On the shape of Bruhat intervals

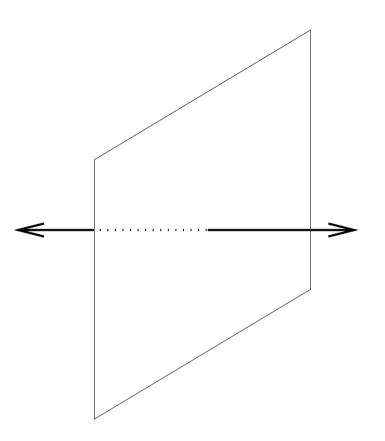
* * * * * *

Anders Björner Institut Mittag-Leffler

* * * * * *

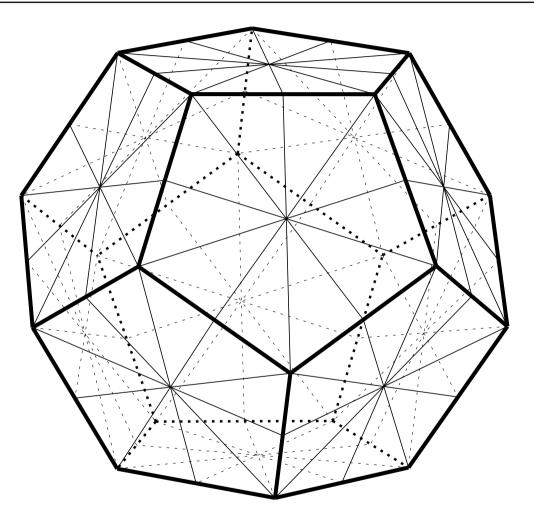
Séminaire Lotharingien de Combinatoire 61 Curia, September, 2008

Coxeter groups



Finite Coxeter groups $\leftrightarrow \rightarrow$ Finite reflection groups (i.e., groups generated by orthogonal reflections in hyperplanes)

Coxeter groups



The dodecahedron as a reflection group

The pair (W, S) is a *Coxeter group* (Coxeter system) if W is a group with presentation

Generators: S, such that

$$s^2 = e$$
, for all $s \in S$,

Relations: for $s, s' \in S$

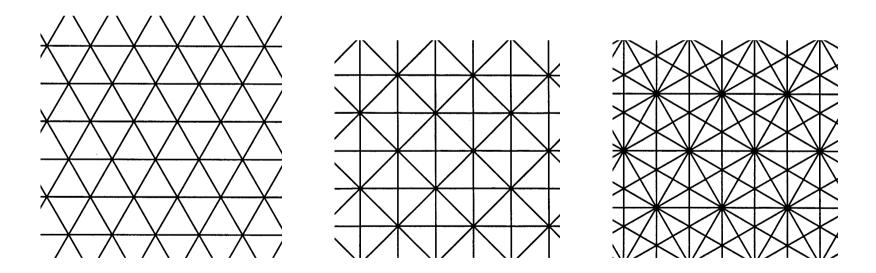
$$\underbrace{s \, s' \, s \, s' \, s \dots}_{m(s,s')} = \underbrace{s' \, s \, s' \, s \, s' \dots}_{m(s,s')}$$

Examples

1. The symmetric group S_n .

Coxeter generators = Adjacent transpositions (i, i + 1)

2. Affine reflection groups



The \widetilde{A}_2 , \widetilde{C}_2 and \widetilde{G}_2 tesselations of the affine plane.

\exists classifications

finite Coxeter groups: type A_n , B_n , ... etc.

affine Coxeter groups: type \tilde{A}_n , \tilde{B}_n , ... etc.

hyperbolic Coxeter groups

Definition: (W, S) is *crystallographic* if $m(s, t) \in \{2, 3, 4, 6, \infty\}$ for all distinct generators s and t.

E.g., *finite and affine Weyl groups* are crystallographic.

The finite irreducible Coxeter systems

Name	Diagram	Order	T	Exponents
 A_n $(n \ge 1)$	 	(n + 1)!	$\binom{n+1}{2}$	$1, 2, \ldots, n$
 $\frac{B_n}{(n \ge 2)}$	oooo	$2^n n!$	n^2	$1,3,\ldots,2n-1$
 D_n $(n \ge 4)$		$2^{n-1}n!$	$n^2 - n$	$1, 3, \ldots, 2n - 3, n - 1$

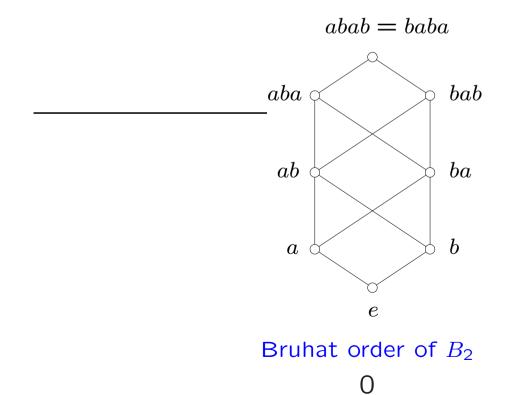
Coxeter groups

	E_6	· · · · · · · · · · · · · · · · · · ·	2 ⁷ 3 ⁴ 5	36	1, 4, 5, 7, 8, 11
	E_7	00	$2^{10} 3^4 5 7$	63	1, 5, 7, 9, 11, 13, 17
	E_8	· · · · · · · · · · · · · · · · · · ·	$2^{14} 3^5 5^2 7$	120	1, 7, 11, 13, 17, 19, 23, 29
	F_4	<u></u>	1152	24	1,5,7,11
	$\overline{G_2}$	<u>6</u>	12	6	1, 5
_	H_3	5	120	15	1, 5, 9
	H_4	5	14400	60	1, 11, 19, 29
	$\frac{I_2(m)}{(m \ge 3)}$		1 _{2m}	m	1,m-1

