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COUNTING MULTIDERANGEMENTS BY EXCEDANCES

CHAK-ON CHOW

Abstract. We consider the enumeration of multiderangements of a multiset n =
{1n1 , 2n2 , . . . ,mnm} by the number of excedances. We prove several properties, includ-
ing the invariance under permutations of {n1, n2, . . . , nm}, the symmetry, recurrence
relations, the real-rootedness, and a combinatorial expansion, of the generating func-
tion dn(x) of multiderangements by excedances, thus generalizing the corresponding
results for the classical derangements. By a further extension, the generating function
for multipermutations by numbers of excedances and fixed points is also given.

1. Introduction

In [3] Brenti considered a class of derangement polynomials defined for n > 1 by

dn(x) =
∑

w∈Dn

xe(w),

and conjectured that dn(x) has only real zeros, where e(w) = #{i ∈ [n] : wi > i} is the
number of excedances of w = w1w2 · · ·wn ∈ Sn and Dn is the set of derangements in
Sn. Brenti remarked in [4] that this conjecture had been settled by E. Rodney Canfield
(unpublished). A published proof of this conjecture later appeared in the work of Zhang
[16, 17] which involved the recurrence relation for the dn(x)’s, namely,

(1) dn+1(x) = nx[dn(x) + dn−1(x)] + x(1− x)d′n(x).

There are a number of possible lines of generalizations of the above mentioned results.
For instance, one may consider generalizations to other Coxeter families. See, e.g., [5]
for the type B case. Another line of generalization, which is the focus of this work, is
to consider multiderangements. Let n = {1n1 , 2n2 , . . . ,mnm} be a multiset and n :=
n1 + · · ·+ nm. A multipermutation w = w1w2 · · ·wn of n is called a multiderangement
if wi 6= pi for i = 1, 2, . . . , n, where the word δ(w) = p1p2 · · · pn is the nondecreasing
rearrangement of w. An integer i ∈ [n] is an excedance of w = w1w2 · · ·wn if wi > pi.
Denote by exc(w) := {i ∈ [n] : wi > pi} the excedance set, and by e(w) := #exc(w)
the number of excedances, of w. Every multiderangement w = w1w2 · · ·wn, regarded as
a multipermutation of n, can be represented by the two-line representation

(
δ(w)

w

)
or by

the one-line representation w1w2 · · ·wn. For further details on multipermutations, their
representations, cycle factorizations and related algorithms, see [7]. Denote by D(n)
the set of all multiderangements of n.
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{n1, n2, . . . , nm} dn(x)

{1, 1} x
{1, 1, 1} x + x2

{2, 2} x2

{2, 1, 1} 2x2

{1, 1, 1, 1} x + 7x2 + x3

{2, 2, 1} 2x2 + 2x3

{2, 1, 1, 1} 6x2 + 6x3

{1, 1, 1, 1, 1} x + 21x2 + 21x3 + x4

{3, 3} x3

{3, 2, 1} 3x3

{3, 1, 1, 1} 6x3

{2, 2, 2} x2 + 8x3 + x4

{2, 2, 1, 1} 4x2 + 21x3 + 4x4

{2, 1, 1, 1, 1} 14x2 + 56x3 + 14x4

{1, 1, 1, 1, 1, 1} x + 51x2 + 161x3 + 51x4 + x5

Table 1. dn(x) for n = 2, 3, . . . , 6.

The generating function of multiderangements by excedances is defined as

dn(x) =
∑

w∈D(n)

xe(w) =
∑
k>0

Θ(n, k)xk,

where Θ(n, k) = #{w ∈ D(n) : e(w) = k}. The goal of this work is to establish several
properties of dn(x). In the next section, we prove the invariance under permutations of
{n1, n2, . . . , nm}, and the symmetry, of dn(x). In Section 3, we compute the recurrence
relations which dn(x) satisfies. In Section 4, we prove the real-rootedness of dn(x)
from which we deduce the unimodality and log-concavity of the coefficients of dn(x).
In Section 5, we give a combinatorial expansion of dn(x), which parallels the one for
dn(x). In the final section, we extend the generating function to the one counting
multipermutations by the numbers of excedances and fixed points.

2. Basic properties

We establish some basic properties of dn(x) in this section. The first few non-zero
dn(x)’s are listed in Table 1. If n1 = n2 = · · · = nm = 1, then n = {1, 2, . . . ,m} so that
dn(x) = dm(x), whose properties are known [3, 16, 17].

Property 2.1. The following hold:

(i) If max
16i6m

ni > n/2, then D(n) = ∅ so that dn(x) ≡ 0.

(ii) If ni = n/2 for some i ∈ [m], then dn(x) =
(

n/2
n1,...,ni−1,ni+1,...,nm

)
xn/2.

(iii) Let n = {1n1 , 2n2 , . . . ,mnm} and n′ = {1ni1 , 2ni2 , . . . ,mnim} be two multisets
such that (i1, i2, . . . , im) is a permutation of (1, 2, . . . ,m). Then dn(x) ≡ dn′(x).
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Properties 2.1(i)–(ii) are easily proved. Using MacMahon’s Master Theorem [9, p. 97–
98], Askey and Ismail [1] showed that
(2) ∑

n1,...,nm>0

dn(x)xn1
1 · · ·xnm

m =
1

1− xe2 − (x + x2)e3 − · · · − (x + x2 + · · ·+ xm−1)em

,

where ei (2 6 i 6 m) is the ith elementary symmetric function in the commuting
indeterminates x1, . . . , xm. See [13, Chapter 7] for the definitions of undefined terms
concerning symmetric functions. The identity (2) was also obtained by Kim and Zeng
using their U - and V -decompositions of derangements [8] and Foata’s factorization of
multipermutations [6, 7]. Again by using MacMahon’s Master Theorem, Zeng enumer-
ated in [15] multipermutations and multiderangements by the numbers of cycles and
excedances.

