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ACTIONS OF THE SYMMETRIC GROUP GENERATED BY
COMPARABLE SETS OF INTEGERS AND SMITH INVARIANTS

OLGA AZENHAS AND RICARDO MAMEDE

Abstract. Lascoux and Schützenberger have shown that there exists a unique action
of the symmetric group generated by the commutation of the column lengths of a two-
column tableau and preserving the plactic class. We describe more general operators
on pairs of comparable subsets of {1, . . . , n} which commute their cardinalities, and
we prove that those operators define an action of the symmetric group by checking
the braid relations on triples of sets of integers. The action of the symmetric group
by Lascoux and Schützenberger appears in our construction as an extreme case as
we only require the invariance of the shape and the weight of the insertion tableau.
Instead of sets of positive integers one may take other equivalent objects as words
in a two letter alphabet, and describe an action of the symmetric group on words
congruent to key-tableaux defined by reflection crystal operators type based on non-
standard pairing of parentheses. This construction arises naturally as a combinatorial
description of the Smith invariants of certain sequences of products of matrices, over
a local principal ideal domain, under a natural action of the symmetric group.

1. Introduction

In [20, 21] (see also [26]), A. Lascoux and M.-P. Schützenberger introduced the con-
cept of key-tableau as a Young tableau whose columns are comparable under the in-
clusion order, and they have used this notion to study Demazure characters combina-
torially, see [7]. For type A, Demazure characters are equivalent to key polynomials.
Due to the action of the symmetric group on the set of tableaux, originally defined by
Ehresmann in [8], the symmetric group acts on the set of key-tableaux. This action
coincides with the one defined by the reflection crystal operators on the free algebra,
based on the standard matching of parentheses, a particular parentheses matching on
words in a two-letter alphabet. Reflection crystal operators are due to Lascoux and
Schützenberger [19, 23], and they are equivalent to the ones coming from the theory of
crystal graphs in the work of Kashiwara and Nakashima [24].

A column is a word in which every letter is strictly less than the previous one. Every
word w can be uniquely written as a product of a minimal number of columns, and
the sequence formed by their lengths is called the column-shape of w. A word w is
frank if its shape is a permutation of the sequence formed by the column lengths of
the only tableau in the Knuth class of w [21]. The action of the symmetric group on
words congruent to key-tableaux defined by the reflection crystal operators preserve
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the Q-symbol, and has a translation on frank words within a Knuth class defined
by jeu de taquin slides on two-column frank words [21]. In this paper, we drop the
requirements of preserving respectively the Q-symbol and the Knuth class in those two
constructions, and we define two families of actions of the symmetric group including,
as particular cases, the actions of the symmetric group described above. The first one
over frank words runs over tableaux of the same shape and weight, and the second
over words congruent to key-tableaux. More specifically, we consider the ordered set
P [n] of sets of positive integers in [n] = {1, . . . , n} and describe operators on pairs of
comparable elements of P [n] which generalize to non-congruent frank words the action
of the symmetric group defined by jeu de taquin slides on two-column frank words
within a Knuth class. This action of the symmetric group has a translation on words
congruent to key-tableaux defined by reflection crystal operators type based on non-
standard pairing of parentheses already considered in [6]. Such a translation is described
by the dual Robinson–Schensted–Knuth correspondence [9, 17]. (See also [22].)

These two families of actions of the symmetric group arise naturally in the matrix
context. Given an n by n non-singular matrix A, with entries in a local principal ideal
domain with prime p, we write A ∼ ∆α to mean that by Gaußian elimination one
can reduce A to a diagonal matrix ∆α with diagonal entries pα1 , . . . , pαn , for unique
non-negative integers α1 ≥ . . . ≥ αn, called the Smith normal form of A. The sequence
pα1 , . . . , pαn defines the invariant factors of A, and α = (α1, . . . , αn) the invariant
partition or the sequence of Smith invariants of A. It is known that partitions α, β, γ
are respectively the Smith invariants of n by n non-singular matrices A, B, and C such
that AB = C if and only if there exists a Littlewood–Richardson tableau T of type
(α, β, γ), that is, a tableau of shape γ/α which rectifies to the key-tableau of weight β
(or Yamanouchi tableau of weight β) [10, 11]. In other words,

(1.1) there exists U ∼ In, ∆αU∆β ∼ ∆γ if and only if cγα,β 6= 0,

where In denotes the n by n identity matrix, and cγα,β is the Littlewood–Richardson
coefficient of type (α, β, γ). The relationship between the Smith invariants of a prod-
uct of matrices and the product of Schur functions was noticed earlier, with different
approaches, by several authors, see P. Hall, J. A. Green, T. Klein, R. C. Thompson, et
al. [1, 2, 3, 14, 16, 29]. (For an overview and other interrelations, see the survey by W.
Fulton [11] as well as [10, 12, 13].)

One can show (1.1) by introducing the notion of a matrix realization of a pair (T,K),
where T is a skew-tableau which rectifies to the key-tableau K [3, 4, 5]. (We warn the
reader that French notation is used.) Such a matrix realization consists of a sequence
of products of matrices

(1.2) ∆α,∆αU∆(1m1 ),∆αU∆(1m1 )∆(1m2 ), . . . ,∆αU∆(1m1 )∆(1m2 ) · · ·∆(1mt ),

where U is an unimodular matrix, α is a partition of length ≤ n, and m = (m1, . . . ,mt)
is a non-negative integral vector with mi ≤ n for all i. In particular, (1mi) denotes
the partition whose Young diagram is a column of length mi. Transposing the nested
sequence of Smith invariants α0 = α ⊆ α1 ⊆ . . . ⊆ αt, defined by that sequence of
matrices, one gets a tableau T with skew-shape the transpose of αt/α, and weight m.
It is shown in [3, 6] that the column-reading word of T , from left to right, is congruent
to a key-tableau, and the sequence of column words Jt · · · J2 J1, called the indexing-set



ACTIONS OF THE SYMMETRIC GROUP AND SMITH INVARIANTS 3

word of T , with Jk the column-word of length mk comprising the column-indices of the
letter k in T , left to right, for k ≥ 1, is a frank word.

The action of the simple transposition si = (i, i+ 1) on (m1, . . . ,mt), by exchanging
mi and mi+1, affords an action of si on the sequence of products of matrices (1.2),
by exchanging ∆(1mi ) and ∆(1mi+1 ). Therefore the operators {si} generate an action of
the symmetric group on the set of the semistandard Young tableaux defined by those
sequences of products of matrices. This action is indeed two-fold: on the one hand, on
the tableau column-reading words, one obtains an action of the symmetric group on
words congruent to key-tableaux defined by reflection crystal operators based on non-
standard matching of parenthesis; and on the other hand, on the tableau indexing-set
words, it yields an action of the symmetric group on frank words. Checking the braid
relations for t = 3, these actions turn out to be the ones generated by triples of sets of
the ordered set P [n].

The paper is organised as follows. In the next section we analyse the relation between
reflection crystal operators on words over a two-letter alphabet and operators defined
by jeu de taquin slides on two-column skew-tableaux. An important tool in this anal-
ysis is the dual RSK correspondence and its symmetry as well as its interpretation in
terms of skew-tableaux. As an application of this duality, we study, in Subsection 2.3,
the sequence of Smith invariants, equivalently the skew-tableaux, associated with the
sequences (1.2) for t = 2. For this, we have to define two-column frank word variants of
jeu de taquin and to show their relationship with non-standard pairing of parentheses
on words congruent to two-letter key-tableaux. Moreover, variants of jeu de taquin
and non-standard reflection crystal operators have a full interpretation in this matrix
context, given in Theorem 2.4.

In Section 3, considering the sequence (1.2) for t = 3, we study the hexagon of
skew-tableaux defined by

∆αU∆(1m1 )∆(1m2 )∆(1m3 )

∆αU∆(1m2 )∆(1m1 )∆(1m3 ) ∆αU∆(1m2 )∆(1m3 )∆(1m1 )

∆αU∆(1m3 )∆(1m2 )∆(1m1 )

∆αU∆(1m1 )∆(1m3 )∆(1m2 ) ∆αU∆(1m3 )∆(1m1 )∆(1m2 )

..............
..............
..............
..............
.........s1

.................................................................s2

..............
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..............
..............