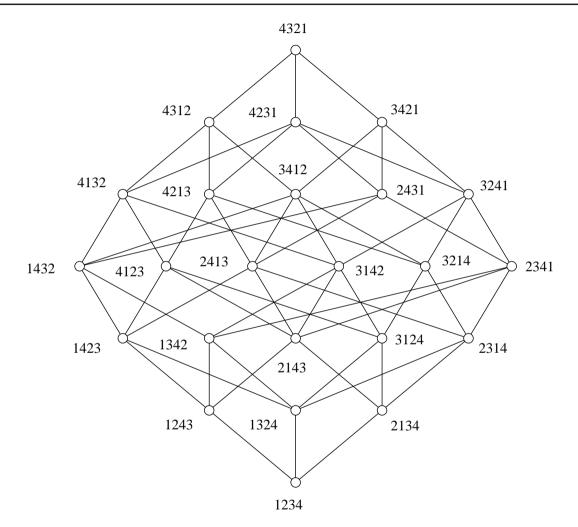
Bruhat order

Bruhat order: For $u, w \in W$:

$$u \leq w \iff$$
 for \forall reduced expression $w = s_1 s_2 \dots s_q$
 \exists a reduced subexpression $u = s_{i_1} s_{i_2} \dots s_{i_k},$
 $1 \leq i_1 < \dots < i_k \leq q.$

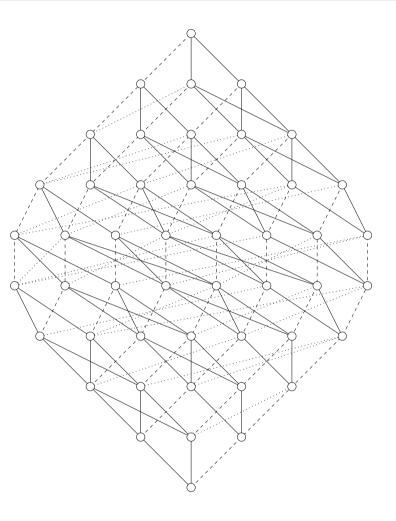


Bruhat order



Bruhat order of S_4 .

Bruhat order



Bruhat order of B_3 .

Some global properties of Bruhat order of a finite W, as a poset:

** Bottom element e, top element w_0

** Graded (all maximal chains of same size)

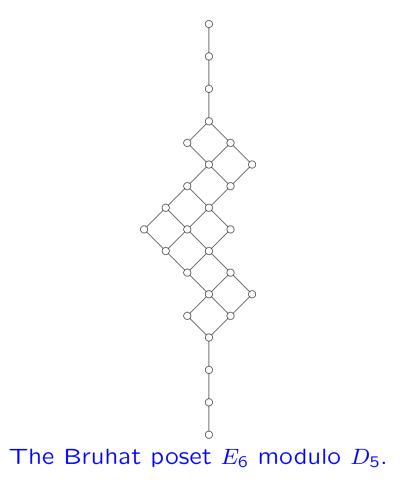
** Poset rank = Group-theoretic length $\ell(\cdot)$

** Rank-generating function

$$\sum_{w \in W} q^{\ell(w)} = \prod_{1 \le i \le d} (1 + q + q^2 + \dots q^{e_i})$$

** Anti-automorphic under map $w \mapsto ww_0$

Quotients W^J : Minimal coset representatives modulo parabolic subgroups $W_J = \langle J \rangle, J \subseteq S$, with induced order.



Global poset properties of Bruhat order of finite quotients W^J :

** Graded

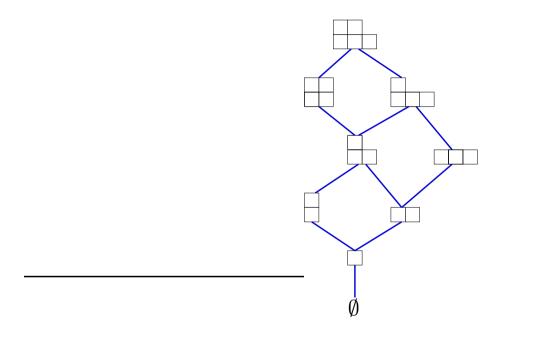
** Bottom element e, top element w_0^J

** Poset rank = Group-theoretic length $\ell(\cdot)$

** Rank-generating function
$$\sum_{w \in W^J} q^{\ell(w)} = \frac{\sum_{w \in W} q^{\ell(w)}}{\sum_{w \in W_J} q^{\ell(w)}}$$

