; =0, fori=1,... k.

Remark: The equivalence of (a) and (b) in the case k = m
gives the Carrell-Peterson criterion for rational smoothness of

the Schubert variety Xy,.



Bruhat interval f-vectors

Theorem 4. Suppose that W is crystallographic, w € W and
1 < k<m. Then the following conditions are equivalent:

(a) fi' = féféw)_z., fori=1,...,k,
(b) 3; =0, fori=1,...,k.

Furthermore, if k < m then (a) and (b) imply

(€ Be+1= Fywy—r—1 — Fi1-



Bruhat interval f-vectors

Idea of proof: Based on

* Monotonicity theorem for K-L polynomials
(extending Braden-MacPherson '01).

* Polynomial Fiu(q) = Yp<w ¢°®) Prw(q) is palindromic
(Kazhdan-Lusztig '79).



Bruhat interval f-vectors

More can be said about the increasing inequalities

fo<f1 < < froqw) 21

namely, the sequence cannot grow too fast.



Bruhat interval f-vectors

Recall:

For n,k > 1 there is a unique expansion
_ (% ak—1 a;
n=()+ (" ")+ + ()
with ap. > ap_1 > --->a; 21> 1. Let

o (n) = (ak_1)+(ak—1_1)+...+(czi__ 1>,

k—1 k— 2
o (0) 0.



Bruhat interval f-vectors

Theorem (Macaulay-Stanley)
For an integer sequence (1,m1,m»,...) the following are equiva-
lent (and this defines an M-sequence):

(1) 0%(my) < my_q, for all k> 1,

(2) some order ideal of monomials contains exactly mj; monomi-
als of degree k,

(3) dim(A;) = my for some graded commutative algebra
A = ®p>04, which is generated by Aj.



Bruhat interval f-vectors

More can be said about the increasing inequalities

fo < 1< < froqw) /215

namely, the sequence cannot grow too fast.

Theorem 5. In the case of finite Weyl groups every f-vector
fY={fo, f1,---, fg(,w)} is an M-sequence.



Bruhat interval f-vectors

Idea of proof of Thm: Based on

* The f-vector f¥ = {fo, f1,---, fg(w)} is coeff-sequence of Poincaré
polynomial of H*(X,), the cohomology algebra of the Schubert
variety Xy, (over C).

* So, we only need that H*(Xy) is generated in degree one
(dim = 2).

* For w = wq this is classical: H*(Xw,) = coinvariant algebra of
W.

* For w # wq there is algebra surjection H*(Xuw,) — H*(Xw)



Bruhat interval f-vectors

Remarks:

** M-sequence property fails for the affine group 62:

> ™) =1+43¢+5¢°+8¢3+ -
Consequence: H*(Xy) not necessarily generated in degree one
for affine Schubert varieties Xy,.

** M-sequence property fails for general intervals in finite By:
ngxgwo q€(a;)_e(w) =1+4q+ 11q2 4+ ...
for certain w € By.



Bruhat interval f-vectors

The increasing inequalities fop < f1 <-.- < f(ﬁ(w)/ﬂ have decreas-
ing counterparts at the upper end of the Bruhat interval
— but the information we are able to give about this is much

weaker.



Bruhat interval f-vectors

Theorem 6. For all k > 1 there exists a number N, such that
for every finite Coxeter group (W,S) and every w € W such that
¢(w) > N we have that

Fotwy—k = To(wy—k41 =+ 2 Fo(w):



Bruhat interval f-vectors

Questions

1. Do f%-vectors satisfy more inequalities?
(Noticed by D. Stanton: unimodality fails on some intervals in
Young’s lattice. Unimodality might be true for full intervals, i.e.

J=10.)



Bruhat interval f-vectors

Questions

2. Are the theorems true for general (non-crystallographic) Cox-
eter groups?



Bruhat interval f-vectors

Questions
1. Does f%-vector satisfy more inequalities?

2. Are the theorems true for general (non-crystallographic) Cox-
eter groups?

3. Does there exist some a < 1 such that

Flacew)] 2 flaewy+1 = 2 To(w)-

Will o = 3 do?



Bruhat interval f-vectors

Questions
1. Does f%-vector satisfy more inequalities?

2. Are Theorems 1-2 true for general (non-crystallographic)
Coxeter groups?

3. Does there exist some a < 1 such that
Tlact(w)) 2 flatw)+1 2 2 fo(w):

Will o = 3 do?

4. What can be said about the shape of general intervals [u, w]’/?
(I.e., for u %= e)
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Bruhat interval f-vectors

LTS
vl
Ry
@] ) ®)
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P4

Lk, and k> l(w) — 1.

O

Def: An upper chain decomposition is a partition of [e,w]J into
Up < Ujpq < -

pairwise disjoint saturated chains

such that 4(j) = 5 for all j =1, ..



Bruhat interval f-vectors

Questions

5. Do the intervals [e,w]’ admit upper chain decompositions?

Note:

1. This would imply Thms 6 and 7.

2. Specializes to symmetric chain decomposition, if f¥-vector is
symmetric.

3. Symmetric chain decomposition question still open for inter-
vals [0, A] in Young's lattice, A of rectangular shape.



Shape of Bruhat intervals
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Bruhat order

TOPIC 2: Global interval structure



Interval structure

Theorem 7. (Verma 68)
> (D™ =0

u<zcr<w
Equivalently, intervals [u,w] “have the Euler characteristic of a
sphere”: # odd card chains — # even card chains = (—1)dim

Theorem 8. (Bj-Wachs 82)

Intervals [u,w]’ are “lexicographically shellable” .