......... s1

................................................................. s2

........................................................................
s2

........................................................................

s1

.

We have two hexagons, one defined by the words of the skew-tableaux, and the
other one defined by the indexing-set frank words. Since these hexagons are generated
by Smith invariants, the matrix setting imposes conditions on their vertices, given in
Lemma 3.2. Theorems 3.6 and 3.8 give a combinatorial interpretation of these con-
ditions and characterize the variant jeu de taquin operators and the non-standard re-
flection crystal operators satisfying the braid relations, that is, closing these hexagons.
Algorithm 3.11 shows that Lascoux–Schützenberger actions of the symmetric group
on frank words and words congruent to key-tableaux are respectively obtained: from
a particular shuffle decomposition of a three-column tableau; and from a shuffle de-
composition of a three-letter Yamanouchi word. Again these actions of the symmetric
group have a full interpretation in our matrix setting, given in Theorem 3.14. Finally,
in Example 3.15, we exhibit two dual permutahedra in S4, generated by variants of jeu
de taquin operators and reflection crystal operators type based on non-standard pairing.
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2. Variants on two-column jeu de taquin, non-standard pairing, and Smith
invariants

2.1. Tableaux and dual RSK. A composition m = (m1, . . . ,mt, . . . ) is a (finite or
infinite) sequence of non-negative integers, almost all zero. A partition is a weakly
decreasing composition, and we denote by β(m) the partition obtained by rearranging
the entries of the composition m. It is convenient to not distinguish between two
compositions which only differ by a string of zeros at the end. The Young diagram of
a partition γ = (γ1 ≥ γ2 ≥ · · · ≥ γn ≥ 0) is the set of ordered pairs of integers Y (γ) =
{(i, j) : 1 ≤ i ≤ γj, 1 ≤ j ≤ n}. We identify a partition with its Young diagram. The
conjugate partition γ′ = (γ′1, γ

′
2, . . . ) of γ is the partition corresponding to the transpose

of Y (γ). A skew-diagram γ/α is the set difference Y (γ) − Y (α) of Young diagrams of
partitions. A (semistandard) (skew) tableau T over the alphabet [t] = {1, . . . , t} is a
function (often called filling) T : Y −→ [t] from a (skew) diagram Y to the positive
integers in [t] such that they are weakly increasing in each row and strictly increasing up
each column. The shape shape(T ) of T is the domain of the tableau T . The column-
reading word of the (skew) tableau T is w = w1w2 . . . where wi is the column-word
(strictly decreasing word) over [t] comprising the ith column of T , left to right. Define
the column-shape of T to be the composition colshape(T ) = (|w1|, |w2|, . . .), where |w|
denotes the length of w. Similarly, the row-reading word of T is · · ·u2u1, where ui is
the row word (increasing word) over [t] comprising the ith row of T, bottom to top, and
the row-shape of T is the composition (|u1|, |u2|, . . .). A vertical strip is a skew-tableau
with rows of length at most one. The weight of T is the weight of the word w, that is,
the sequence (m1, . . . ,mt) where mi is the number of occurrences of the letter i in w.
The column-indexing-set word of T is J = Jt · · · J2J1 where Jk is the column-word of
length mk defined by the set of column-indices of the letter k in T , left to right. An
example of a Young tableau of skew-shape (4, 3, 2, 2)/(3, 1) is

(2.1) T =

4 4
2 2
• 1 3
• • • 2

.

The column-reading word is 42 421 3 2, the column-indexing-set word is J = 21 3 421 2
and the weight (1, 3, 1, 2).

A standard tableau is a tableau filled with the numbers {1, . . . , n} where n is the
number of cells or boxes in the (skew) Young diagram. The standardization std(T )
of a Young tableau T is the standard tableau obtained by simultaneously replacing
the 1’s in T from left to right by 1, 2, . . . ,m1, the 2′s by m1 + 1, . . . ,m1 + m2 etc.,
where (m1, . . . ,mt) is the weight of T . The transpose of a standard tableau T is still a
standard tableau, of conjugate shape, and we denote it by T τ .

Let K(m) denote the key-tableau of weight m, that is, the tableau of weight m whose
column-shape is β′(m). There is an obvious bijection between compositions and key-
tableaux since K(m) is the tableau whose first mj columns contain the letter j, for all
j [26].

The overlap of a pair (u, v) of column-words u and v is the maximum number of rows
of length two obtained with respect to shifting the column u down with respect to the
column v. For instance, the overlap of the first two columns of the skew-tableau (2.1)
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is two, of the second and the third is one, and of the last two is zero. A skew-tableau
is said to be in compact form if the number of rows of size two of any two consecutive
columns is the overlap of the words comprising those columns. Thus a skew-tableau
T in compact form is identified with its column-reading word seen as a sequence of
column words. For instance the skew-tableau (2.1) is in compact form.

Let [t]∗ denote the free monoid over the alphabet [t] = {1, . . . , t}. The Knuth or
plactic congruence ≡ [19, 9, 17, 23] on the words over the alphabet [t] is the congruence
in [t]∗ defined by the transitive closure of the relations below, where x, y and z are
letters in [t], and a and b are words in [t]∗:

axzyb ≡ azxyb, x ≤ y < z,

ayzxb ≡ ayxzb, x < y ≤ z.

Given the word w = x1 · · ·xN , the row insertion of w produces a unique pair of
tableaux (P (w), Q(w)) of the same shape. P (w) is the unique tableau of partition
shape whose column-reading word is Knuth equivalent to w, and Q(w), often called
the Q-symbol of w, is the standard tableau of the same shape as P (w) such that
shape(Q(w)|[i]) = shape(P (x1 · · ·xi)), 1 ≤ i ≤ t, where Q(w)|[i] denotes the restriction
of the tableau Q(w) to the letters in [i]. Two (skew) tableaux are said to be Knuth
equivalent if their words are congruent, equivalently, one is obtained from the other by
jeu de taquin slides [9, 23, 28].

Let v = v1v2 . . . vn, with each vi a column-word (some of the vi may be the empty
word), be an n-column factorization of v. The factorization v1v2 . . . vn may be identi-
fied, as a sequence of column words, with the skew-tableau in compact form where vi

is the word comprising the i-th column. The column-shape of v1v2 . . . vn, denoted by
colshape(v1v2 . . . vn), is the column-shape of that skew-tableau. A factorization is min-
imal if the number of factors is minimal. We write colshape(v) (unique up to zeros) to
mean the column-shape of the minimal factorization of v. Lascoux and Schützenberger
called v frank word [21] if it has a factorization of column-shape (in fact minimal) a
permutation of the non-zero parts of the conjugate shape of P (v).

The dual RSK correspondence [17, 9] can be defined as a bijection from the set of
finite sequences of column-words (· · · J2J1) to pairs of tableaux (Q,P ) of conjugate
shapes, where Q = P (· · · J2J1) and shape(P |[i]) = shape(P (Ji · · · J1))′ for all i.

Let A and B be two totally ordered alphabets. We consider biwords of pairwise
distinct biletters (

u1 · · · uk
v1 · · · vk

)
,

with ui ∈ A and vj ∈ B. The biword is said to be in anti-lexicographic order if its
biletters

(
ui

vi

)
satisfy ui < ui+1 or ui = ui+1 and vi > vi+1.