** Anti-automorphic under map $w \mapsto w_{J,0}ww_0$

A special case of quotient W^J : Young's lattice



Lower intervals $[\emptyset, \lambda]$: Ferrers' diagrams contained in shape λ , and ordered by containment

maximal chains = # standard Young tableaux of shape λ

General Problem:

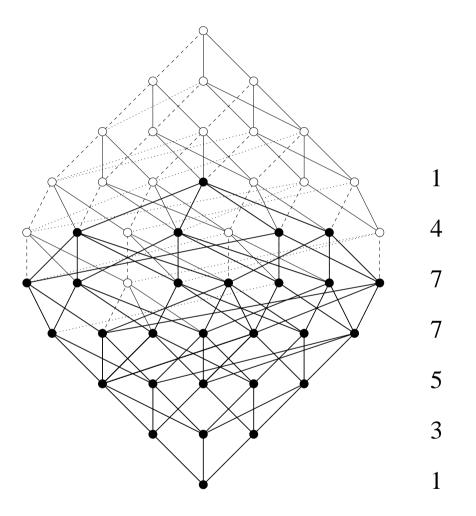
Study the combinatorial structure of intervals

$$[u,w]^J \stackrel{\text{def}}{=} \{z : u \le z \le w\} \cap W^J$$

TOPIC 1: *f*-vectors of Bruhat intervals

- Joint work with T.Ekedahl

If asking for global interval structure is too hard, study the enumerative "shadow".



 $f^w\mbox{-vector}$ of Bruhat interval [e,w]

Shape (or *f*-vector) of lower interval $[e, w]^J$:

$$f^{w,J} = \{f_0^{w,J}, f_1^{w,J}, \dots, f_{\ell(w)}^{w,J}\},\$$

$$f_i^{w,J} \stackrel{\text{def}}{=}$$
 number of elements $x \leq w$, $x \in W^J$, of length i .

Special case of full group: $W = W^{\emptyset}$ $f^w \stackrel{\text{def}}{=} f^{w,\emptyset}$ Another example of f^w -vector of Bruhat interval [e, w]Here $w \in C_4$, $\ell(w) = 13$:

 $f^w = (1, 4, 9, 16, 24, 32, 39, 44, 46, 42, 31, 17, 6, 1)$

Another example of f^w -vector of Bruhat interval [e, w]Here $w \in C_4$, $\ell(w) = 13$:

$$f^w = (1, 4, 9, 16, 24, 32, 39 \mid 44, 46, 42, 31, 17, 6, 1)$$

$$\uparrow$$
MID

\exists analogy

Intervals $[e, w]$ in Bruhat order	\leftrightarrow	
Weyl group		
Schubert variety		
Kazhdan-Lusztig polynomial	\leftrightarrow	

Face lattices of convex polytopes			
rational polytope			
toric variety			
g-polynomial			

Also: Both determine regular CW decompositions of a sphere Intersection cohomology lurks in the background

Remark:

For all polytopes: \exists combinatorial intersection cohomology theory satisfying hard Lefschetz (recent work of K. Karu and others)

Question: \exists ??? combinatorial intersection cohomology theory for all Coxeter groups ("virtual Schubert varieties")?

Note: Analogy with f-vector of convex polytope Compare: Known for f-vector of simplicial (d + 1)-dimensional polytope:

(1) $f_i \leq f_j$ if $i < j \leq d - i$. In particular,

•
$$f_0 \le f_1 \le \dots \le f_{d/2}$$
 and $f_i \le f_{d-i}$

(2) $f_{3d/4} \ge f_{(3d/4)-1} \ge \cdots \ge f_d$

(3) The bounds d/2 and 3d/4 are best possible.

Conjecture: (2) is true for all polytopes.

Does it make sense to ask such questions for f^w -vectors of Bruhat intervals [e, w]?

Perhaps ... — consider this:

THM (Carrell-Peterson 1994) The Schubert variety X_w is rationally smooth

$$\iff f_i^w = f_{\ell(w)-i}^w, \ \forall i$$

THM (Brion 2000)

$$\sum_{0 \le i \le k} f_i^w \le \sum_{0 \le i \le k} f_{\ell(w)-i}^w$$

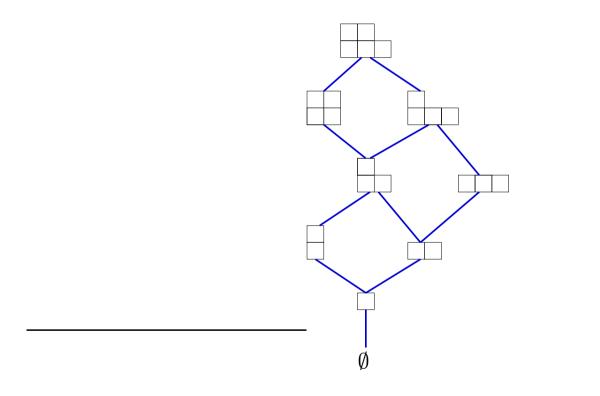
Theorem 1. The $f^{w,J}$ -vector $f^{w,J} = \{f_0, f_1, \dots, f_{\ell(w)}\}$ of an interval $[e, w]^J$ in a crystallographic Coxeter group satisfies:

 $f_i \leq f_j$, if $0 \leq i < j \leq \ell(w) - i$.