Property 2.1(iii) is implicit in (2). To wit, recall that [13, Proposition 7.4.1] if λ ` n,
then

(3) eλ =
∑
µ`n

Mλ,µmµ,

where eλ is the elementary symmetric function indexed by λ, mµ the monomial sym-
metric function indexed by µ, Mλ,α the number of (0, 1)-matrices A = (aij)i,j>1 with
row sum vector row(A) = λ and column sum vector col(A) = α, and α = (α1, α2, . . .) a
weak composition of n. Expanding the right side of (2), we have∑

n1,...,nm>0

dn(x)xn1
1 · · ·xnm

m(4)

= 1 +
∑
l>1

( m∑
k=2

(x + x2 + · · ·+ xk−1)ek

)l

= 1 +
∑
l>1

∑
26k1,...,kl6m

ek1 · · · ekl

l∏
j=1

(x + x2 + · · ·+ xkj−1)

= 1 +
∑
l>1

∑
26k1,...,kl6m

∑
µ`k1+···+kl

M(k1,...,kl),µmµ

l∏
j=1

(x + x2 + · · ·+ xkj−1),

where the last equality follows from (3). Since mµ is a sum of distinct permutations
of monomials xn1

1 · · ·xnm
m having µ equal to the weakly decreasing rearrangement of its

exponents, equating the coefficients of xn1
1 · · ·xnm

m , we have that dn(x) ≡ dn′(x), where
n′ is a multiset obtained by a permutation of n.

If nj = n/2 for some j ∈ [m], then ni 6 n/2 for all i ∈ [m] so that max
16i6m

ni = n/2

and Property 2.1(ii) implies that dn(x) is symmetric of degree n − max
16i6m

ni and with

center of symmetry at n/2. This symmetry result actually holds for arbitrary multiset
n = {1n1 , 2n2 , . . . ,mnm} such that max

16i6m
ni 6 n/2. See Proposition 2.3 below.

We need some notations and results from [7] for the proof of Proposition 2.3.
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Let A be a totally order alphabet and A∗ be the free monoid generated by A. A word
w = w1w2 · · ·wn ∈ A∗ is said to be dominated if w1 > wi for i = 2, 3, . . . , n. Let w and
w′ be A-words of the same length. The two-row matrix

(
w′

w

)
is called a flow. If w′ is a

rearrangement of w, then
(

w′

w

)
is called a circuit. Denote by δw := w2w3 · · ·wnw1 the

cyclic shift of the word w = w1w2 · · ·wn. A circuit c is said to be dominated if it is
of the form

(
δw
w

)
for some dominated word w. If c =

(
δw
w

)
is a dominated circuit, then

let Fc := Fw, the first letter of w. A dominated circuit factorization of a circuit c is
a sequence (d1, d2, . . . , dr) of dominated circuits with the property that c = d1d2 · · · dr

and Fd1 6 Fd2 6 · · · 6 Fdr. The next result is due to Foata [7, Theorem 10.4.1].

Theorem 2.2. Every nonempty circuit admits exactly one dominated circuit factoriza-
tion.

For instance, for the word w = 31514226672615, its nondecreasing rearrangement
δ(w) = 11122234556667 and the circuit

(
δ(w)

w

)
admits the following dominated circuit

factorization:(
δ(w)

w

)
=

(
1 1 1 2 2 2 3 4 5 5 6 6 6 7
3 1 5 1 4 2 2 6 6 7 2 6 1 5

)
=

(
1 1 2 3
3 1 1 2

)(
4 2 2 6
6 4 2 2

)(
6
6

)(
5 1 6
6 5 1

)(
5 7
7 5

)
.

Observe that the columns of the dominated circuits in the factorization are precisely
those of

(
δ(w)

w

)
, and that in each dominated circuit(

ai ai−1 · · · aj−1 aj−2 · · · a1 a0

a0 ai · · · aj aj−1 · · · a2 a1

)
,

each (vertical) occurrence of excedance corresponds to a (horizontal) occurrence of
descent. It is clear that each dominated circuit is uniquely determined by the bottom
word of the circuit. Thus, when we talk about dominated circuits in the sequel, we mean
the bottom word of the circuit. Moreover, reversing the bottom word turns descents
into non-descents, hence excedances into non-excedances, and vice versa.

Proposition 2.3. For each multiset n = {1n1 , 2n2 , . . . ,mnm}, dn(x) is a symmetric
polynomial of degree n− max

16i6m
ni and with center of symmetry at n/2 if it is not iden-

tically zero.

Proof. Let w ∈ D(n). Denote by (d1, d2, . . . , dr) the dominated circuit factorization of

w. For i = 1, 2, . . . , r, let d̃i be the dominated circuit obtained by cyclic permutation
of the reversal of di. Let w̃ ∈ D(n) be the multiderangement whose dominated circuit

factorization is (d̃1, d̃2, . . . , d̃r). By the remark preceding the present proposition, we
have e(w̃) = n−e(w). The map Φ: D(n) −→ D(n) defined by Φ(w) = w̃ for w ∈ D(n)
is thus a bijection sending D(n) onto itself such that e(Φ(w)) = e(w̃) = n− e(w). This
establishes the symmetry of dn(x).

