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Coxeter groups

Finite Coxeter groups ←→ Finite reflection groups (i.e., groups

generated by orthogonal reflections in hyperplanes)
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Coxeter groups

The dodecahedron as a reflection group
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Coxeter groups

The pair (W, S) is a Coxeter group (Coxeter system) if W is a

group with presentation

Generators: S, such that

s2 = e, for all s ∈ S,

Relations: for s, s′ ∈ S

s s′ s s′ s . . .︸ ︷︷ ︸
m(s,s′)

= s′ s s′ s s′ . . .︸ ︷︷ ︸
m(s,s′)
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Coxeter groups

Examples

1. The symmetric group Sn.
Coxeter generators = Adjacent transpositions (i, i + 1)

2. Affine reflection groups

The Ã2, C̃2 and G̃2 tesselations of the affine plane.

0



Coxeter groups

∃ classifications

finite Coxeter groups: type An, Bn, . . . etc.

affine Coxeter groups: type Ãn, B̃n, . . . etc.

hyperbolic Coxeter groups

Definition: (W, S) is crystallographic if m(s, t) ∈ {2,3,4,6,∞}

for all distinct generators s and t.

E.g., finite and affine Weyl groups are crystallographic.
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Coxeter groups

The finite irreducible Coxeter systems

Name Diagram Order |T | Exponents

An

(n ≥ 1)
(n + 1)!

(n + 1

2

)
1, 2, . . . , n

Bn

(n ≥ 2)

4
2nn! n2 1, 3, . . . , 2n− 1

Dn

(n ≥ 4)
2n−1n! n2 − n 1, 3, . . . , 2n− 3, n− 1
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Coxeter groups

E6 27 34 5 36 1, 4, 5, 7, 8, 11

E7 210 34 57 63 1, 5, 7, 9, 11, 13, 17

E8 214 35 52 7 120 1, 7, 11, 13, 17, 19, 23, 29

F4
4 1152 24 1, 5, 7, 11

G2
6 12 6 1, 5

H3
5 120 15 1, 5, 9

H4
5 14400 60 1, 11, 19, 29

I2(m)
(m ≥ 3)

m 2m m 1, m− 1
1





Bruhat order

Bruhat order: For u, w ∈W :

u ≤ w
def
⇐⇒ for ∀ reduced expression w = s1s2 . . . sq

∃ a reduced subexpression u = si1si2 . . . sik
,

1 ≤ i1 < . . . < ik ≤ q.

a b

ab ba

aba bab

abab = baba

e

Bruhat order of B2
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Bruhat order

3214

3124

2341

2134

2413
3142

34214312

324124314213
4132

4123

2314

3412

1432

13241243

2143

13421423

1234

4231

4321

Bruhat order of S4.
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Bruhat order

Bruhat order of B3.
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Bruhat order

Some global properties of Bruhat order of a finite W , as a poset:

** Bottom element e, top element w0

** Graded (all maximal chains of same size)

** Poset rank = Group-theoretic length ℓ( · )

** Rank-generating function

∑

w∈W

qℓ(w) =
∏

1≤i≤d

(1 + q + q2 + · · · qei)

** Anti-automorphic under map w 7→ ww0

0



Bruhat order

Quotients W J: Minimal coset representatives modulo parabolic subgroups
WJ =< J >, J ⊆ S, with induced order.

The Bruhat poset E6 modulo D5.
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Bruhat order

Global poset properties of Bruhat order of finite quotients W J:

** Graded

** Bottom element e, top element wJ
0

** Poset rank = Group-theoretic length ℓ( · )

** Rank-generating function
∑

w∈W J qℓ(w) =

∑
w∈W qℓ(w)

∑
w∈WJ

qℓ(w)

** Anti-automorphic under map w 7→ wJ,0ww0
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Bruhat order

A special case of quotient W J: Young’s lattice

∅

Lower intervals [∅, λ]: Ferrers’ diagrams contained

in shape λ, and ordered by containment

# maximal chains = # standard Young tableaux of shape λ
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Bruhat order

General Problem:

Study the combinatorial structure of intervals

[u, w]J
def
= {z : u ≤ z ≤ w} ∩W J
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Bruhat order

TOPIC 1: f-vectors of Bruhat intervals

– Joint work with T.Ekedahl

If asking for global interval structure is too hard, study the

enumerative “shadow”.
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Bruhat interval f-vectors

7

1

3

5

7

1

4

fw-vector of Bruhat interval [e, w]
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Bruhat interval f-vectors

Shape (or f-vector) of lower interval [e, w]J:

fw,J = {fw,J
0 , f

w,J
1 , . . . , f

w,J
ℓ(w)
},

f
w,J
i

def
= number of elements x ≤ w, x ∈W J, of length i.