Equivalently,

- $f_i \leq f_{\ell(w)-i}$, for all $i < \ell(w)/2$
- $f_0 \leq f_1 \leq \cdots \leq f_{\lceil \ell(w)/2 \rceil}$

Gives new inequalities already for the special case of Young's lattice:



Lower intervals $[\emptyset, \lambda]$: Ferrers' diagrams contained in shape λ , and ordered by containment Recall definition: (W, S) is *crystallographic* if $m(s, s') \in \{2, 3, 4, 6, \infty\}$ for all distinct generators s and s'.

Fact: Crystallographic ⇔ appears as Weyl group of a Kac-Moody algebra

Fact: Crystallographic $\Rightarrow \exists$ Schubert varieties

Let (W, S) be crystallographic, $J \subseteq S$.

For each $w \in W^J$ there exists a complex projective variety (called **Schubert variety**) \overline{X}_w containing closed subvarieties \overline{X}_u for all $u \in [e, w]^J$, which are disjoint unions

$$\overline{X}_u = \biguplus_z X_z,$$

where $z \in [e, u]^J$.

Furthermore, X_u is a subvariety of \overline{X}_w isomorphic to affine space $\mathbf{A}^{\ell(u)}$.

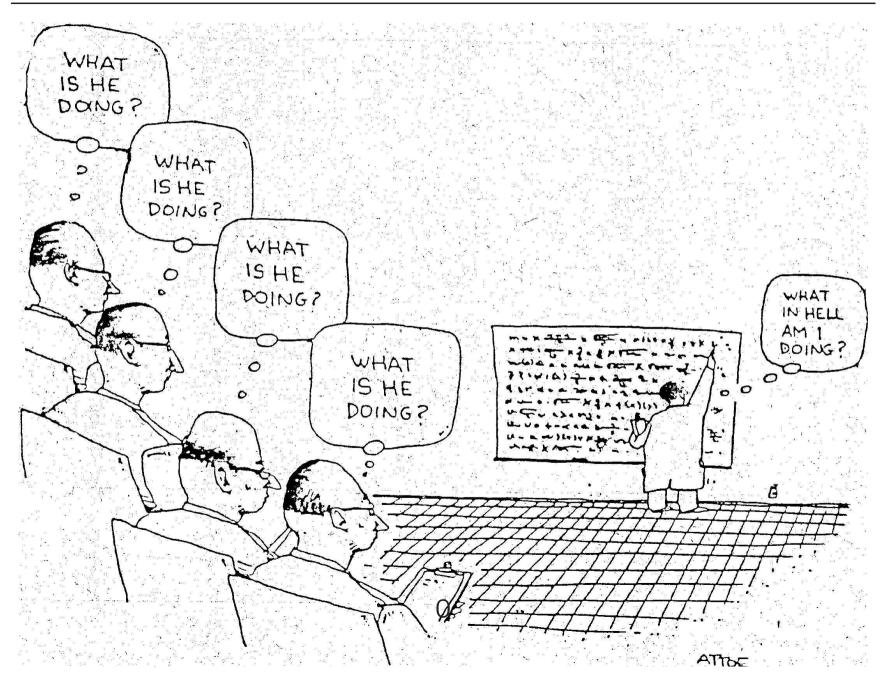
Idea of proof of Thm:

* Use ℓ -adic étale cohomology $H^*(X, \mathbb{Q}_{\ell})$ and intersection cohomology $IH^*(X, \mathbb{Q}_{\ell})$.

* There is a $H^*(X, \mathbb{Q}_{\ell})$ -module map $\varphi : H^*(X, \mathbb{Q}_{\ell}) \to IH^*(X, \mathbb{Q}_{\ell})$

* For Schubert varieties $X = X_w$ this map φ is injective.

*
$$f_i^w = \dim_{\mathbb{Q}_\ell} H^{2i}(X_w, \mathbb{Q}_\ell)$$



Idea of proof of Thm (cont'd)

Let $X = X_w$. The map φ is an $H^*(X, \mathbb{Q}_{\ell})$ -module map \Rightarrow for $i \leq j \leq m - i$ it commutes with multiplication by $c_1(\mathcal{L})^{j-i}$ \Rightarrow commutative diagram

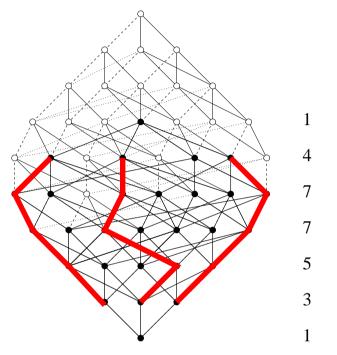
$$\begin{array}{rcl} H^{2i}(X,\mathbb{Q}_{\ell}) &\longrightarrow & IH^{2i}(X,\mathbb{Q}_{\ell}) \\ & & & & & \\ & & & & \\ & & & & \\ H^{2j}(X,\mathbb{Q}_{\ell}) &\longrightarrow & IH^{2j}(X,\mathbb{Q}_{\ell}). \end{array}$$

The horisontal maps φ are injective, and the right vertical map is an injection by hard Lefschetz.