That dn(x) has center of symmetry at n/2 is clear.
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It remains to prove that deg dn(x) = n − max
16i6m

ni. By virtue of Property 2.1(iii),

we may assume that n1 > n2 > · · · > nm so that n1 = max
16i6m

ni. To show that

deg dn(x) = n − n1, we demonstrate explicitly a w ∈ D(n) with e(w) = n − n1. Let
w be the word obtained by concatenating n2 copies of 2’s, n3 copies of 3’s, . . . , nm

copies of m’s, and n1 copies of 1’s. Also, let δ(w) = p1p2 · · · pn be the nondecreasing
rearrangement of w. Since n1 > n2 > · · · > nm, it is clear that wi 6= pi for all i ∈ [n] so
that w ∈ D(n) with the first n − n1 positions being excedances and the remaining n1

positions non-excedances. �

It is worth mentioning that in the classical derangement case, i.e., n = {1, 2, . . . ,m},
the (unique) derangement w ∈ D(n) with e(w) = m − 1 is w = 23 · · ·m1; also, the
bijection Φ: D(n) −→ D(n) in the above proof is precisely the inversion map Φ(w) =
w−1.

3. Recurrence relations

We derive in this section the recurrence relations for dn(x). The multi-analogue of
(1) is the following.

Proposition 3.1. Let n = {1n1 , 2n2 , . . . ,mnm}. The polynomial dn(x) satisfies

(5) dn+em+1(x) = x[n1dn−e1(x) + · · ·+ nmdn−em(x)] + nxdn(x) + x(1− x)d′n(x)

and for j = 1, 2, . . . ,m,

(nj + 1)dn+ej
(x) = x[n1dn−e1(x) + · · ·+ nj−1dn−ej−1

(x) + nj+1dn−ej+1
(x)

(6)

+ · · ·+ nmdn−em(x)] + [(n− nj)x− nj]dn(x) + x(1− x)d′n(x),

where n + ej (respectively n − ej) denotes the multisets obtained from n by adjoining
an additional copy (respectively by removing a copy) of the letter j.

Proof. There are three cases to consider.

Case 1: Let w = w1 · · ·wnwn+1 ∈ D(n + em+1). Since wn+1 6= m + 1 and m + 1
occurs only once in w, there exists exactly one i ∈ [n] such that wi = m + 1. It is clear
that i is an excedance of w. Consider the word w′ = w1 · · ·wi−1wn+1wi+1 · · ·wn(m + 1)
obtained by swapping the ith and the (n + 1)st letters of w. If wn+1 6= pi, then
w1 · · ·wi−1wn+1wi+1 · · ·wn ∈ D(n) and

e(w) = e(w1 · · ·wi−1wn+1wi+1 · · ·wn) + χ(i 6∈ exc(w1 · · ·wi−1wn+1wi+1 · · ·wn)),

where χ(P ) = 1 if P is true, and 0 otherwise. If wn+1 = pi, then w1 · · ·wi−1wi+1 · · ·wn ∈
D(n−epi

) and e(w) = e(w1 · · ·wi−1wi+1 · · ·wn)+1, where n−epi
is the multiset obtained

from n by removing one copy of the pith type element. Putting pieces together, we
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have

dn+em+1(x) =
n∑

i=1

∑
w∈D(n)

xe(w)+χ(i6∈exc(w)) +
n∑

i=1

∑
w∈D(n−epi )

xe(w)+1

=
∑

w∈D(n)

[e(w)xe(w) + (n− e(w))xe(w)+1] +
n∑

i=1

∑
w∈D(n−epi )

xe(w)+1

= xd′n(x) + nxdn(x)− x2d′n(x) + x

n∑
i=1

dn−epi
(x)

= x[n1dn−e1(x) + · · ·+ nmdn−em(x)] + nxdn(x) + x(1− x)d′n(x).

Case 2: Consider now the case that j = m. Let w = w1 · · ·wnwn+1 ∈ D(n + em).
There exist i1, . . . , inm+1 ∈ [n − nm] such that wi1 = · · · = winm+1 = m. It is clear
that i1, . . . , inm+1 are excedances of w. For i ∈ {i1, . . . , inm+1}, consider the word
w1 · · ·wi−1wn+1wi+1 · · ·wnm obtained by swapping the ith and the (n + 1)st letters of
w. If wn+1 6= pi, then w1 · · ·wi−1wn+1 wi+1 · · ·wn ∈ D(n) and

e(w) = e(w1 · · ·wi−1wn+1wi+1 · · ·wn) + χ(i 6∈ exc(w1 · · ·wi−1wn+1wi+1 · · ·wn)).