Let J = {Jt−i+1}1≤i≤t, be a sequence of column-words over the alphabet [n] in dual
RSK correspondence with the tableau-pair (Q,P ) of conjugate shapes. Let mi be the
length of Ji, 1 ≤ i ≤ t, and consider the biword with no two identical biletters,

(2.2) Σ′ =

(
Jt · · · J1

tmt · · · 1m1

)
.
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By increasing rearrangement of Σ′ with respect to the anti-lexicographic order, we get

(2.3) Σ =

(
1f1 · · · nfn

w1 · · · wn

)
,

with wi a column word of length fi. Clearly the word Jt · · · J1 can be seen as the column-
indexing-set word of a skew-tableau with column reading word w1 · · ·wn, and conversely
wn · · ·w1 as the column-indexing-set word of a skew-tableau with column-reading word
J1 · · · Jt. Therefore, the dual RSK correspondence defines also a bijection between skew-
tableaux in compact form and tableau-pairs of conjugate shapes. For instance, consider
the skew-tableau (2.1). Construct Σ and Σ′ accordingly. The bottom word of Σ is w
and the top word of Σ′ is J ,

Σ =

(
11 22 3 44
42 21 3 32

)
←→ Σ′ =

(
1 43 421 2
4 33 222 1

)
.

From Proposition 5, the symmetry theorem in [9, Appendix A.4.3], we have the
following result.

Theorem 2.1. Given the sequence J = {Jt−i+1}1≤i≤t, of column-words over the alpha-
bet [n], there is one and only one word w over the alphabet [t], with weight the reverse
of the column shape of {Jt−i+1}1≤i≤t, revcolshape({Jt−i+1}1≤i≤t), such that

(a) P (w) = P .
(b) the Q-symbol or recording tableau of w satisfies Q(w) = std(Q) τ with Q = P (J).
Moreover J is a frank word of colshape({Jt−i+1}1≤i≤t) if and only if P =

K(revcolshape(w)) [21, 27].

As frank words, in a congruence class, are completely determined by their Q-symbols,
it follows that frank words, in a plactic class, are in bijection with the set of permutations
of the non-zero parts of the conjugate shape of the tableau in that class [21] and we
have an action of the symmetric group on frank words. Lascoux and Schützenberger
have translated this action of the symmetric group on frank words in the language of
jeu de taquin slides on two-column skew-tableaux either aligned in the bottom or in the
top. This jeu de taquin operation can be extended to any two-column skew-tableaux in
compact form to define an action of the symmetric group on skew-tableaux (see [22]).

2.2. Key-tableaux and sequences of matrix products over a local princi-
pal ideal domain. Let the symmetric group St act on finite compositions m =
(m1, . . . ,mt) via the left action sim = (m1, . . . , mi+1,mi, . . . ,mt), with si, 1 ≤ i ≤ t−1,
the simple transpositions of St. Then β(m) is the unique partition in the orbit Stm
and β′(m) its conjugate. Recall that the column-shape of the key-tableau K(m) is
β′(m). Considering the bijection between compositions and key-tableaux mentioned
earlier, we identify K(m) with the sequence of diagonal matrices (∆(1m1 ), . . . ,∆(1mt ))
in the sense that the nested sequence of partitions (1m1) ⊆ (1m1) + (1m2) ⊆ . . . ⊆
(1m1) + . . . + (1mt) = β′(m) defines the key-tableau K(m) and, simultaneously, are
the Smith invariants of the sequence of products of matrices ∆(1m1 ), ∆(1m1 )∆(1m2 ), . . . ,
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∆(1m1 )∆(1m2 ) · · ·∆(1mt ) = ∆β′(m). For instance,

K(10325) =

5
4 5
3 4 5 is identified with (∆[1],∆∅,∆[3],∆[2],∆[5]).
1 3 3 5 5

Let U be an n by n unimodular matrix, that is, U ∼ In. Put ∆αUK(m) for the
sequence

∆α,∆αU∆(1m1 ),∆αU∆(1m1 )∆(1m2 ), . . . ,∆αU∆(1m1 )∆(1m2 ) · · ·∆(1mt ) = ∆αU∆β′(m).

The nested sequence of Smith invariants α0 = α ⊆ α1 ⊆ . . . ⊆ αt = γ defined by this
sequence of products of matrices is such that αi+1/αi is a vertical strip of length mi+1,
for i = 0, 1, . . . , t − 1. Thus ∆αUK(m) is identified with the tableau T of shape γ′/α′

and weight m, with indexing-set words Jk+1 = {i : αk+1
i = αki + 1}, 1 ≤ k ≤ t − 1. It

is shown in [6] that the column-reading word w of T satisfies P (w) = K(m) and thus,
from Theorem 2.1, J is a frank word of shape the non-null parts of the reverse of m.

When we consider the action of the symmetric group on finite compositions m we
are simultaneously defining an action of the symmetric group on sequences of matrices
∆αUK(m), where U is a fixed unimodular matrix and α a fixed partition, and therefore
on tableaux of skew-shape whose rectifications are the key-tableaux K(m). Thus, we
obtain two families of actions of the symmetric group which are translations of each
other: one over non-congruent frank words running over tableaux of column-shape
β(m) where the weight is a permutation of the entries of m; and the other one on words
congruent to key-tableaux K(m), not necessarily sharing the same Q-symbol. This
duality is explained in the next section.

2.3. Jeu de taquin on two-column words and reflection crystal operators.
It is known that there is a duality between reflection crystal operators and jeu de taquin
on two-column skew tableaux [18, 22]. The jeu de taquin slides exchanging the length of
two consecutive columns i, i+ 1 of a t-column skew-tableau in compact form, counting
right to left, is translated, by the dual RSK-correspondence, into the i-th reflection
crystal operator on words over the alphabet [t]. In the particular case of frank words it
is translated into the i-th reflection crystal operator on words congruent to key-tableaux.
Define the operator Θ on a two-column skew-tableau T = J2J1 in compact form and
row-shape (1s, 2q, 1r), for some q, r, s ≥ 0, as follows. If r > s (r < s), perform jeu de
taquin slides in the first |r− s| inside (outside) corners marked � of the skew-tableau T
until they become outside (inside) corners in the second (first) column. In other words,
we slide down (up) maximally up to |r − s| positions the entries of the first (second)
column; then we exchange the east (west) entries with the vacant neighbours �. Then
ΘT = T ′ is a two-column skew-tableau in compact form with row-shape (1r, 2q, 1s).
Obviously ΘT ′ = T . In particular, when r = 0 or s = 0, Θ is the jeu de taquin on frank
words. For instance, the jeu de taquin slides, with respect to the corner � as below,
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define the operator Θ on T of row shape (1, 23, 12), and on T ′ of row shape (12, 23, 1)

(2.4) T =

7 7
3 6 6 �
2 5 Θ 3 5
1 4 ←→ T ′ = 2 4
� 3 1 3

2 2

.

Let T be a t-column skew-tableau in compact form. Define the operator Θi on T as
follows: apply Θ to the columns i and i + 1 of T , counting right to left, and put the
outcome t-column skew-tableau in compact form. As jeu de taquin preserves Knuth
equivalence, we have ΘiT ≡ T .

Let w = w1w2 . . . wg, wi ∈ [t], be a word. An r-pairing of w is a set of indexed pairs
(called r-pairs) (wi, wj) such that 1 ≤ i < j ≤ k, wi = r+ 1, and wj = r, and if (wl, ws)
is another pair, then i, l, j, s are pairwise distinct. View each r + 1 (respectively r) as
a left (respectively right) parenthesis and ignore the other letters. The r-pairs of w
are precisely the matched parentheses. Furthermore the subword of unpaired r′s and
(r+ 1)′s must be a subword of w of the form rk(r+ 1)l. In general, not every r-pairing

gives the maximal number of r-pairs of w, and if θ̃r is the operator which replaces the
word rk(r + 1)l of unpaired r′s and (r + 1)′s in w (in the corresponding positions) by
rl(r+ 1)k, unless certain conditions are imposed on the r-pairing, the maximal number

of r-pairs of θ̃rw and w may be different. For example, w = 12112 has two 1-pairings
with a maximal number of 1-pairs, and θ̃1w = 1(21)22 has just one 1-pairing. However,
when either k = 0 or l = 0 they have always the same maximal number of r-pairs. In
this case, as we shall see in the next subsection, the operator θ̃r can be reduced to a
variant of jeu de taquin on two-column frank words.