Idea of proof of Thm (cont'd)

The horisontal maps φ are injective, and the right vertical map is an injection by hard Lefschetz. Hence the left vertical map is injective, giving

$$f_i^w = \dim_{\mathbb{Q}_\ell} H^{2i}(X, \mathbb{Q}_\ell) \le \dim_{\mathbb{Q}_\ell} H^{2j}(X, \mathbb{Q}_\ell) = f_j^w.$$



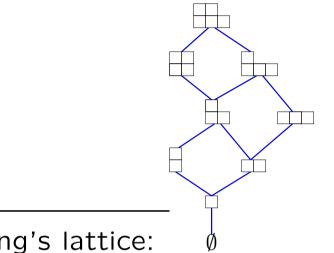
Theorem 2. Let (W, S) be crystallographic, $J \subseteq S$. Fix $w \in W^J$ and i such that $0 \le i < \ell(w)/2$. Then, in $[e, w]^J$ there exist $f_i^{w,J}$ pairwise disjoint chains

$$u_i < u_{i+1} < \dots < u_{\ell(w)-i}$$

such that $\ell(u_j) = j$.

References:

Stanley (1980) did the J = S, $w = w_0$ case for finite groups



Interpretation of Theorem 2 for Young's lattice:

Given a partition λ of n and $k \leq n/2$. Suppose that there are $b = b(\lambda, k)$ partitions of k below λ . Then there exist b standard Young tableaux of shape λ , T^1, \ldots, T^b , such that

shape
$$(T_p^i) \neq$$
 shape (T_p^j)

for all $i \neq j$ and all $p = k, k + 1, \dots, n - k$.

Here T_p is the subtableau gotten by erasing the boxes with numbers > p.

Question: what about the case of equality in some of the relations $f_i \leq f_{\ell(w)-i}$?

From now on: Only the $J = \emptyset$ case. Then $W^J = W$, so we drop "J" from the notation.

Bruhat interval *f*-vectors

Fix $w \in W$, and let $m := \lfloor (\ell(w) - 1)/2 \rfloor$. Let

$$P_{e,w}(q) = 1 + \beta_1 q + \dots + \beta_m q^m$$

be the Kazhdan-Lusztig polynomial of the interval [e, w].

Known:

* $\beta_i \geq$ 0 if W is crystallographic,

* $P_{e,w}(q) = 1 \iff X_w$ is rationally smooth

* X_w is rationally smooth $\iff f_i^w = f_{\ell(w)-i}^w, \forall i$ (Carrell-Peterson '94)

* For simply-laced W: smooth \Leftrightarrow rationally smooth

Theorem 3. Suppose that W is crystallographic, $w \in W$ and $1 \le k \le m$. Then the following conditions are equivalent:

(a)
$$f_i^w = f_{\ell(w)-i'}^w$$
 for $i = 1, ..., k$,

(b)
$$\beta_i = 0$$
, for $i = 1, ..., k$.

Remark: The equivalence of (a) and (b) in the case k = m gives the Carrell-Peterson criterion for rational smoothness of the Schubert variety X_w .

Theorem 4. Suppose that W is crystallographic, $w \in W$ and $1 \le k \le m$. Then the following conditions are equivalent:

(a)
$$f_i^w = f_{\ell(w)-i}^w$$
, for $i = 1, ..., k$,

(b)
$$\beta_i = 0$$
, for $i = 1, ..., k$.

Furthermore, if k < m then (a) and (b) imply

(c)
$$\beta_{k+1} = f_{\ell(w)-k-1}^w - f_{k+1}^w$$
.

Idea of proof: Based on

* Monotonicity theorem for K-L polynomials (extending Braden-MacPherson '01).

* Polynomial $F_w(q) = \sum_{x \leq w} q^{\ell(x)} P_{x,w}(q)$ is palindromic (Kazhdan-Lusztig '79).

More can be said about the increasing inequalities

$$f_0 \leq f_1 \leq \cdots \leq f_{\lceil \ell(w)/2 \rceil},$$

namely, the sequence cannot grow too fast.

Recall:

For $n, k \geq 1$ there is a unique expansion

$$n = \binom{a_k}{k} + \binom{a_{k-1}}{k-1} + \dots + \binom{a_i}{i},$$

with $a_k > a_{k-1} > \cdots > a_i \ge i \ge 1$. Let

$$\partial^{k}(n) = {\binom{a_{k}-1}{k-1}} + {\binom{a_{k-1}-1}{k-2}} + \dots + {\binom{a_{i}-1}{i-1}}, \\ \partial^{k}(0) = 0.$$

Theorem (Macaulay-Stanley) For an integer sequence $(1, m_1, m_2, ...)$ the following are equivalent (and this defines an *M*-sequence):

(1)
$$\partial^k(m_k) \leq m_{k-1}$$
, for all $k \geq 1$,

(2) some order ideal of monomials contains exactly m_k monomials of degree k,

(3) $dim(A_k) = m_k$ for some graded commutative algebra $A = \bigoplus_{k>0} A_k$ which is generated by A_1 .

More can be said about the increasing inequalities

$$f_0 \leq f_1 \leq \cdots \leq f_{\lceil \ell(w)/2 \rceil},$$

namely, the sequence cannot grow too fast.