If wn+1 = pi, then w1 · · ·wi−1wi+1 · · ·wn ∈ D(n − epi
) and e(w) = e(w1 · · ·wi−1

wi+1 · · ·wn) + 1. The map

w 7→

{
w1 · · ·wi−1wn+1wi+1 · · ·wn if wn+1 6= pi,

w1 · · ·wi−1wi+1 · · ·wn if wn+1 = pi,

is a (nm + 1)-to-one correspondence between D(n + em) and D(n)∪D(n− epi
). Iden-

tifying now the indices i1, . . . , inm+1, there are e(w1 · · ·wi−1wn+1wi+1 · · ·wn)− nm “dis-
tinct” excedances and n−nm−e(w1 · · ·wi−1wn+1wi+1 · · ·wn) “distinct” non-excedances
in [n− nm]. Consequently, we have

(nm + 1)dn+em(x) =
n−nm∑
i=1

( ∑
w∈D(n)

xe(w)+χ(i6∈exc(w)) +
∑

w∈D(n−epi )

xe(w)+1

)

=
∑

w∈D(n)

[(e(w)− nm)xe(w) + (n− nm − e(w))xe(w)+1] + x

n−nm∑
i=1

dn−epi
(x)

= xd′n(x)− nmdn(x) + (n− nm)xdn(x)− x2d′n(x) + x
n−nm∑
i=1

dn−epi
(x)

= x[n1dn−e1(x) + · · ·+ nm−1dn−em−1(x)] + [(n− nm)x− nm]dn(x)

+ x(1− x)d′n(x).
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Case 3: Let ω be the cyclic permutation of (1, 2, . . . ,m), i.e., ω(i) = i + 1 for
i = 1, 2, . . . ,m− 1 and ω(m) = 1. For j = 1, 2, . . . ,m− 1, denote by

ωm−jn = {ωm−j(1)n1 , ωm−j(2)n2 , . . . , ωm−j(m)nm}
= {1nj+1 , 2nj+2 , . . . , (m− j)nm , (m− j + 1)n1 , . . . , (m− 1)nj−1 , mnj}

the multiset obtained by applying ωm−j to the elements of n. It is clear that n + ej =
ω−(m−j)(ωm−jn + em). By Property 2.1(iii) and Case 2, we have

(nj + 1)dn+ej
(x) = (nj + 1)dω−(m−j)(ωm−jn+em)(x)

= (nj + 1)dωm−jn+em
(x)

= x[nj+1dωm−jn−e1
(x) + · · ·+ nj−1dωm−jn−em−1

(x)]

+ [(n− nj)x− nj]dωm−jn(x) + x(1− x)d′ωm−jn(x)

= x[nj+1dω−(m−j)(ωm−jn−e1)(x) + · · ·+ nj−1dω−(m−j)(ωm−jn−em−1)(x)]

+ [(n− nj)x− nj]dn(x) + x(1− x)d′n(x)

= x[n1dn−e1(x) + · · ·+ nj−1dn−ej−1
(x) + nj+1dn−ej+1

(x)

+ · · ·+ nmdn−em(x)] + [(n− nj)x− nj]dn(x) + x(1− x)d′n(x),

as desired. �

In case n1 = n2 = · · · = nm = 1, (5) reduces to (1) with n = n1 + · · · + nm = m.
Note that if we regard n = {1n1 , . . . ,mnm} as the multiset {1n1 , . . . ,mnm , (m+1)nm+1},
where nm+1 := 0, then (6) with m + 1 in place of m and j = m + 1 becomes (5).

By exploiting (2), an alternative proof of the recurrence relation (6) can be given.
Towards this end, we first note the following properties of the elementary symmetric

functions ek = ek(x1, . . . , xm):

(i) ek = êj,k + xj êj,k−1,
(ii) ∂

∂xj
ek = êj,k−1,

(iii)
∑m

j=1 êj,k = (m− k)ek,

(iv)
∑m

j=1 xj êj,k = (k + 1)ek+1,

where êj,k = ek(x1, . . . , x̂j, . . . , xm) denotes the kth elementary symmetric function in
the alphabet {x1, . . . , xm} \ {xj}, and j, k = 1, 2, . . . ,m. We have

I =
∑

n1,...,nm>0

(nj + 1)dn+ej
(x)xn1

1 · · ·xnm
m

=
∂

∂xj

∑
n1,...,nm>0

dn+ej
(x)xn1

1 · · ·xnj+1
j · · ·xnm

m

=
∂

∂xj

( ∑
n1,...,nj ,...,nm>0

dn(x)xn1
1 · · ·xnm

m

−
∑

n1,...,nj−1,nj+1,...,nm>0

dn̂(x)xn1
1 · · ·xnj−1

j−1 x
nj+1

j+1 · · ·xnm
m

)
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=
∂

∂xj

(
1

1−
∑m

k=2(x + · · ·+ xk−1)ek

)
=

∑m
k=2(x + · · ·+ xk−1)êj,k−1

(1−
∑m

k=2(x + · · ·+ xk−1)ek)2
,

II =
∑

n1,...,nm>0

∑
i6=j

xnidn−ei
(x)xn1

1 · · ·xnm
m

=
∑
i6=j

[
xx2

i

∑
n1,...,ni−1,ni+1,...,nm>0

ni>1

(ni − 1)dn−ei
(x)xn1

1 · · ·xni−2
i · · ·xnm

m

+ xxi

∑
n1,...,ni−1,ni+1,...,nm>0

ni>1

dn−ei
(x)xn1

1 · · ·xni−1
i · · ·xnm

m

]

=
∑
i6=j

[
xx2

i

∂

∂xi

(
1

1−
∑m

k=2(x + · · ·+ xk−1)ek

)
+

xxi

1−
∑m

k=2(x + · · ·+ xk−1)ek

]