Special case of full group:

W = W ∅

fw def
= fw,∅
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Bruhat interval f-vectors

Another example of fw-vector of Bruhat interval [e, w]

Here w ∈ C4, ℓ(w) = 13:

fw = (1,4,9,16,24,32,39,44,46,42,31,17,6,1)

0



Bruhat interval f-vectors

Another example of fw-vector of Bruhat interval [e, w]

Here w ∈ C4, ℓ(w) = 13:

fw = (1,4,9,16,24,32,39 | 44,46,42,31,17,6,1)

↑

MID

0



Bruhat interval f-vectors

∃ analogy

Intervals [e, w] in Bruhat order ↔ Face lattices of convex polytopes

Weyl group ↔ rational polytope
Schubert variety ↔ toric variety

Kazhdan-Lusztig polynomial ↔ g-polynomial

Also: Both determine regular CW decompositions of a sphere
Intersection cohomology lurks in the background

Remark:

For all polytopes: ∃ combinatorial intersection cohomology the-
ory satisfying hard Lefschetz (recent work of K. Karu and others)

Question: ∃ ??? combinatorial intersection cohomology theory
for all Coxeter groups (”virtual Schubert varieties”)?
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Bruhat interval f-vectors

Note: Analogy with f-vector of convex polytope Compare: Known

for f-vector of simplicial (d + 1)-dimensional polytope:

(1) fi ≤ fj if i < j ≤ d− i. In particular,

• f0 ≤ f1 ≤ · · · ≤ fd/2 and fi ≤ fd−i

(2) f3d/4 ≥ f(3d/4)−1 ≥ · · · ≥ fd

(3) The bounds d/2 and 3d/4 are best possible.

Conjecture: (2) is true for all polytopes.
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Bruhat interval f-vectors

Does it make sense to ask such questions for fw-vectors of

Bruhat intervals [e, w]?

Perhaps . . . — consider this:

THM (Carrell-Peterson 1994)

The Schubert variety Xw is rationally smooth

⇐⇒ fw
i = fw

ℓ(w)−i
, ∀i

THM (Brion 2000)

∑

0≤i≤k

fw
i ≤

∑

0≤i≤k

fw
ℓ(w)−i
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Bruhat interval f-vectors

Theorem 1. The fw,J-vector fw,J = {f0, f1, . . . , fℓ(w)} of an in-

terval [e, w]J in a crystallographic Coxeter group satisfies:

fi ≤ fj , if 0 ≤ i < j ≤ ℓ(w)− i.

Equivalently,

• fi ≤ fℓ(w)−i, for all i < ℓ(w)/2

• f0 ≤ f1 ≤ · · · ≤ f⌈ℓ(w)/2⌉

0



Bruhat interval f-vectors

Gives new inequalities already for the special case of Young’s

lattice:

∅

Lower intervals [∅, λ]: Ferrers’ diagrams contained

in shape λ, and ordered by containment
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Bruhat interval f-vectors

Recall definition: (W, S) is crystallographic if m(s, s′) ∈ {2,3,4,6,∞} for all

distinct generators s and s′.

Fact: Crystallographic ⇔ appears as Weyl group of a Kac-

Moody algebra

Fact: Crystallographic ⇒ ∃ Schubert varieties
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Bruhat interval f-vectors

Let (W, S) be crystallographic, J ⊆ S.

For each w ∈W J there exists a complex projective variety (called

Schubert variety) Xw containing closed subvarieties Xu for all

u ∈ [e, w]J , which are disjoint unions

Xu =
⊎

z
Xz,

where z ∈ [e, u]J.