The standard r-pairing on w is the particular r-pairing obtained in the following way.
Start with the subword w′ = x1 · · ·xm, the restriction of w to the alphabet {r, r + 1}.
Then, bracket every factor r + 1 r of w′. The letters which are not bracket constitute
a subword w′′ of w′. Then, bracket every factor r + 1 r of w′′. Continue this procedure
until it stops. It remains a word of the form rk(r+ 1)l. The reflection crystal operator,
based on the standard r-pairing, denoted by θr, which replaces the word rk(r + 1)l of
unpaired r′s and (r + 1)′s in w by rl(r + 1)k, can be reduced to jeu de taquin slides on
two-column skew tableaux.

Recalling the definition of the biwords (2.2) and (2.3), the operators θi on words over
the alphabet [t], and Θi on t-column skew-tableaux J = {Jt−i+1}1≤i≤t, in compact form,
are a translation of each other in the sense of the following commutative diagram

(2.5)

Σ =

(
J ↑
w

)
Σ′ =

(
· · · Ji+1 Ji · · ·

· · · (i+ 1)q+k iq+l · · ·

)

Σ̃ =

(
J ↑
θiw

)
Σ̃′ =

(
· · ·Θi(Ji+1 Ji) · · ·
· · · (i+ 1)q+l iq+k · · ·

)
......................................................................................................... ................ .........................................................................................................................

......................................................................................................... ................ .........................................................................................................................

................................................................................
........
........
........
........
........
........
........
........
........
........
........
........................
................

................................................................................
........
........
........
........
........
........
........
........
........
........
........
........................
................

,

where J ↑ indicates J by weakly increasing order.
As column words may be identified with their support sets, these operators can be

formulated in P [n] the set of all subsets of [n]. We consider on P [n] two orders, one
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by letting B ≤ B′ whenever there is an increasing injection i : B → B′, that is,
x ≤ i(x), and the other one by putting B . B′ whenever there exists a decreasing
injection B ← B′ : j, that is, j(x) ≤ x.

Define the skew-tableau in compact form
A
B C

D
, where A ∪B, C ∪D are columns

such that B ≤ C, |B| = |C| = q, |A| = s, and |D| = r. Suppose r > s. Slide
down maximally the column B along C ∪ D such that the weakly increasing order in
rows is preserved, and define the column X ⊆ C ∪D whose entries have west adjacent
neighbours in B. Then θi can be based in any pairing of parentheses defined by any
increasing injection j : B → X. We have the equivalence, ΘiT ≡ T if and only if
the operator θi preserves the Q-symbol, that is, Q(w) = Q(θiw). For instance, for the
two-column tableau T (2.4), we have the following diagram

Σ =

(
1 2 2 3 3 4 5 6 7
2 2 1 2 1 1 1 1 2

)
Σ′ =

(
T

23+1 13+2

)

Σ̃ =

(
1 2 2 3 3 4 5 6 7
2 2 1 2 1 1 1 2 2

)
Σ̃′ =

(
Θ1T

23+213+1

)
........................................................................................................................ ................ ........................................................................................................................................

........................................................................................................................ ................ ........................................................................................................................................

................................................................................
........
........
........
........
........
........
........
........
........
........
........
........................
................

................................................................................
........
........
........
........
........
........
........
........
........
........
........
........................
................

,

where w = (2(21)(21)1)122→ θ1w = (2(21)(21)1)122.
From the diagram (2.5), we have the following result.

Theorem 2.2. The following statements are equivalent:
(a) The operators Θi, 1 ≤ i ≤ t− 1, define an action of the symmetric group St on

the set of t-column words, equivalently, on the t-column skew-tableaux in the compact
form. Moreover, ΘiT ≡ T , 1 ≤ i ≤ t− 1.

(b) [19, 23]The operators θi, 1 ≤ i ≤ t − 1, define an action of the symmetric group
on all words over the alphabet [t], and preserve the Q-symbol.

2.4. Two-column frank word variants of jeu de taquin, pairing of parentheses,
and Smith invariants. In this section, we define variants of jeu de taquin on two-
column frank words and show its relationship with a non-standard pairing of parentheses
on words congruent to two-letter key-tableaux. As an application we describe the Smith
invariants, equivalently, the skew-tableaux on a two-letter alphabet, associated with
the sequences ∆αUK(m) and ∆αUK(s1m) with m = (m1,m2) and s1 the elementary
transposition (1 2).

Restrict the jeu de taquin operation Θ to a two-column tableau or contre-tableau
(a two-column skew-tableau such that the pair of columns is aligned at the top) J2 J1

[9, 28], and denote by Θ̃ a variant of Θ which runs as follows. If J2J1 is a contre-tableau
(tableau), slide vertically the entries of the column J2 (J1) along the column J1 (J2) such
that the row weakly increasing order is preserved, and every common label to the two
columns never has a vacant west (east) neighbour. Then exchange the vacant positions
with the east (west) neighbours. In particular, when the first (second) column J2 (J1)
is slid down (up) maximally such that the row weakly increasing order is preserved, we
get the outcome of the jeu de taquin operation. For instance,
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(2.6) Θ :

2 5
1 4
� 3
� 2

←→

� 5
� 4
2 3
1 2

←→

5 �
4 �
2 3
1 2

,

(2.7) Θ̃ :

2 5
1 4
� 3
� 2

←→

� 5
2 4
� 3
1 2

←→

5 �
2 4
3 �
1 2

←→

5 �
3 �
2 4
1 2

.

Obviously, Θ̃(J2J1) and Θ(J2J1) are not congruent unless Θ̃ = Θ, but Θ̃(J2J1) is a
frank word with the same shape and weight as Θ(J2J1).

Suppose that w is congruent to the key-tableau of weight (0r−1,mr,mr+1). With-
out loss of generality, assume mr+1 ≤ mr. Let Jr+1Jr be a frank word of shape

(mr+1,mr, 0
r−1), such that sorting the biletters of the biword Σ′ =

(
Jr+1Jr

(r + 1)mr+1rmr

)
,

by weakly increasing rearrangement of the biletters for the anti-lexicographic order, we

get Σ =

(
Jr+1Jr ↑

w

)
. Consider an r-pairing in w defined by an increasing injection

i : Jr+1 −→ Jr such that Jr ∩ Jr+1 ⊆ i(Jr+1). To perform θ̃rw based on this r-pairing
means to apply an operator Θ̃ on Jr+1Jr (denoted by Θ̃r) which exchanges the va-
cant entries of the first column with the corresponding east neighbours consisting of
Jr \ i(Jr+1) in the second column Jr. Conversely, an operator Θ̃r on Jr+1Jr means

an operator θ̃r on w, where the r-pairing on w is defined by any increasing injection
i : Jr+1 −→ Jr such that Θ̃Jr+1Jr = [Jr+1 ∪ (Jr \B)]B, where Jr ∩ Jr+1 ⊆ i(Jr+1) = B.
When Θ̃r = Θr we get the standard pairing of parentheses on w and hence θr. Thus
the operators Θ̃r, Θr and θ̃r, θr are respectively translated into each other, according
the following commutative diagram,

(2.8)

Σ =

(
Jr+1Jr ↑

w

)
Σ′ =

(
Jr+1Jr

(r + 1)mr+1rmr

)

Σ̃ =

(
Jr+1Jr ↑
θ̃rw

)
Σ̃′ =

(
Θ̃(Jr+1Jr)

(r + 1)mrrmr+1

)
......................................................................................................... ................ .........................................................................................................................

......................................................................................................... ................ .........................................................................................................................

................................................................................
........
........
........
........
........
........
........
........
........
........
........
........................
................

................................................................................
........
........
........
........
........
........
........
........
........
........
........
........................
................

.

If the row insertion of w gives the pair of tableaux (P,Q) then the row insertion of

θ̃rw leads to the pair (θrP,Q
′), where Q and Q′ are distinct tableaux unless θ̃r = θr. As

a Knuth class is not closed under the action of the operator Θ̃r, θ̃r does not preserve
the Q-symbol but we have θrw ≡ θ̃rw. For instance, in (2.6), any increasing injection
{1, 2} → {2, 3} defines a standard pairing of parentheses, giving rise to θ1 : (2(21)1)1→
(2(21)1)2; and in (2.7), any increasing injection {1, 2} → {2, 4} defines a pairing of

parentheses, giving rise to θ̃1 : (2(21)11)→ (2(21)21).
We are now in the position to describe the Smith invariants, equivalently, the skew-

tableaux on a two-letter alphabet associated with the sequences ∆αUK(m) and
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∆αUK(s1m). We let Pσ be the permutation matrix associated with the permutation
σ ∈ Sn.