=
∑
i6=j

xx2
i

∑m
k=2(x + · · ·+ xk−1)êi,k−1

(1−
∑m

k=2(x + · · ·+ xk−1)ek)2
+

xêj,1

1−
∑m

k=2(x + · · ·+ xk−1)ek

=

∑
i6=j xi

∑m
k=2(x

2 + · · ·+ xk)(ek − êi,k) + xêj,1(1−
∑m

k=2(x + · · ·+ xk−1)ek)

(1−
∑m

k=2(x + · · ·+ xk−1)ek)2

=
xêj,1 −

∑m
k=2(x

2 + · · ·+ xk)
∑

i6=j xiêi,k

(1−
∑m

k=2(x + · · ·+ xk−1)ek)2

=
xêj,1 −

∑m
k=2(x

2 + · · ·+ xk)(kek+1 + êj,k+1)

(1−
∑m

k=2(x + · · ·+ xk−1)ek)2
,

III =
∑

n1,...,nm>0

[(n− nj)x− nj]dn(x)xn1
1 · · ·xnm

m

=
∑
i6=j

x
∑

n1,...,nm>0

nidn(x)xn1
1 · · ·xnm

m −
∑

n1,...,nm>0

njdn(x)xn1
1 · · ·xnm

m

=
∑
i6=j

xxi
∂

∂xi

(
1

1−
∑m

k=2(x + · · ·+ xk−1)ek

)
− xj

∂

∂xj

(
1

1−
∑m

k=2(x + · · ·+ xk−1)ek

)
=

∑
i6=j xxi

∑m
k=2(x + · · ·+ xk−1)êi,k−1 − xj

∑m
k=2(x + · · ·+ xk−1)êj,k−1

(1−
∑m

k=2(x + · · ·+ xk−1)ek)2

=

∑m
k=2(x

2 + · · ·+ xk)
∑

i6=j xiêi,k−1 −
∑m

k=2(x + · · ·+ xk−1)xj êj,k−1

(1−
∑m

k=2(x + · · ·+ xk−1)ek)2
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=

∑m
k=2(x

2 + · · ·+ xk)kek −
∑m

k=2(x + 2x2 + · · ·+ 2xk−1 + xk)xj êj,k−1

(1−
∑m

k=2(x + · · ·+ xk−1)ek)2

=

∑m
k=2(x

2 + · · ·+ xk)kek −
∑m

k=2(x + 2x2 + · · ·+ 2xk−1 + xk)(ek − êj,k)

(1−
∑m

k=2(x + · · ·+ xk−1)ek)2

=

∑m
k=2(−x + (k − 2)x2 + · · ·+ (k − 2)xk−1 + (k − 1)xk)ek

(1−
∑m

k=2(x + · · ·+ xk−1)ek)2

+

∑m
k=2(x + 2x2 + · · ·+ 2xk−1 + xk)êj,k

(1−
∑m

k=2(x + · · ·+ xk−1)ek)2
,

IV =
∑

n1,...,nm>0

x(1− x)d′n(x)xn1
1 · · ·xnm

m

= x(1− x)
∂

∂x

(
1

1−
∑m

k=2(x + · · ·+ xk−1)ek

)
=

x(1− x)
∑m

k=2(1 + 2x + 3x2 + · · ·+ (k − 1)xk−2)ek

(1−
∑m

k=2(x + · · ·+ xk−1)ek)2

=

∑m
k=2(x + · · ·+ xk−1 − (k − 1)xk)ek

(1−
∑m

k=2(x + · · ·+ xk−1)ek)2
.

It is not hard to see that
I = II + III + IV,

so that∑
n1,...,nm>0

dn+ej
(x)xn1

1 · · ·xnm
m =

∑
n1,...,nm>0

{x[n1dn+e1(x) + · · ·+ nj−1dn+ej−1
(x)

+ nj+1dn+ej+1
(x) + · · ·+ nmdn+em(x)]

+ [(n− nj)x− nj]dn(x) + x(1− x)d′n(x)}xn1
1 · · ·xnm

m .

Equating the coefficients of xn1
1 · · ·xnm

m , (6) follows.

4. Real-rootedness

A real polynomial f(x) is standard if its leading coefficient is positive; it is simply
real-rooted if all its zeros are real and simple. Let f(x) and g(x) be simply real-rooted
standard polynomials of degrees n and n−1, respectively. Then g(x) is said to interlace
f(x) if

(7) θ1 6 ξ1 6 θ2 6 ξ2 6 · · · 6 θn−1 6 ξn−1 6 θn,

where θ1, . . . , θn and ξ1, . . . , ξn−1 are the zeros of f(x) and g(x), respectively. If all the
inequalities in (7) are strict, then g(x) is said to strictly interlace f(x).

We shall need the following easily established fact about interlacing polynomials:

(*) If f(x) and g(x) are two simply real-rooted standard polynomials of degrees n
and n − 1, respectively, and g(x) strictly interlaces f(x), then sgn g(θi) = (−1)n−i for
i = 1, 2, . . . , n, and sgn f(ξj) = (−1)n−j for j = 1, 2, . . . , n−1, where θ1 < θ2 < · · · < θn

and ξ1 < ξ2 < · · · < ξn−1 are the simple real zeros of f(x) and g(x), respectively.
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Theorem 4.1. For each multiset n = {1n1 , 2n2 , . . . ,mnm}, the polynomial dn(x) is real-
rooted. The multiplicity of 0 as a zero of dn(x) is equal to max

16i6m
ni if dn(x) is not

identically zero.