Furthermore, Xu is a subvariety of Xw isomorphic to affine space

Aℓ(u).
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Bruhat interval f-vectors

Idea of proof of Thm:

* Use ℓ-adic étale cohomology H∗(X, Qℓ) and intersection coho-

mology IH∗(X, Qℓ).

* There is a H∗(X, Qℓ)-module map ϕ : H∗(X, Qℓ)→ IH∗(X, Qℓ)

* For Schubert varieties X = Xw this map ϕ is injective.

* fw
i = dimQℓ

H2i(Xw, Qℓ)
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Bruhat interval f-vectors

0



Bruhat interval f-vectors

Idea of proof of Thm (cont’d)

Let X = Xw. The map ϕ is an H∗(X, Qℓ)-module map

⇒ for i ≤ j ≤ m− i it commutes with multiplication by c1(L)
j−i

⇒ commutative diagram

H2i(X, Qℓ) −→ IH2i(X, Qℓ)y∩c1(L)
j−i

y∩c1(L)
j−i

H2j(X, Qℓ) −→ IH2j(X, Qℓ).

The horisontal maps ϕ are injective, and the right vertical map

is an injection by hard Lefschetz.
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Bruhat interval f-vectors

Idea of proof of Thm (cont’d)

For i ≤ j ≤ m− i, we have a commutative diagram

H2i(X, Qℓ) −→ IH2i(X, Qℓ)y∩c1(L)
j−i

y∩c1(L)
j−i

H2j(X, Qℓ) −→ IH2j(X, Qℓ).

The horisontal maps ϕ are injective, and the right vertical map

is an injection by hard Lefschetz. Hence the left vertical map is

injective, giving

fw
i = dimQℓ

H2i(X, Qℓ) ≤ dimQℓ
H2j(X, Qℓ) = fw

j .
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Bruhat interval f-vectors
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4

Theorem 2. Let (W, S) be crystallographic, J ⊆ S. Fix w ∈ W J

and i such that 0 ≤ i < ℓ(w)/2. Then, in [e, w]J there exist f
w,J
i

pairwise disjoint chains

ui < ui+1 < · · · < uℓ(w)−i

such that ℓ(uj) = j.
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Bruhat interval f-vectors

References:

Stanley (1980) did the J = S, w = w0 case for finite groups
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Interpretation of Theorem 2 for Young’s lattice: ∅

Given a partition λ of n and k ≤ n/2. Suppose that there are

b = b(λ, k) partitions of k below λ. Then there exist b standard

Young tableaux of shape λ, T1, . . . , T b, such that

shape(T i
p) 6= shape(T j

p)

for all i 6= j and all p = k, k + 1, . . . , n− k.

Here Tp is the subtableau gotten by erasing the boxes with num-

bers > p.
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Bruhat interval f-vectors

Question: what about the case of equality in some of the rela-

tions fi ≤ fℓ(w)−i?

From now on: Only the J = ∅ case.

Then W J = W , so we drop ”J” from the notation.
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Bruhat interval f-vectors

Fix w ∈W , and let m := ⌊(ℓ(w)− 1)/2⌋. Let

Pe,w(q) = 1 + β1q + · · ·+ βmqm

be the Kazhdan-Lusztig polynomial of the interval [e, w].

Known:

* βi ≥ 0 if W is crystallographic,

* Pe,w(q) = 1 ⇐⇒ Xw is rationally smooth

* Xw is rationally smooth ⇐⇒ fw
i = fw

ℓ(w)−i
, ∀i

(Carrell-Peterson ’94)

* For simply-laced W : smooth⇔ rationally smooth

0



Bruhat interval f-vectors

Theorem 3. Suppose that W is crystallographic, w ∈ W and

1 ≤ k ≤ m. Then the following conditions are equivalent:

(a) fw
i = fw

ℓ(w)−i
, for i = 1, . . . , k,

(b) βi = 0, for i = 1, . . . , k.

Remark: The equivalence of (a) and (b) in the case k = m

gives the Carrell-Peterson criterion for rational smoothness of

the Schubert variety Xw.
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Bruhat interval f-vectors

Theorem 4. Suppose that W is crystallographic, w ∈ W and

1 ≤ k ≤ m. Then the following conditions are equivalent:

(a) fw
i = fw

ℓ(w)−i
, for i = 1, . . . , k,

(b) βi = 0, for i = 1, . . . , k.