Lemma 2.3. [5] (a) Let U be an n by n unimodular matrix. Then, there exists σ ∈ Sn
such that U = TPσQL, where T is an n by n upper triangular matrix, with 1′s along
the main diagonal, Q is an n by n upper triangular matrix, with 1′s along the main
diagonal, and multiples of p above it, and L is an n by n lower triangular matrix, with
units along the main diagonal.

(b) By elementary operations on the left and on the right, ∆αUK(m) may be consid-
ered equal to ∆αPσQK(m), with σ ∈ Sn.

(c) The Smith normal form of ∆αPσQD[m1], with σ ∈ Sn, is the diagonal matrix ∆α1

where α ⊆ α1 is a vertical strip of length m1.

Theorem 2.4. [5] Let T and T ′ be respectively the tableaux defined by the sequences
∆αUK(m) and ∆αUK(s1m), with indexing-set words J2J1, J ′2J

′
1 respectively, and words

w, w′ respectively. Then,
(a) J2J1, J ′2J

′
1 are frank words such that Θ̃1J2J1 = J ′2J

′
1, for some operator Θ̃1.

(b) w ≡ K(m) and w′ = θ̃1w ≡ K(s1m), for some operator θ̃1.
Conversely, if T and T ′ are respectively tableaux with indexing-set frank words J2J1

and J ′2J
′
1 satisfying J ′2J

′
1 = Θ̃1J2J1, then there exists an unimodular matrix U such that

∆αUK(m) and ∆αU
′K(s1m) define the tableaux T and T ′ respectively.

Example 2.5. Let U = P4321T14(p), where T14(p) is the elementary matrix obtained
from the identity by placing the prime p in position (1, 4). With α = (2, 1) the sequences

∆αUK(3, 2) and ∆αUK(2, 3) define, respectively, T =
2
• 1 2
• • 1 1

and T ′ =
2
• 2 2
• • 1 1

.

The words w = 21211 of T and w′ = 22211 of T ′ satisfy θ̃1w = w′ ≡ θ1w, where θ̃1

is the operator based on the parentheses matching (21(21)1). However, if we choose
U ′ = P3241T24(p), the sequences ∆αU

′ K(3, 2) and ∆αU
′ K(2, 3) define, respectively,

T and T ′′ =
2
• 1 2
• • 1 2

. In this case, the word w′′ of T ′′ satisfy θ1w = w′′. The

corresponding operations on the indexing frank words are given as follows:

(2.9) Θ :
� 4
3 3
1 2

←→
4 �
3 3
1 2

Θ̃ :
3 4
1 3
� 2

←→
3 4
1 3
2 �

←→
3 �
2 4
1 3

.

The operators Θr (θr) can be extended to frank words with more than two columns

(words on a t-letter alphabet, t ≥ 2) [19, 23]. Under certain conditions, operators Θ̃r (θ̃r)
can be extended, as well, to frank words with more than two columns (words on a t-letter
alphabet, t ≥ 2). For this, we generalize a criterion, by Lascoux and Schützenberger in
[21], to test whether the concatenation of a frank word with a column word is a frank
word. Denote, respectively, by L(J) and R(J) the left and right columns of a frank
word J .

Theorem 2.6. [21] The concatenation JJ ′ of two frank words J and J ′ is frank if and
only if R(H)L(H ′) is frank for any pair of frank words H,H ′ such that H ≡ J and
H ′ ≡ J ′.
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Notice that when J, J ′ are column-words, JJ ′ is frank if and only if JJ ′ is a tableau
or a contre-tableau. Therefore, we deduce the following criterion for the concatenation
of a column with a frank word.

Corollary 2.1. Let J = Jk · · · J1 be a frank word and Jk+1 a column. Then, Jk+1J
is frank if and only if Jk+1Jk and JkJk−1 · · · J1 are frank words, where Jk+1 Jk =
Θk(Jk+1Jk).

The criterion given by this corollary can be generalized to operators Θ̃.

Corollary 2.2. Let J = Jk · · · J1 be a frank word and Jk+1 a column. Then, Jk+1J

is frank if and only if Jk+1Jk and J̃kJk−1 · · · J1 are frank words, where J̃k+1 J̃k =
Θ̃k(Jk+1Jk) for some operator Θ̃k.

Proof. The necessary condition is a consequence of the previous corollary. Conversely,
assume the existence of an operator Θ̃k in the required conditions, and let Jk+1 Jk =

Θk(Jk+1Jk). Clearly, we have Jk ≤ J̃k, and also Jk+1 . J̃k+1, since |Jk| = |J̃k|. By

the hypotheses, the product J̃kL(H) is frank, for any frank word H ≡ Jk−1 · · · J1.

This means that either J̃k ≤ L(H), or J̃k . L(H). By transitivity, we find that either
Jk ≤ L(H), or Jk . L(H), i.e., JkL(H) is frank. Thus, by Theorem 2.6, the word
JkJk−1 · · · J1 is frank, and therefore, by the previous corollary, Jk+1J is frank. �

The following theorem was proved in [6]. Here we give a different proof based on
indexing-set words.

Theorem 2.7. Let T be the tableau defined by ∆αU K(m), with word w and J the
indexing set word. Then P (w) = K(m) and J is a frank word of column-shape the
reverse of m.

Proof. Let J = Jt . . . J1 with column-shape the reverse ofm. We will prove, by induction
on t ≥ 1, that Jt · · · J1 is a frank word. When t = 1 the result is trivial, and the case
t = 2 is a consequence of Theorem 2.4 (see [5]). So, let t > 2 and let T be the tableau
defined by ∆αUK(m1, . . . ,mt). By the inductive step, the word Jt−1 · · · J1 is frank,
since the sequence ∆αUK(m1, . . . ,mt−1) defines the tableau T ′ with indexing-set word
Jt−1 . . . J1 and weight (m1, . . . ,mt−1).

By the Smith normal form theorem (see for instance [25]), there is a partition ᾱ and
an unimodular matrix U ′ such that by elementary row operations, ∆ᾱUD[m1] · · ·D[mt−2]

can be reduced to ∆ᾱU
′. The sequence ∆ᾱU

′K(mt−1,mt) defines the tableau T with
indexing-set word Jt−1, Jt, and weight (mt−1,mt). By the case t = 2, the word JtJt−1

is frank. Moreover, by Theorem 2.4, we find that if T
′

is the tableau defined by the se-

quence ∆ᾱU,K(mt,mt−1), the indexing sets J t−1, J t of T
′
satisfy J tJ t−1 = Θ̃t−1(JtJt−1)

for some operator Θ̃t−1.

Finally, notice that ∆αUK(m1, . . . ,mt−2,mt) defines the tableau T̃ with indexing-
set word J t−1 Jt−2 . . . J1, and weight (m1, . . . ,mt−2, mt). By the inductive step,
J t−1Jt−2 · · · J1 is a frank word. Thus, by Corollary 2.2, the word Jt · · · J1 is frank,
and therefore, w ≡ K(m). �
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3. An action of the symmetric group on Young tableaux of skew-shape

Let si denote the elementary transposition (i, i + 1) of St, 1 ≤ i ≤ t. Let U be an
n by n unimodular matrix and β = (β1, β2, β3) a partition. We consider the following
hexagon
(3.1)

∆αUK(β1, β2, β3)

∆αUK(β2, β1, β3) ∆αUK(β2, β3, β1)

∆αUK(β3, β2, β1)

∆αUK(β1, β3, β2) ∆αUK(β3, β1, β2)

..............
..............
..............
..............
.........s1

.................................................................s2

..............
..............

..............
..............

......... s1

................................................................. s2

........................................................................
s2

........................................................................

s1

.