Proof. For the sake of simplicity, we let N(n) := max16i6m ni. By virtue of Proposi-
tion 2.3, dn(x) is a polynomial in x of degree n − N(n) and with center of symmetry
at n/2. The symmetry of dn(x) then implies that the lowest order term of dn(x) has

degree N(n). Thus, dn(x) = xN(n)d̃n(x) for some symmetric polynomial d̃n(x) of degree
n − 2N(n) and with positive constant term. The multiplicity of 0 as a zero of dn(x)
being equal to N(n) follows.

To prove the real-rootedness of dn(x), we proceed by proving that d̃n(x) (respectively,

d̃n+ej
(x)) strictly interlaces d̃n+ej

(x) (respectively, d̃n(x)) if deg d̃n+ej
(x) = deg d̃n(x)+1

(respectively, deg d̃n(x) = deg d̃n+ej
(x)+1) by induction on n = n1 + · · ·+nm, the cases

n = 2, 3, 4 being clear from the first eight entries of Table 1. Assume now that the result
holds for any multiset n′ such that n′ 6 n, where n > 4. Let n′′ be a multiset such
that n′′ = n + 1, which can be obtained from a multiset n = {1n1 , 2n2 , . . . ,mnm} with
n1 + · · · + nm = n by adjoining an additional copy of the jth type element for some
j ∈ [m + 1] (see the paragraph following the proof of Proposition 3.1). If N(n + ej) >
(n+1)/2, then Property 2.1(i) implies that dn+ej

(x) ≡ 0. If N(n+ej) = (n+1)/2, then
Property 2.1(i) implies that dn+ej

(x) is a monomial having only the trivial zero x = 0
of multiplicity N(n + ej). If N(n + ej) < (n + 1)/2, there are two cases to consider,
namely

(a) N(n + ej) = N(n) + 1,
(b) N(n + ej) = N(n).

Note that in Case (a),

deg d̃n+ej
(x) = n + 1− 2N(n + ej) = n− 2N(n)− 1 = deg d̃n(x)− 1,

and in Case (b)

deg d̃n+ej
(x) = n + 1− 2N(n + ej) = n− 2N(n) + 1 = deg d̃n(x) + 1.

Let x1 < x2 < · · · < xn−2N(n) < 0 be the real zeros of d̃n(x). Let also x0 := −∞ and
xn−2N(n)+1 := 0.

Since dn(x) = xN(n)d̃n(x), differentiation with respect to x gives that

d′n(x) = N(n)xN(n)−1d̃n(x) + xN(n)d̃′n(x).

Since d̃′n(x) strictly interlaces d̃n(x), (*) above implies that

(8) sgn d′n(xi) = (−1)N(n)(−1)n−2N(n)−i = (−1)n−N(n)−i

for i = 1, 2, . . . , n− 2N(n).
Let k ∈ [m + 1] \ {j}. If N(n− ek) = N(n), then

deg d̃n−ek
(x) = n− 1− 2N(n) = deg d̃n(x)− 1
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so that by the induction hypothesis, d̃n−ek
(x) strictly interlaces d̃n(x). Fact (*) above

then yields that sgn d̃n−ek
(xi) = (−1)n−2N(n)−i for i = 1, 2, . . . , n − 2N(n). Since

dn−ek
(x) = xN(n)d̃n−ek

(x), we have

(9) sgn dn−ek
(xi) = (−1)N(n)(−1)n−2N(n)−i = (−1)n−N(n)−i

for i = 1, 2, . . . , n− 2N(n).
If N(n− ek) = N(n)− 1, then

deg d̃n−ek
(x) = n− 1− 2(N(n)− 1) = deg d̃n(x) + 1

so that the induction hypothesis then implies that d̃n(x) strictly interlaces d̃n−ek
(x).

Fact (*) then yields that sgn d̃n−ek
(xi) = (−1)n+1−2N(n)−i for i = 1, 2, . . . , n − 2N(n).

Since dn−ek
(x) = xN(n)−1d̃n−ek

(x), we have

(10) sgn dn−ek
(xi) = (−1)N(n)−1(−1)n+1−2N(n)−i = (−1)n−N(n)−i

for i = 1, 2, . . . , n− 2N(n).
Setting now x = xi in (6), we have

(nj + 1)dn+ej
(xi) = xi[n1dn−e1(xi) + · · ·+ nj−1dn−ej−1

(xi)

+ nj+1dn−ej+1
(xi) + · · ·+ nmdn−em(xi)] + xi(1− xi)d

′
n(xi).

Since xi < 0 and xi(1 − xi) < 0, by (8), (9) and (10), all terms on the right side have
the same sign so that

sgn dn+ej
(xi) = (−1)n−N(n)+1−i

for i = 1, 2, . . . , n− 2N(n).

In Case (a), dn+ej
(x) = xN(n)+1d̃n+ej

(x) so that

sgn d̃n+ej
(xi) = (−1)n−2N(n)−i

for i = 1, 2, . . . , n−2N(n). Thus, there exist x∗
i ∈ (xi, xi+1) for which d̃n+ej

(x∗
i ) = 0 for

i = 1, 2, . . . , n−2N(n)−1. These n−2N(n)−1 simple real zeros of d̃n+ej
(x), together

with the trivial zero x = 0 of multiplicity N(n)+1, account for the n+1−N(n+ej) =
n−N(n) real zeros of dn+ej

(x).