Furthermore, if k < m then (a) and (b) imply

(c) βk+1 = fw
ℓ(w)−k−1

− fw
k+1.
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Bruhat interval f-vectors

Idea of proof: Based on

* Monotonicity theorem for K-L polynomials

(extending Braden-MacPherson ’01).

* Polynomial Fw(q) =
∑

x≤w qℓ(x)Px,w(q) is palindromic

(Kazhdan-Lusztig ’79).
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Bruhat interval f-vectors

More can be said about the increasing inequalities

f0 ≤ f1 ≤ · · · ≤ f⌈ℓ(w)/2⌉,

namely, the sequence cannot grow too fast.
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Bruhat interval f-vectors

Recall:

For n, k ≥ 1 there is a unique expansion

n =
(ak

k

)
+
(ak−1

k − 1

)
+ · · ·+

(ai

i

)
,

with ak > ak−1 > · · · > ai ≥ i ≥ 1. Let

∂k(n) =
(ak − 1

k − 1

)
+
(ak−1 − 1

k − 2

)
+ · · ·+

(ai − 1

i− 1

)
,

∂k(0) = 0.

0



Bruhat interval f-vectors

Theorem (Macaulay-Stanley)

For an integer sequence (1, m1, m2, . . .) the following are equiva-

lent (and this defines an M-sequence):

(1) ∂k(mk) ≤ mk−1, for all k ≥ 1,

(2) some order ideal of monomials contains exactly mk monomi-

als of degree k,

(3) dim(Ak) = mk for some graded commutative algebra

A = ⊕k≥0Ak which is generated by A1.
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Bruhat interval f-vectors

More can be said about the increasing inequalities

f0 ≤ f1 ≤ · · · ≤ f⌈ℓ(w)/2⌉,

namely, the sequence cannot grow too fast.

Theorem 5. In the case of finite Weyl groups every f-vector

fw = {f0, f1, . . . , fℓ(w)} is an M-sequence.

0



Bruhat interval f-vectors

Idea of proof of Thm: Based on

* The f-vector fw = {f0, f1, . . . , fℓ(w)} is coeff-sequence of Poincaré

polynomial of H∗(Xw), the cohomology algebra of the Schubert

variety Xw (over C).

* So, we only need that H∗(Xw) is generated in degree one

(dim = 2).

* For w = w0 this is classical: H∗(Xw0)
∼= coinvariant algebra of

W .

* For w 6= w0 there is algebra surjection H∗(Xw0)→ H∗(Xw)

0



Bruhat interval f-vectors

Remarks:

** M-sequence property fails for the affine group C̃2:∑
qℓ(w) = 1 + 3q + 5q2 + 8q3 + · · ·

Consequence: H∗(Xw) not necessarily generated in degree one

for affine Schubert varieties Xw.

** M-sequence property fails for general intervals in finite B4:∑
w≤x≤w0

qℓ(x)−ℓ(w) = 1 + 4q + 11q2 + · · ·

for certain w ∈ B4.

0



Bruhat interval f-vectors

The increasing inequalities f0 ≤ f1 ≤ · · · ≤ f⌈ℓ(w)/2⌉ have decreas-

ing counterparts at the upper end of the Bruhat interval

— but the information we are able to give about this is much

weaker.
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Bruhat interval f-vectors

Theorem 6. For all k ≥ 1 there exists a number Nk, such that

for every finite Coxeter group (W, S) and every w ∈W such that

ℓ(w) ≥ Nk we have that

fw
ℓ(w)−k ≥ fw

ℓ(w)−k+1 ≥ · · · ≥ fw
ℓ(w).

0



Bruhat interval f-vectors

Questions

1. Do fw-vectors satisfy more inequalities?

(Noticed by D. Stanton: unimodality fails on some intervals in

Young’s lattice. Unimodality might be true for full intervals, i.e.

J = ∅.)
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Bruhat interval f-vectors

Questions

1. Does fw-vector satisfy more inequalities?

2. Are the theorems true for general (non-crystallographic) Cox-

eter groups?