From the discussion in Section 2.2, we may look at (3.1) as a hexagon whose ver-
tices are tableaux of skew-shape such that the words are congruent to a key-tableau
K(βi1 , βi2 , βi3), and the indexing-set frank words have column-shape the reverse of
(βi1 , βi2 , βi3) with (βi1 , βi2 , βi3) running over the orbit S3β. Therefore, we have two
hexagons, one defined by the words of the skew-tableaux and the other one defined by
the indexing-set frank words. These hexagons are copies of each other since operations
based on pairing of parentheses can be reduced to variations of the jeu de taquin on
two-column frank words and vice versa. Taking into account Theorems 2.4 and 2.7, the
next statement follows from the hexagon above. Given σ ∈ St, rev denotes the longest
permutation of St. Let α1, α2 be two operators satisfying the Moore–Coxeter relations
of the symmetric group S3, we put 〈α1, α2〉 := {αiαj . . . αk : i j . . . k ∈ [2]∗}.

Theorem 3.1. Let σ ∈ 〈s1, s2〉, θ ∈ 〈θ1, θ2〉 and Θ ∈ 〈Θ1,Θ2〉 with the same reduced
word. Let σT be the tableau defined by ∆αUK(σβ), with word σw and indexing-set
frank word σJ of column-shape the reverse of σβ. Then {σT : σ ∈ 〈s1, s2〉} are the
vertices of a hexagon such that:

(a) there exist operators θ̃1 and θ̃2 satisfying the Moore–Coxeter relations of the

symmetric group S3, where θ̃ ∈ 〈θ̃1, θ̃2〉, with the same reduced word as θ, verifies

σw = θ̃w ≡ θK(β) = K(σβ),

(3.2) w

θ̃1w θ̃2θ̃1w

θ̃1θ̃2θ̃1w

θ̃2w θ̃1θ̃2w

........................
........................

.........

.........................................................

........................
........................

.........

.........................................................

.................................................................................

.................................................................................

.

(b) there exist operators Θ̃1 and Θ̃2 satisfying the Moore–Coxeter relations of the
symmetric group S3, where Θ̃ ∈ 〈Θ̃1, Θ̃2〉, with the same reduced word as Θ, verifies
σJ = Θ̃J ,

(3.3) J = J3J2J1

Θ̃1J = J3G2G1 Θ̃2Θ̃1J = F3F2G1

Θ̃1Θ̃2Θ̃1J = F3XH1

Θ̃2J = L3L2J1 Θ̃1Θ̃2J = L3H2H1

..............
..............
..............
..............
.........

.................................................................

..............
..............

..............
..............

.........

.................................................................

........................................................................

........................................................................

.
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Our aim is to describe explicitly the operators θ̃i and Θ̃i closing respectively the
hexagons (3.2) and (3.3), that is, those operators θ̃i and Θ̃i such that θ̃1θ̃2θ̃1w = θ̃2θ̃1θ̃2w
and Θ̃1Θ̃2Θ̃1J = Θ̃2Θ̃1Θ̃2J respectively.

In fact the hexagon (3.1) and, hence, hexagon (3.3), obey the following conditions.
(The translation of these conditions to hexagon (3.2) will be done later.)

Lemma 3.2. [5] The operators closing hexagons (3.1) and (3.3) obey the following
conditions:

(a) If L3L2 and F3F2 are, respectively, the indexing-set frank words of ∆αUK(β1, β3)
and ∆αUK(β2, β3), then there holds the inequality F2 ≤ L2.

(b) If L3H2 and J3G2 are, respectively, the indexing-set frank words of ∆αUK(β3, β1)
and ∆αUK(β2, β1), then there holds the inequalityG2 ≤ H2.

(c) The operators Θ̃1 and Θ̃2 defining the hexagon (3.3) are such that Θ̃2[Θ̃1J ] =
F3F2G1 with F2 ≤ L2, and Θ̃1[Θ̃2J ] = L3H2H1 with G2 ≤ H2.

Remark 3.3. The condition (c), in the previous lemma, imposed on the operators of the
hexagon (3.3) does not come from the braid relations of the operators Θ̃i. As can be
seen in the example below, there are operators Θ̃1 and Θ̃2 which close the hexagon and
do not satisfy the conditions in (c).

1 2 4
3

1 3
2 4

2
1 3 4

2
1 3 4

1 2 4
3

1 3
2 4

..............
..............
..............
..............
.........Θ̃1

......................................................Θ̃2

..............
..............

..............
..............

......... Θ̃1

......................................................

Θ̃1

.................................................................Θ̃2

................................................................. Θ̃2

.

We start to analyse the hexagon (3.3) under the conditions in (c) of the previous
lemma. The Knuth class of a key-tableau over a three-letter alphabet as well as any
frank word with three columns can be characterized in terms of the shuffling operation.
This characterization gives a combinatorial explanation of our hexagons (3.1), (3.2)
and (3.3). Indeed by Greene’s theorem [15], the set of all shuffles of the columns of
a key-tableau are contained in its Knuth class. However, under certain conditions we
have equality.

Theorem 3.4. [6] Let K be a key-tableau with first column A. Then, the Knuth class
of K is equal to the set of all shuffles of its columns if and only if each of its column is
either an interval of A or is obtained from an interval of A by removing a single letter.

This criterion can be easily applied considering the planar representation of the weight
of the key-tableau. For instance K(2, 0, 1, 2, 4, 2, 3) is the shuffle of its columns, since
each column in the planar representation of the weight (2, 0, 1, 2, 4, 2, 3),

7 • • •
6 • •
5 • • • •
4 • •
3 •
1 • •

1 2 3 4
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has, at most, one gap of size 1. Each column is either an interval of A = {1, 3, 4, 5, 6, 7}
or is obtained from an interval of A removing one letter.

Corollary 3.1. The following statements are equivalent:
(a) The Knuth class of a key-tableau over a three-letter alphabet is the set of all

shuffles of its columns.
(b) J is a three-column frank word if and only if J has one of the following forms

(I)
A1

1

A2
1 A2

2

A3
1 A3

2 A3
3

; (II)
A1

2

A2
1 A2

2

A3
1 A3

2 A3
3

; (III)
A1

3

A2
1 A2

3

A3
1 A3

2 A3
3

;

(IV)
A1

3

A2
2 A2

3

A3
1 A3

2 A3
3

; (V )
A1

1

A2
1 A2

3

A3
1 A3

2 A3
3

; (VI)
A1

2

A2
2 A2

3

A3
1 A3

2 A3
3

,

where A3
1 ≤ A3

2 ≤ A3
3, with |A3

1| = |A3
2| = |A3

3|; Ari ∩ Asi = ∅, for r 6= s, i = 1, 2, 3, and
A2

1 ≤ A2
2, A2

1 ≤ A2
3, A2

2 ≤ A2
3, with |A2

1| = |A2
2| = |A2

3|.

Proof. This follows from the previous theorem. �

Every three-column frank word is a shuffle of row words of length ≤ 3. Clearly the
operators Θ̃i acting row words of length ≤ 3 close the hexagons, and satisfy trivially the
conditions (c) of Lemma 3.2. In this case, we have indeed Θ̃i = Θi. But if the column-
shape of the frank word is any permutation of (1, 1, 2), the action of the operator Θi

does not always split into an action on row words of length 3 and on row words of
length 1.

Let J =
c2 b4 a4

a2 be a three-column contre-tableau. We have to distinguish three

situations. Either we have c2 ≤ a2 < b4 ≤ a4 or c2 ≤ b4 ≤ a2 < a4 or a2 < c2 ≤ b4 ≤ a4.
We say that a hexagon closes in the Knuth class when all elements appearing in the

hexagon belong to the same Knuth class.
If c2 ≤ a2 < b4 ≤ a4, there is only one hexagon closing in the Knuth class of J ,

namely the one defined by Θ̃i = Θi. It satisfies conditions (c) of Lemma 3.2, but
the operators do not split into operators acting on row words. The full collection of
hexagons satisfying conditions (c) of Lemma 3.2, in this case, is described as follows.
When c2 = a2, the following (closing in the Knuth class) is the only hexagon satisfying
conditions (c) of Lemma 3.2,

J =
b4 a4

c2 a2

b4 a4

c2 a2
b4 a4

c2 a2

b4 a4

c2 a2

b4 a4

c2 a2
b4 a4

c2 a2

.................
.................