In Case (b), dn+ej
(x) = xN(n)d̃n+ej

(x) so that

sgn d̃n+ej
(xi) = (−1)n+1−2N(n)−i

for i = 1, 2, . . . , n− 2N(n). Also,

sgn d̃n+ej
(x0) = (−1)n+1−2N(n) and sgn d̃n+ej

(xn−2N(n)+1) = +1

(since the constant term of d̃n+ej
(x) is positive). Thus, there exist x∗

i ∈ (xi−1, xi) for

which d̃n+ej
(x∗

i ) = 0 for i = 1, 2, . . . , n− 2N(n) + 1. These n− 2N(n) + 1 simple real

zeros of d̃n+ej
(x), together with the trivial zero x = 0 of multiplicity N(n), account for

the n + 1−N(n + ej) = n−N(n) + 1 real zeros of dn+ej
(x).
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Note finally that in Case (a), deg d̃n+ej
(x) = deg d̃n(x) − 1 and d̃n+ej

(x) strictly

interlaces d̃n(x), and that in Case (b), deg d̃n+ej
(x) = deg d̃n(x) + 1 and d̃n(x) strictly

interlaces d̃n+ej
(x). This completes the induction and the proof of the theorem. �

Theorem 4.1 establishes that {dn(x)} is a multi-indexed Sturm sequence. Similar
Sturm sequences had been studied previously by Simion [11], who proved that fn(x)
has all its zeros in the interval [−1, 0] and that fn(x) and fn+ej

(x) have interlaced

zeros, where fn(x) :=
∑

k>0 O(n, k)xk is the generating function of the number of
compositions O(n, k) of the multiset n into exactly k parts.

A sequence {a0, a1, . . . , ad} of real numbers is called log-concave if ai−1ai+1 6 a2
i for

i = 1, 2, . . . , d− 1. It is unimodal if there exists an index 0 6 j 6 d such that ai 6 ai+1

for i = 0, 1, . . . , j − 1 and ai > ai+1 for i = j, j + 1, . . . , d− 1. It has no internal zeros
if there are not three indices 0 6 i < j < k 6 d such that ai, ak 6= 0 but aj = 0. It is
symmetric if ai = ad−i for i = 0, . . . , bd/2c. It is a Pólya frequency sequence of order r
(or a PF r sequence) if any minor of order r of the matrix M = (Mij)i,j∈N defined by
Mij = aj−i for all i, j ∈ N (where ak = 0 if k < 0 or k > d) is non-negative. It is a
Pólya frequency sequence of infinite order (or a PF sequence) if it is a PF r sequence
for all r > 1.

It is clear that a positive sequence is PF 1, and a log-concave (which is also unimodal
and internal-zero free) sequence is PF 2.

A polynomial
∑d

i=0 aix
i is symmetric (respectively, unimodal, log-concave, with no

internal zeros) if the sequence {a0, a1, . . . , ad} has the corresponding property. If p(x)
is a symmetric unimodal polynomial, then its center of symmetry C(p) = (deg(p) +
mult(0, p))/2, where mult(0, p) is the multiplicity of 0 as a zero of p. If we write
p(x) = xnp(x−1), then C(p) = n/2. An elementary property of symmetric unimodal
polynomials is the following. See, e.g., [4, Proposition 2.1] and [12, Proposition 1].

Proposition 4.2. Let p(x) and q(x) be two symmetric unimodal polynomials. Then
p(x)q(x) is a symmetric unimodal polynomial and C(pq) = C(p) + C(q).

An important classical result concerning PF sequences and polynomials having only
real zeros is the following [2, Theorem 2.2.4].

Theorem 4.3 (Aissen–Schoenberg–Whitney). Let p(x) =
∑d

i=0 aix
i ∈ R[x] have

non-negative coefficients. Then p(x) has only real zeros if and only if {a0, a1, . . . , ad} is
a PF sequence.

Corollary 4.4. For each multiset n = {1n1 , 2n2 , . . . ,mnm}, the sequence

{Θ(n, k)}k=N(n),...,n−N(n)

is a PF sequence, where N(n) := max
16i6m

ni. In particular, it is unimodal and log-concave.

Proof. Combine Theorem 4.1 and Theorem 4.3 to conclude. �

5. A combinatorial expansion

We give in this section an expansion formula of dn(x). See Proposition 5.1 below.
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By virtue of Property 2.1(iii), we may write

(11)
∑

n1,...,nm>0

dn(x)xn1
1 · · ·xnm

m = 1 +
∑

16l(n)6m

dn(x)mµ(n),

where the sum on the right ranges over all multisets n = {1n1 , 2n2 , . . . ,mnm} such that
n1 > n2 > · · · > nm > 0, µ(n) = (n1, n2, . . . , nm), l(n) = #{i ∈ [m] : ni > 0} (which
is the number of positive parts of µ(n)) and mµ = mµ(x1, x2, . . . , xm) is the monomial
symmetric function in x1, x2, . . . , xm indexed by µ.

Combining (2) and (11), we have the following symmetric function identity

1 +
∑

16l(n)6m

dn(x)mµ(n) =
1

1− xe2 − (x + x2)e3 − · · · − (x + x2 + · · ·+ xm−1)em

in ΛZ[x](x1, . . . , xm), the ring of symmetric functions in x1, . . . , xm over Z[x].

Proposition 5.1. We have

(12) dn(x) =
∑

k1+···+kl=n
26k1,...,kl6m

M(k1,...,kl),µ(n)

l∏
j=1

(x + x2 + · · ·+ xkj−1),

where the sum ranges over all compositions (k1, . . . , kl) of n such that 2 6 k1, . . . , kl 6
m.