Theorem 5. In the case of finite Weyl groups every f-vector $f^w = \{f_0, f_1, \dots, f_{\ell(w)}\}$ is an *M*-sequence.

Idea of proof of Thm: Based on

* The *f*-vector $f^w = \{f_0, f_1, \dots, f_{\ell(w)}\}$ is coeff-sequence of Poincaré polynomial of $H^*(X_w)$, the cohomology algebra of the Schubert variety X_w (over \mathbb{C}).

* So, we only need that $H^*(X_w)$ is generated in degree one $(\dim = 2)$.

* For $w = w_0$ this is classical: $H^*(X_{w_0}) \cong$ coinvariant algebra of W.

* For $w \neq w_0$ there is algebra surjection $H^*(X_{w_0}) \to H^*(X_w)$

Remarks:

** *M*-sequence property fails for the affine group \tilde{C}_2 : $\sum q^{\ell(w)} = 1 + 3q + 5q^2 + 8q^3 + \cdots$ Consequence: $H^*(X_w)$ not necessarily generated in degree one for affine Schubert varieties X_w .

** *M*-sequence property fails for general intervals in finite B_4 : $\sum_{w \le x \le w_0} q^{\ell(x) - \ell(w)} = 1 + 4q + 11q^2 + \cdots$ for certain $w \in B_4$. The increasing inequalities $f_0 \leq f_1 \leq \cdots \leq f_{\lceil \ell(w)/2 \rceil}$ have decreasing counterparts at the upper end of the Bruhat interval — but the information we are able to give about this is much weaker.

Theorem 6. For all $k \ge 1$ there exists a number N_k , such that for every finite Coxeter group (W, S) and every $w \in W$ such that $\ell(w) \ge N_k$ we have that

$$f_{\ell(w)-k}^{w} \ge f_{\ell(w)-k+1}^{w} \ge \cdots \ge f_{\ell(w)}^{w}.$$

1. Do f^w -vectors satisfy more inequalities? (Noticed by D. Stanton: unimodality fails on some intervals in Young's lattice. Unimodality might be true for full intervals, i.e. $J = \emptyset$.)

1. Does f^w -vector satisfy more inequalities?

2. Are the theorems true for general (non-crystallographic) Coxeter groups?

1. Does f^w -vector satisfy more inequalities?

2. Are the theorems true for general (non-crystallographic) Coxeter groups?

.

3. Does there exist some $\alpha < 1$ such that

$$f^w_{\lfloor \alpha \cdot \ell(w) \rfloor} \ge f^w_{\lfloor \alpha \cdot \ell(w) \rfloor + 1} \ge \cdots \ge f^w_{\ell(w)}$$

Will $\alpha = \frac{3}{4}$ do?

- **1.** Does f^w -vector satisfy more inequalities?
- **2.** Are Theorems 1–2 true for general (non-crystallographic) Coxeter groups?
- **3.** Does there exist some $\alpha < 1$ such that

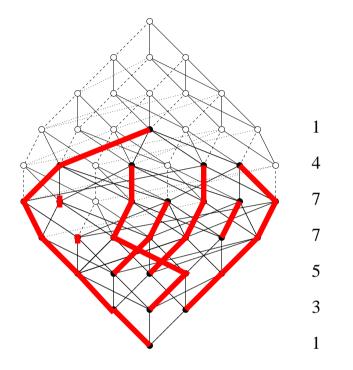
$$f^w_{\lfloor \alpha \cdot \ell(w) \rfloor} \ge f^w_{\lfloor \alpha \cdot \ell(w) \rfloor + 1} \ge \cdots \ge f^w_{\ell(w)}.$$

Will $\alpha = \frac{3}{4}$ do?

4. What can be said about the shape of general intervals $[u, w]^J$? (I.e., for $u \neq e$)

Bruhat interval *f*-vectors

such



Def: An upper chain decomposition is a partition of $[e, w]^J$ into pairwise disjoint saturated chains

$$u_i < u_{i+1} < \cdots < u_k$$

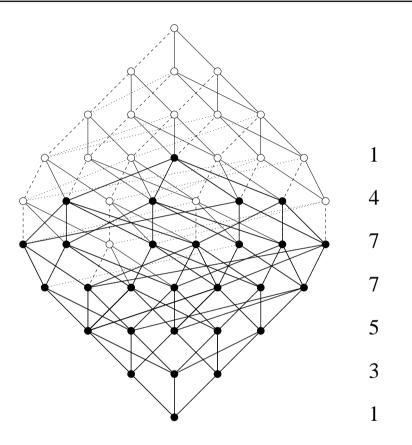
that $\ell(j) = j$ for all $j = i, \dots, k$, and $k \ge \ell(w) - i$

5. Do the intervals $[e, w]^J$ admit upper chain decompositions?

Note:

- 1. This would imply Thms 6 and 7.
- 2. Specializes to symmetric chain decomposition, if f^w -vector is symmetric.
- 3. Symmetric chain decomposition question still open for intervals $[\emptyset, \lambda]$ in Young's lattice, λ of rectangular shape.