.................
.........Θ1

...........................................................................................................
Θ2

.................
.................

.................
......... Θ1

...........................................................................................................

Θ1

............................................................Θ2

............................................................ Θ2

.

When c2 < a2, besides the hexagon closing in the Knuth class, there is still another
hexagon (obviously not closing in the Knuth class) in the conditions (c) of Lemma 3.2,
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J =
b4 a4

c2 a2

b4 a4

c2 a2
c2 a4

a2 b4

c2 a4

a2 b4

b4 a4

c2 a2
b4 a4

c2 a2

.................
.................

.................
.........Θ1

...........................................................................................................Θ̃2

.................
.................

.................
......... Θ1

...........................................................................................................

Θ1

............................................................Θ2

............................................................ Θ̃2

.

If c2 ≤ b4 ≤ a2 < a4, we have two hexagons closing in the conditions (c) of Lemma 3.2:
one closing in the Knuth class of J , where the operators Θ̃i = Θi can be split by their
action on the row words c2 ≤ b4 ≤ a2 and a4 (for convenience J is written as a shuffle
of those rows),

J =
c2 b4 a2

a4

c2 b4 a2

a4
c2 b4 a2

a4

c2 b4 a2

a4

c2 b4 a2

a4
c2 b4 a2

a4

.................
.................

.................
.........Θ1

...........................................................................................................
Θ2

.................
.................

.................
......... Θ1

...........................................................................................................

Θ1

............................................................Θ2

............................................................ Θ2

;

and the other one, when b4 < a2, not closing in the Knuth class of J , where the operators
Θ̃i are split by their action on the row words c2 ≤ b4 < a4 and a2,

J =
c2 b4 a4

a2

c2 b4 a4

a2
c2 b4 a4

a2

c2 b4 a4

a2

c2 b4 a4

a2
c2 b4 a4

a2

.................
.................

.................
.........Θ̃1

...........................................................................................................
Θ2

.................
.................

.................
......... Θ1

...........................................................................................................

Θ̃1

............................................................Θ2

............................................................ Θ2

.

If a2 < c2 ≤ b4 ≤ a4, there is only one hexagon satisfying conditions (c) of Lemma 3.2,
the one closing in the Knuth class of J , which splits over the rows c2 ≤ b4 ≤ a4 and a2.

Example 3.5. From the discussion above, there are only two hexagons in the conditions

(c) of Lemma 3.2 having the contre-tableau J =
1 2 4

3
as a vertex. The second one

gives the frank words in the Knuth class.

J =
1 2 4

3

1 3
2 4

3
1 2 4

3
1 2 4

1 2 4
3

1 3
2 4

..............
..............
..............
..............
.........Θ̃1

......................................................
Θ2

..............
..............

..............
..............

......... Θ1

......................................................

Θ̃1

.................................................................Θ2

................................................................. Θ2

,
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J =
1 2 3

4

1 4
2 3

4
1 2 3

4
1 2 3

1 2 4
3

1 4
2 3

..............
..............
..............
..............
.........Θ1

......................................................
Θ2

..............
..............

..............
..............

......... Θ1

......................................................

Θ1

.................................................................Θ2

................................................................. Θ2

.

In the case of the contre-tableau J ′ =
1 3 4

2
where 1 < 2 < 3 < 4, we have also

only two hexagons in the conditions (c) of Lemma 3.2. The first hexagon gives the
frank words in the Knuth class:

J ′ =
1 3 4

2

1 3
2 4

1
3 2 4

1
3 2 4

1 3 4
2

1 2
3 4

..............
..............
..............
..............
.........Θ1

......................................................
Θ2

..............
..............

..............
..............

......... Θ1

......................................................

Θ1

.................................................................Θ2

................................................................. Θ2

,

J ′ =
1 3 4

2

1 3
2 4

1
2 3 4

1
2 3 4

1 3 4
2

1 2
3 4

..............
..............
..............
..............
.........Θ1

......................................................Θ̃2

..............
..............

..............
..............

......... Θ1

......................................................

Θ1

.................................................................Θ2

................................................................. Θ̃2

.

The meaning of Remark 3.3 becomes now clear. As any three-column frank word
is a shuffle of rows of length ≤ 3, and frank words with column-shape equals to a
permutation of (2, 1, 1), then, given a three-column frank word, it is always possible to
construct a hexagon satisfying conditions (c) of Lemma 3.2 and having that frank word
as a vertex. Define such a hexagon as a shuffle of those above. Our next main theorem
makes this shuffle precise and moreover shows that any hexagon on three-column frank
words satisfying conditions (c) of Lemma 3.2 is exactly a shuffle of those hexagons.

Theorem 3.6. Let J = J3J2J1 be a three-column contre-tableau. The following asser-
tions are equivalent.

(a) There exist operators Θ̃1 and Θ̃2 defining the hexagon (3.3) such that Θ̃2[Θ̃1J ] =
F3F2G1 with F2 ≤ L2, and Θ̃1[Θ̃2J ] = L3H2H1 with G2 ≤ H2.
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(b) The contre-tableau J has a decomposition, as below, giving rise to the hexagon of
frank words with the same weight, with T a tableau,
(3.4)

A5
3 A5

2 A5
1

A4
2 A4

1

J= A3
2 A3

1

A2
3 A2

1

A1
1

A5
3 A5

2 A5
1

A4
2 A4

1

A3
2 A3

1

A2
3 A2

1

A1
1

A5
3 A5

2 A5
1

A4
2 A4

1

A3
2 A3

1

A2
3 A2

1

A1
1

A5
3 A5

2 A5
1

A4
2 A4

1

T= A3
2 A3

1

A2
3 A2

1

A1
1

A5
3 A5

2 A5
1

A4
2 A4

1

A3
2 A3

1

A2
3 A2

1

A1
1

A5
3 A5

2 A5
1

A4
2 A4

1

A3
2 A3

1

A2
3 A2

1

A1
1

...............
...............

...............
...............

...............
...............

..............Θ̃1

...........................................................................................................
Θ̃2

...............
...............

...............
...............

...............
...............

.............. Θ̃1

...........................................................................................................

Θ̃1

........................................................................................................Θ̃2

........................................................................................................ Θ̃2

,

such that the sets Aji are pairwise disjoint in each column Ji,

Aji+1 ≤ Aji , with |Aji+1| = |A
j
i |;

A2
3 ≤ A2

1 < A4
2 ≤ A4

1, A2
1 ∩ A4

2 = ∅,with |A2
3| = |A2

1| = |A4
2| = |A4

1|;
and J1∩A5

2 ⊆ A5
1; (J1\A5

1)∩A4
2 ⊆ A4

1; [J1\(A5
1∪A4

1)]∩A3
2 ⊆ A3

1; [J2∪(A2
1∪A1

1)]∩A2
3 ⊆

A2
1; and [J2 ∪ (A2

1 ∪ A1
1)] ∩ A5

3 ⊆ A5
2.

Proof. (b)⇒ (a) By previous corollary, the vertices of the hexagon (3.4) are frank words
with the same weight, and clearly satisfy (c) of Lemma 3.2.