Proof. Comparing (11) and (4), and invoking the linear independence of mµ. �

The identity (12) is a combinatorial expansion of dn(x) in terms of the polynomials∏l
j=1(x + x2 + · · · + xkj−1) each of which is symmetric unimodal and has center of

symmetry at
∑l

j=1 kj/2 = n/2 by Proposition 4.2, thus refining Proposition 2.3 and
Corollary 4.4.

On the other hand, (12) is a multi-analogue of the one [3, Proposition 6] for dn(x),
namely,

(13) dn(x) =
∑
λ`n

fλRλ(x),

where

(14) Rλ(x) =
∑

k1+···+kl=n
26k1,...,kl6n

Kλ,(k1,...,kl)

l∏
j=1

(x + x2 + · · ·+ xkj−1),

fλ is the number of standard Young tableaux of shape λ and Kλ,µ is a Kostka number.
The identity (14) is obtained by expanding [3, eqn (6)], that is,∑

λ

Rλ(x)sλ =
1

1−
∑

k>2(x + x2 + · · ·+ xk−1)sk

,

where sk and sλ are Schur functions indexed, respectively, by the partitions (k) and λ.
A combinatorial proof of (13) and (14) had been given by Stembridge in [14, p. 319].
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Similar expansions of the generating function for multiderangements by the numbers of
cycles and excedances has already been given by Zeng [15, Eq. (2.14)].

6. Extension to multipermutations

Let n = {1n1 , 2n2 , . . . ,mnm} be a multiset, where n := n1 + · · · + nm. Denote by
R(n) the set of all multipermutations of n. Let w = w1w2 · · ·wn ∈ R(n) and δ(w) =
p1p2 · · · pn be its non-decreasing rearrangement. Denote by f(w) := #{i ∈ [n] : wi = pi}
the number of fixed points of w, and define

rn(x, Y ) =
∑

w∈R(n)

xe(w)Y f(w).

The identity (2) can be extended to count multipermutations by the numbers of ex-
cedances and fixed points by using the classical MacMahon Master Theorem [9, pp. 97–
98], which states that the coefficient of xk1

1 xk2
2 · · ·xkn

n in the expansion of 1/Vn is the
same as the coefficient of the same term in (a(1, 1)x1 + · · ·+a(1, n)xn)k1 · · · (a(n, 1)x1 +
· · ·+ a(n, n)xn)kn , where Vn = det(δi,j − a(i, j)xj).

Theorem 6.1. We have
(15)∑
n1,...,nm>0

rn(x, Y )xn1
1 · · ·xnm

m =

{[
1−

m∑
k=2

(x + x2 + · · ·+ xk−1)e′k

] ∑
06k6m

(−1)kekY
k

}−1

,

where x, Y, x1, . . . , xm are commuting indeterminates and ek and e′k (1 6 k 6 m) are the
kth elementary symmetric function in x1, . . . , xm and in x1

1−Y x1
, . . . , xm

1−Y xm
, respectively.

Proof. For i, j = 1, 2, . . . ,m, let

a(i, j) =


x if i < j,

Y if i = j,

1 if i > j.

Each w = w1 · · ·wn ∈ R(n) is assigned the weight

xe(w)Y f(w) =
n∏

i=1

a(pi, wi),

where δ(w) = p1 · · · pn. The MacMahon Master Theorem then yields that∑
n1,...,nm>0

rn(x, Y )xn1
1 · · ·xnm

m = V −1
m ,
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where the determinant of MacMahon Vm is given by

Vm = det(δi,j − a(i, j)xj)

=

∣∣∣∣∣∣∣∣
1− Y x1 −xx2 · · · −xxm

−x1 1− Y x2 · · · −xxm
...

...
. . .

...
−x1 −x2 · · · 1− Y xm

∣∣∣∣∣∣∣∣
= (−1)mx1 · · ·xm

∣∣∣∣∣∣∣∣∣
−( x1

1−Y x1
)−1 x · · · x

1 −( x2

1−Y x2
)−1 · · · x

...
...

. . .
...

1 1 · · · −( xm

1−Y xm
)−1

∣∣∣∣∣∣∣∣∣
= (−1)m

m∏
i=1

(
xi

1− Y xi

)

∣∣∣∣∣∣∣∣∣
−( x1

1−Y x1
)−1 x · · · x

1 −( x2

1−Y x2
)−1 · · · x

...
...

. . .
...

1 1 · · · −( xm

1−Y xm
)−1

∣∣∣∣∣∣∣∣∣
×

m∏
i=1

(1− Y xi)

=

[
1−

m∑
k=2

(x + x2 + · · ·+ xk−1)e′k

] m∑
k=0

(−1)kekY
k,

where the last equality follows from [10, p. 441]. �

7. Concluding remarks

We have considered in this work certain important properties, namely, the invariance
under permutations of {n1, . . . , nm}, symmetry, recurrence relations and real-rootedness
of the generating function dn(x) of multiderangements by the number of excedances.
Extension to multipermutations by the numbers of excedances and fixed points is also
given. Those properties presented help make the theory of multiderangements more
parallel to its classical counterparts.

8. Acknowledgements

The author thanks the anonymous referee for helpful suggestions.

References

[1] R. Askey and M. Ismail, Permutation problems and special functions, Canad. J. Math. 28 (1976)
853–874.
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