Shape of Bruhat intervals



TOPIC 2: Global interval structure

Theorem 7. (Verma 68)

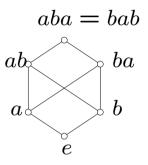
$$\sum_{u \le x \le w} (-1)^{\ell(x)} = 0$$

Equivalently, intervals [u, w] "have the Euler characteristic of a sphere": # odd card chains - # even card chains $= (-1)^{\dim}$

Theorem 8. (Bj-Wachs 82)

Intervals $[u, w]^J$ are "lexicographically shellable".

Example: Lex. shelling of $W = S_3$, generators $S = \{a, b\}$



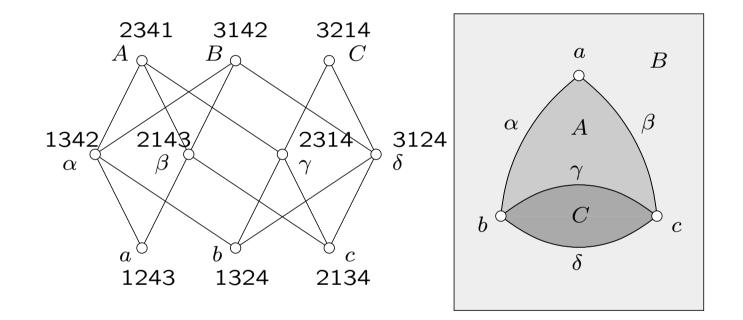
Choosing "*aba*" as reduced expression for the top element the induced labels of the four maximal chains are

$$\lambda(aba \vartriangleright *ba \vartriangleright **a \bowtie **) = (1,2,3),$$

$$\lambda(aba \vartriangleright *ba \vartriangleright *b* \bowtie **) = (1,3,2),$$

$$\lambda(aba \bowtie ab* \bowtie *b* \bowtie **) = (3,1,2),$$

$$\lambda(aba \bowtie ab* \bowtie a** \bowtie **) = (3,2,1).$$



Regular CW interpretation of the Bruhat interval [1234, 3241] in S_4 .

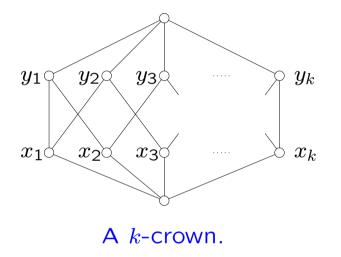
Theorem 9. (Bj. 84) Let [u, w] be a Bruhat interval. Then \exists regular CW decomposition $\Gamma_{u,w}$ of the $(\ell(w) - \ell(u) - 2)$ -dimensional sphere with cells σ_x , u < x < w, such that

$$\dim(\sigma_x) = \ell(x) - \ell(u) - 1$$

and

$$\sigma_x \subseteq \overline{\sigma_z} \quad \Leftrightarrow \quad x \le z.$$

Proof idea: via lexicographic shellability of Bruhat order



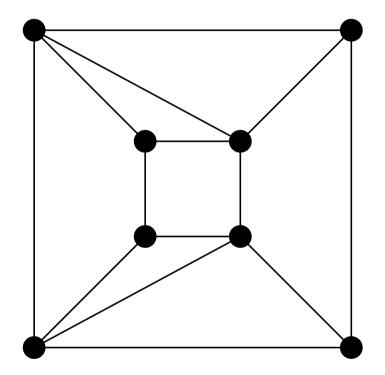
Special case: All Bruhat intervals of length 3 are k-crowns, $k \ge 2$.

Finite case \Rightarrow only k = 2, 3, 4 possible, for type H also k = 5.

Theorem 10. (Dyer 91). For each m, there exist only finitely many isomorphism classes of length m intervals in finite Coxeter groups.

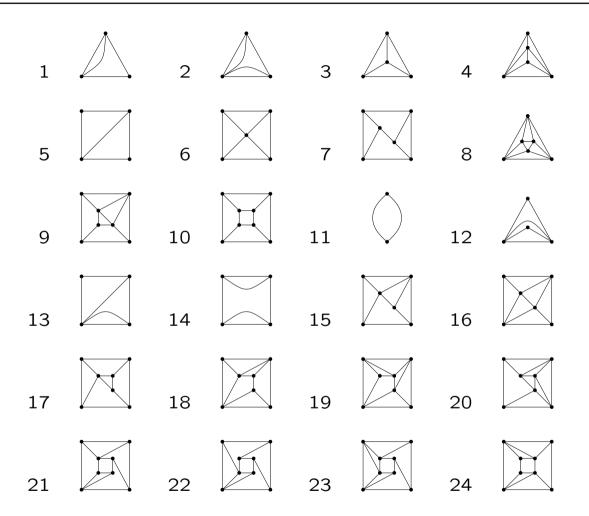
Theorem 11. (Hultman 03). There are 24 types of length 4 intervals in finite Weyl groups.

Only 7 of them occur in the symmetric groups. All 24 show up in F_4 .



A Bruhat interval of length 4 (rendered as a CW complex)

Interval structure



All length 4 intervals that appear in finite Weyl groups.

What about intervals of length > 4?