0



Bruhat interval f-vectors

Questions

1. Does fw-vector satisfy more inequalities?

2. Are the theorems true for general (non-crystallographic) Cox-

eter groups?

3. Does there exist some α < 1 such that

fw
⌊α·ℓ(w)⌋ ≥ fw

⌊α·ℓ(w)⌋+1 ≥ · · · ≥ fw
ℓ(w).

Will α = 3
4 do?

0



Bruhat interval f-vectors

Questions

1. Does fw-vector satisfy more inequalities?

2. Are Theorems 1–2 true for general (non-crystallographic)

Coxeter groups?

3. Does there exist some α < 1 such that

fw
⌊α·ℓ(w)⌋ ≥ fw

⌊α·ℓ(w)⌋+1 ≥ · · · ≥ fw
ℓ(w).

Will α = 3
4 do?

4. What can be said about the shape of general intervals [u, w]J?

(I.e., for u 6= e)
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Bruhat interval f-vectors
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Def: An upper chain decomposition is a partition of [e, w]J into

pairwise disjoint saturated chains

ui < ui+1 < · · · < uk

such that ℓ(j) = j for all j = i, . . . , k, and k ≥ ℓ(w)− i.
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Bruhat interval f-vectors

Questions

5. Do the intervals [e, w]J admit upper chain decompositions?

Note:

1. This would imply Thms 6 and 7.

2. Specializes to symmetric chain decomposition, if fw-vector is

symmetric.

3. Symmetric chain decomposition question still open for inter-

vals [∅, λ] in Young’s lattice, λ of rectangular shape.
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Shape of Bruhat intervals
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THE END
0



Bruhat order

TOPIC 2: Global interval structure

0



Interval structure

Theorem 7. (Verma 68)

∑

u≤x≤w

(−1)ℓ(x) = 0

Equivalently, intervals [u, w] “have the Euler characteristic of a

sphere”: # odd card chains – # even card chains = (−1)dim

Theorem 8. (Bj-Wachs 82)

Intervals [u, w]J are “lexicographically shellable”.
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Interval structure

Example: Lex. shelling of W = S3, generators S = {a, b}

a b

ab ba

aba = bab

e

Choosing “aba” as reduced expression for the top element the

induced labels of the four maximal chains are

λ(aba � ∗ba � ∗ ∗ a � ∗ ∗ ∗) = (1,2,3),

λ(aba � ∗ba � ∗b ∗ � ∗ ∗∗) = (1,3,2),

λ(aba � ab ∗ � ∗ b ∗ � ∗ ∗∗) = (3,1,2),

λ(aba � ab ∗ � a ∗ ∗ � ∗ ∗ ∗) = (3,2,1).

0



Interval structure

1243 1324 2134

1342 2143 2314 3124

2341 3142 3214

a

a

b

b c

c

α

α

β

β γγ

δ

δ

A

A BB

C

C

Regular CW interpretation of the Bruhat interval [1234,3241] in S4.
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Interval structure

Theorem 9. (Bj. 84) Let [u, w] be a Bruhat interval. Then ∃ reg-

ular CW decomposition Γu,w of the (ℓ(w)− ℓ(u)−2)-dimensional

sphere with cells σx, u < x < w, such that

dim(σx) = ℓ(x)− ℓ(u)− 1

and

σx ⊆ σz ⇔ x ≤ z.

Proof idea: via lexicographic shellability of Bruhat order

0



Interval structure

x1 x2 x3 xk

y1 y2 y3 yk

A k-crown.

Special case: All Bruhat intervals of length 3 are k-crowns, k ≥ 2.

Finite case ⇒ only k = 2,3,4 possible, for type H also k = 5.

0



Interval structure

Theorem 10. (Dyer 91). For each m, there exist only finitely

many isomorphism classes of length m intervals in finite Coxeter

groups.

Theorem 11. (Hultman 03). There are 24 types of length 4

intervals in finite Weyl groups.

Only 7 of them occur in the symmetric groups.

All 24 show up in F4.

0



Interval structure

A Bruhat interval of length 4

(rendered as a CW complex)

0



Interval structure

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

All length 4 intervals that appear in finite Weyl groups.