Interval structure

Example: Lex. shelling of W = S3, generators S = {a, b}

aba = bab
a ba
a b

Choosing “aba’ as reduced expression for the top element the
induced labels of the four maximal chains are

Alaba > *ba > x*xa > *xx*x) = (1,2,3),
Aaba > xba > xbx*x > xx*xx) = (1,3, 2),
Aaba > abx > xbx > *xx) = (3,1,2),
Aaba > abx >ax*x > x*xx) = (3,2,1).



Interval structure

2341

1243

Regular CW interpretation of the Bruhat interval [1234,3241] in S,.

3142 3214

c
1324 2134




Interval structure

Theorem 9. (Bj. 84) Let [u,w] be a Bruhat interval. Then 3 reg-
ular CW decomposition Iy of the ({(w) —£4(u) —2)-dimensional
sphere with cells oz, u < x < w, such that

dim(oz) = £(z) — £(u) — 1

and

Proof idea: via lexicographic shellability of Bruhat order



Interval structure

A k-crown.

Special case: All Bruhat intervals of length 3 are k-crowns, k > 2.

Finite case = only k = 2,3,4 possible, for type H also kK = 5.



Interval structure

Theorem 10. (Dyer 91). For each m, there exist only finitely

many isomorphism classes of length m intervals in finite Coxeter
groups.

Theorem 11. (Hultman 03). There are 24 types of length 4

intervals in finite Weyl groups.

Only 7 of them occur in the symmetric groups.
All 24 show up in Fy.



Interval structure

A Bruhat interval of length 4
(rendered as a CW complex)



Interval structure

> B >

13 14 15 16
17 18 19 20
21 22 23 24

All length 4 intervals that appear in finite Weyl groups.
0



Interval structure

What about intervals of length > 47

3 classification (up to (anti)isomorphism), due to F. Incitti:

* Length 5,6,7 non-lattice intervals in type A:
there are 217 such of length 7

* Length 5 non-lattice intervals in type B: there are 46 such

* Length 5 non-lattice intervals in type D: there are 12 such



Coxeter groups

TOPIC 3: Some other Bruhat-related posets coming from
algebraic geometry



Coxeter groups

Let Invol(W) %" involutions of W with induced Bruhat order.

Studied by Richardson-Springer '94 in connection with certain
orbit spaces arising from real reductive Lie geoups,
then combinatorially by Incitti '03 and Hultman '04.

Has wonderful properties as poset, much as W itself:
pure, intervals = regular CW spheres, ...

Poset rank function: rk(w) = E(w)ga’g(w),
where af(w) is absolute length.



Coxeter groups

1234
Invol(Sy)

Involutions in Sy



Coxeter groups

Open problems:

1. Are there only finitely many isomorphism types of intervals of
length k& in Invol(W), W finite 7

2. Are intervals in Invol(WW) shellable?
(Proved for finite groups of classical type by Incitti)



Coxeter groups

Greater generality:

Let 6 : W — W be induced by an involutive automorphism of the
Coxeter diagram. The set of twisted involutions (with respect
to 0) is {w € W | §(w) = w1},

Invol(W) poset is part of the more general construction of poset
of twisted involutions, containing both Invol(1WW) and Bruhat or-
der on W itself as special cases.



Coxeter groups

Let Int(W) %" Bruhat intervals of W ordered by containment.

Inherits good properties as poset from W:
pure, shellable, intervals = regular CW spheres, . ..

Studied by Lusztig and Rietsch '98 as poset of cells of a decom-
position of the totally nonnegative part of a flag variety over R
(for a reductive algebraic group).

Further poset-related work on totally nonnegative Grassmanni-
ans and partial flag varieties by Postnikov, Rietsch and Williams.
Related work by Fomin and Shapiro.



Coxeter groups

“Theorem-Definition” (R-polynomials):
There is a unique family of polynomials {Ru.v(q)}uvew < Z[q]
satisfying the following conditions:

(i) Ruw(q) =0 ifu L v,
(ii) Ruvw(q) =1 ifu=wv,

(iii) if vs < v then

R (q) — Rus,vs(Q), /f us < u,
v qRusws(q) + (@ — 1)Ruws(q), if us > u.



Coxeter groups

“Theorem-Definition” (Kazhdan-Lusztig polynomials):
There exists a unique family of polynomials { Py v(q) }yvew € Z[q]
satisfying the following conditions:

(i) Puw(q) =0 ifu Lo,

(//) P’U,,'U(Q) =1 /fu =,

(iii) deg(Puu(q)) < 3((u,v) — 1), ifu<wv;

(iv)

qﬁ(u,v) Py (é) — Z Ru,a(q) Paw(q), ifu<w.
aclu,v]

O



Coxeter groups

Two famous conjectures for K-L polynomials:
1. Nonnegativity: Py (q) € N[q]

2. Combinatorial invariance:

[u,v] = [z,y] = Puw(q) = Pry(q)



Coxeter groups

Two famous conjectures for K-L polynomials:
1. Nonnegativity: Py v(q) € N[q]

KNOWN: True for all crystallographic groups
(m(s,s") € {2,3,4,6,00})

2. Combinatorial invariance:

[U,U] % [CU,y] — Pu,v(Q) — Px,y(Q)

KNOWN: Partial results by Brenti-Caselli-Marietti and du Cloux