 \exists classification (up to (anti)isomorphism), due to F. Incitti:

* Length 5,6,7 non-lattice intervals in type A: there are 217 such of length 7

* Length 5 non-lattice intervals in type B: there are 46 such

* Length 5 non-lattice intervals in type D: there are 12 such

TOPIC 3: Some other Bruhat-related posets coming from algebraic geometry

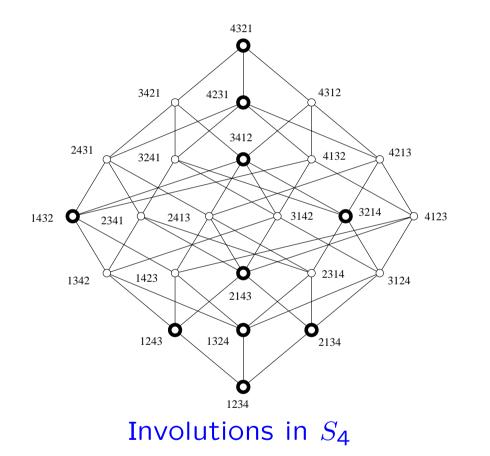
Let $Invol(W) \stackrel{\text{def}}{=}$ involutions of W with induced Bruhat order.

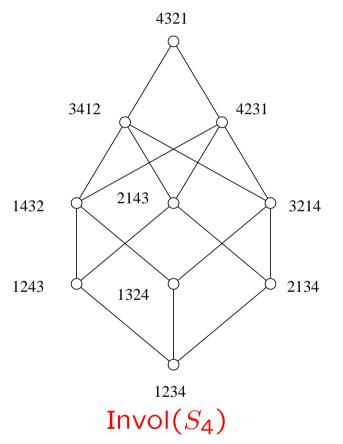
Studied by Richardson-Springer '94 in connection with certain orbit spaces arising from real reductive Lie geoups, then combinatorially by Incitti '03 and Hultman '04.

Has wonderful properties as poset, much as W itself: pure, intervals = regular CW spheres, ...

Poset rank function: $rk(w) = \frac{\ell(w) + a\ell(w)}{2}$, where $a\ell(w)$ is absolute length.

Coxeter groups





Open problems:

1. Are there only finitely many isomorphism types of intervals of length k in Invol(W), W finite ?

2. Are intervals in Invol(W) shellable?(Proved for finite groups of classical type by Incitti)

Greater generality:

Let $\theta: W \to W$ be induced by an involutive automorphism of the Coxeter diagram. The set of *twisted involutions* (with respect to θ) is $\{w \in W \mid \theta(w) = w^{-1}\}$.

Invol(W) poset is part of the more general construction of *poset* of twisted involutions, containing both Invol(W) and Bruhat order on W itself as special cases.

Let $Int(W) \stackrel{\text{def}}{=} Bruhat$ intervals of W ordered by containment.

Inherits good properties as poset from W: pure, shellable, intervals = regular CW spheres, ...

Studied by Lusztig and Rietsch '98 as poset of cells of a decomposition of the totally nonnegative part of a flag variety over \mathbb{R} (for a reductive algebraic group).

Further poset-related work on totally nonnegative Grassmannians and partial flag varieties by Postnikov, Rietsch and Williams. Related work by Fomin and Shapiro.

"Theorem-Definition" (*R*-polynomials):

There is a unique family of polynomials $\{R_{u,v}(q)\}_{u,v\in W} \subseteq \mathbb{Z}[q]$ satisfying the following conditions:

(i)
$$R_{u,v}(q) = 0$$
 if $u \leq v$;

(ii)
$$R_{u,v}(q) = 1$$
 if $u = v$;

(iii) if vs < v then

$$R_{u,v}(q) = \begin{cases} R_{us,vs}(q), & \text{if } us < u, \\ qR_{us,vs}(q) + (q-1)R_{u,vs}(q), & \text{if } us > u. \end{cases}$$

"Theorem-Definition" (Kazhdan-Lusztig polynomials): There exists a unique family of polynomials $\{P_{u,v}(q)\}_{u,v\in W} \subseteq \mathbb{Z}[q]$ satisfying the following conditions:

(i)
$$P_{u,v}(q) = 0$$
 if $u \leq v$;

(ii)
$$P_{u,v}(q) = 1$$
 if $u = v$;

(iii)
$$\deg(P_{u,v}(q)) \leq rac{1}{2}(\ell(u,v)-1)$$
, if $u < v$;

(iv)

$$q^{\ell(u,v)} P_{u,v}\left(\frac{1}{q}\right) = \sum_{a \in [u,v]} R_{u,a}(q) P_{a,v}(q), \qquad \text{if } u \le v.$$

Two famous conjectures for K-L polynomials:

- 1. Nonnegativity: $P_{u,v}(q) \in \mathbb{N}[q]$
- 2. Combinatorial invariance:

$$[u,v] \cong [x,y] \implies P_{u,v}(q) = P_{x,y}(q)$$

Two famous conjectures for K-L polynomials:

1. Nonnegativity: $P_{u,v}(q) \in \mathbb{N}[q]$

KNOWN: True for all crystallographic groups $(m(s,s') \in \{2,3,4,6,\infty\})$

2. Combinatorial invariance:

$$[u,v] \cong [x,y] \implies P_{u,v}(q) = P_{x,y}(q)$$

KNOWN: Partial results by Brenti-Caselli-Marietti and du Cloux