0



Interval structure

What about intervals of length > 4?

∃ classification (up to (anti)isomorphism), due to F. Incitti:

* Length 5,6,7 non-lattice intervals in type A:

there are 217 such of length 7

* Length 5 non-lattice intervals in type B: there are 46 such

* Length 5 non-lattice intervals in type D: there are 12 such

0



Coxeter groups

TOPIC 3: Some other Bruhat-related posets coming from

algebraic geometry

0



Coxeter groups

Let Invol(W )
def
= involutions of W with induced Bruhat order.

Studied by Richardson-Springer ’94 in connection with certain

orbit spaces arising from real reductive Lie geoups,

then combinatorially by Incitti ’03 and Hultman ’04.

Has wonderful properties as poset, much as W itself:

pure, intervals = regular CW spheres, . . .

Poset rank function: rk(w) = ℓ(w)+aℓ(w)
2 ,

where aℓ(w) is absolute length.

0



Coxeter groups

3412

4123

2314
3124

3214

2134

4321

4231

4213

1234

1342 1423

2143

1243 1324

23411432

2431
3241 4132

3421 4312

2413 3142

3412

2143

1324

1234

1432

1243

4231

3214

2134

4321

Involutions in S4 Invol(S4)
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Coxeter groups

Open problems:

1. Are there only finitely many isomorphism types of intervals of

length k in Invol(W ), W finite ?

2. Are intervals in Invol(W ) shellable?

(Proved for finite groups of classical type by Incitti)
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Coxeter groups

Greater generality:

Let θ : W →W be induced by an involutive automorphism of the

Coxeter diagram. The set of twisted involutions (with respect

to θ) is {w ∈W | θ(w) = w−1}.

Invol(W ) poset is part of the more general construction of poset

of twisted involutions, containing both Invol(W ) and Bruhat or-

der on W itself as special cases.
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Coxeter groups

Let Int(W )
def
= Bruhat intervals of W ordered by containment.

Inherits good properties as poset from W :

pure, shellable, intervals = regular CW spheres, . . .

Studied by Lusztig and Rietsch ’98 as poset of cells of a decom-

position of the totally nonnegative part of a flag variety over R

(for a reductive algebraic group).

Further poset-related work on totally nonnegative Grassmanni-

ans and partial flag varieties by Postnikov, Rietsch and Williams.

Related work by Fomin and Shapiro.
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Coxeter groups

“Theorem-Definition” (R-polynomials):

There is a unique family of polynomials {Ru,v(q)}u,v∈W ⊆ Z[q]

satisfying the following conditions:

(i) Ru,v(q) = 0 if u 6≤ v;

(ii) Ru,v(q) = 1 if u = v;

(iii) if vs < v then

Ru,v(q) =

{
Rus,vs(q), if us < u,
qRus,vs(q) + (q − 1)Ru,vs(q), if us > u.
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Coxeter groups

“Theorem-Definition” (Kazhdan-Lusztig polynomials):

There exists a unique family of polynomials {Pu,v(q)}u,v∈W ⊆ Z[q]
satisfying the following conditions:

(i) Pu,v(q) = 0 if u 6≤ v;

(ii) Pu,v(q) = 1 if u = v;

(iii) deg(Pu,v(q)) ≤
1
2(ℓ(u, v)− 1), if u < v;

(iv)

qℓ(u,v) Pu,v

(
1

q

)
=

∑

a∈[u,v]

Ru,a(q)Pa,v(q), if u ≤ v.

0



Coxeter groups

Two famous conjectures for K-L polynomials:

1. Nonnegativity: Pu,v(q) ∈ N[q]

2. Combinatorial invariance:

[u, v] ∼= [x, y] =⇒ Pu,v(q) = Px,y(q)

0



Coxeter groups

Two famous conjectures for K-L polynomials:

1. Nonnegativity: Pu,v(q) ∈ N[q]

KNOWN: True for all crystallographic groups

(m(s, s′) ∈ {2,3,4,6,∞})

2. Combinatorial invariance:

[u, v] ∼= [x, y] =⇒ Pu,v(q) = Px,y(q)

KNOWN: Partial results by Brenti-Caselli-Marietti and du Cloux
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