(a) ⇒ (b) The frank words J3J2J1 and J3G2G1 are, respectively, in the conditions
(IV ) and (II) of Corollary 3.1 and satisfy Θ̃1J3J2J1 = J3G2G1. Then

G1 ⊆ J1, |G1| = |J2|, J2 ≤ G1, J1 ∩ J2 ⊆ G1 and

G2 = J2 ∪ (J1 \G1), J3 ≤ G2.(3.5)

Since the frank word Θ̃2(J3J2J1) = L3L2J1 satisfy conditions (III) of Corollary 3.1 we
have L2 ⊆ J2, |L2| = |J3|, J3 ≤ L2 ≤ J1 J2 ∩ J3 ⊆ L2 and L3 = J3 ∪ (J2 \ L2). Again
the frank word F3F2G1 = Θ̃2(J3G2G1) satisfy (V ) of Corollary 3.1. Then

F2 ⊆ G2, |F2| = |J3|, J3 ≤ F2 ≤ G1, G2 ∩ J3 ⊆ F2 and

F3 = J3 ∪ (G2 \ F2).(3.6)

By (3.5) and (3.6), we have F2 ⊆ G2 = J2∪(J1\G1). Thus, we may write F2 = A5
2∪A2

1,
with A5

2 ⊆ J2 and A2
1 ⊆ J1\G1. Moreover, since J3 ≤ F2, we may also write J3 = A5

3∪A2
3,

where A5
3 ≤ A5

2 e A2
3 ≤ A2

1 satisfy |A5
3| = |A5

2|, |A2
3| = |A2

1|, G2 ∩ A5
3 ⊆ A5

2 and
G2 ∩ A2

3 ⊆ A2
1. We define A1

1 = J1 \ (G1 ∪ A2
1), therefore J1 \G1 = A1

1 ∪ A2
1.

The frank word F3XH1 = Θ̃1F3F2G1 satisfy (I) of Corollary 3.1. Then

H1 ⊆ G1, |H1| = |F2|, F2 ≤ H1, F2 ∩G1 ⊆ H1 and

F3 . X = F2 ∪ (G1 \H1) . H1.(3.7)
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Since F2 = A5
2 ∪ A2

1 ≤ H1, we can define A5
1 = min{Z ⊆ H1 : |Z| = |A5

2| and A5
2 ≤ Z},

where the minimum is taken with respect to ≤, and A4
1 = H1 \ A5

1. As H1 ⊆ G1, put
A3

1 = G1 \H1. We have H1 = A5
1 ∪ A4

1 and X = A5
2 ∪ A2

1 ∪ A3
1. From F2 ≤ H1 and the

definition of A5
1, we get A5

3 ≤ A5
2 ≤ A5

1 and A2
3 ≤ A2

1 < A4
1, where A2

1 ∩ A4
1 = ∅. Note

that from (3.5) and (3.7), we obtain J1 ∩ A5
2 ⊆ A5

1. By Lemma 3.2

(3.8) F2 ≤ L2.

Now we consider the bottom edges of our hexagon (3.3). Since the frank word L3H2H1 =
Θ̃1(L3L2J1) satisfy (II) of Corollary 3.1 we have

H1 ⊆ J1, |H1| = |L2|, L2 ≤ H1, L2 ∩ J1 ⊆ H1 and

L3 ≤ H2 = L2 ∪ (J1 \H1) . H1.(3.9)

By Lemma 3.2, (c), we have

(3.10) G2 ≤ H2.

Finally, since F3XH1 = Θ̃2(L3H2H1), we have X ⊆ H2, |X| = |L3|, L3 ≤ X, H2∩L ⊆
X and F3 = L3 ∪ (H2 \X).

By (3.9) and A5
2 ∪ A2

1 ∪ A3
1 = X2 ⊆ H2 = L2 ∪ A1

1 ∪ A2
1 ∪ A3

1, we conclude that
A5

2 ⊆ L2 ∪ A1
1. Since A5

2 and A1
1 are disjoint sets, it follows A5

2 ⊆ L2. Define A4
2 =

L2 \ A5
2 and A3

2 = J2 \ L2. As |L2| = |H1|, we also have |A4
1| = |A4

2|, |A3
1| = |A3

2|,
(J1 \ A5

1) ∩ A4
2 ⊆ A4

1 and (J1 \ (A5
1 ∪ A4

1)) ∩ A3
2 ⊆ A3

1. Moreover from the inequality
L2 ≤ H1, we get A4

2 ≤ A4
1. By (3.8) and (3.5), we get A2

1 < A4
2 with A2

1 ∩ A4
1 = ∅, and

by (3.10), we have A3
2 ≤ A3

1. �

Considering all tableaux of a given shape and weight, this theorem defines an action
of the symmetric group on frank words in the union of the Knuth classes of those
tableaux. See Example 3.15.

A right (left) key K̃+(T ) (K̃−(T )) of the tableau T is the key-tableau of the same
shape as T whose j-th column is the first (last) column of any skew-tableau in a hexagon
(3.4) with the following property: its first (last) column has the same length as the j-th
column of T (cf. [19]).

From the hexagon (3.4) we get, respectively, a right key of T ,

K̃+(T ) =

A5
1 A5

1 A5
1

A4
1 A4

1 A4
1

A3
1 A3

1

A2
1

A1
1

,

and a left key of T ,

K̃−(T ) =

A5
3 A5

3 A5
3

A4
2

A3
2 A3

2

A2
3 A2

3 A2
3

A1
1

,

with K̃+(T ) ≥ K̃−(T ).
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Example 3.7. Below we give two decompositions of the tableau T =

5
4
3 3
2 2 5

leading

to different left and right keys. The second hexagon gives the frank words in the Knuth
class of T :

(3.11)

3 3
5 5

2 2
4

3 3
5 5

2 2
4

3 3
5 5
2 2
4 3 3

5 5 = T
2 2

3 3
5 5

2 2
4

3
5 5

2 2
4

.............
.............
.............
.............
.............
.............
...........

Θ1
...........................................................................................................

Θ2

.............
.............

.............
.............

.............
.............

........... Θ̃1

...........................................................................................................

Θ1

.........................................................................................

Θ̃2

.........................................................................................
Θ2

, K+(T ) =

5
4
3 5
2 3 5

,

3 3
5 5

2 2
4

3 3
5 5

2 2
4

3 3
5 5
2 2
4 3 3

5 5 = T
2 2
43 3

5 5
2 2

4

3 3
5 5
2 2

4

.............
.............
.............
.............
.............
.............
...........

Θ1
...........................................................................................................

Θ2

.............
.............

.............
.............

.............
.............

...........
Θ1

...........................................................................................................

Θ1

.........................................................................................
Θ2

.........................................................................................
Θ2

, K+(T ) =

5
4
3 5
2 3 3

.

We may now describe the hexagon (3.2). Without loss of generality, we may consider
the hexagon (3.4) in simplified form in the sense that the sets Aji are singular,
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(3.12) J =

c5 b5 a5

b4 a4

b3 a3

c2 a2

a1

c5 b5 a5

b4 a4

b3 a3

c2 a2

a1

c5 b5 a5

b4 a4

b3 a3

c2 a2

a1 c5 b5 a5

b4 a4

b3 a3

c2 a2

a1c5 b5 a5

b4 a4

b3 a3

c2 a2

a1

c5 b5 a5

b4 a4

b3 a3

c2 a2

a1

...............
...............

...............
...............

...............
...............

..............Θ̃1

...........................................................................................................Θ̃2

...............
...............

...............
...............

...............
...............

.............. Θ̃1

...........................................................................................................

Θ̃1

........................................................................................................Θ̃2

........................................................................................................ Θ̃2

,

with c5 ≤ b5 ≤ a5, b3 ≤ a3, and c2 ≤ a2 < b4 ≤ a4. The contre-tableau J is therefore
split into the frank word Y1 = c2b4a4a2 of shape (1, 1, 2), and the row words X2 =
c5b5a5, X3 = b3a3, and X4 = a1. Let X1 = c2a2b4a4. We consider the biwords with
pairwise distinct biletters
(3.13)

Σ′ =
(

J3 J2 J1

32 23 15

)
←→ Π =

(
c2a2b4a4 c5b5a5 b3a3 a1

3 1 2 1 3 2 1 2 1 1

)
←→ Σ =

(
(J3J2J1) ↑

w

)
,

where Π is obtained by sorting the biletters of Σ′, and Σ is obtained by sorting the
biletters of Π in weakly increasing rearrangement for the anti-lexicographic order. Since
(J3J2J1) ↑ is a shuffle of the words X1, X2, X3 and X4, then w is a shuffle of 3121,

321, 21 and 1 such that the biword Σ is a shuffle of

(
X1

3121

)
,

(
X2

321

)
,

(
X3

21

)
and(

X4

1

)
. Therefore the hexagon (3.2) is a “shuffle” of four elementary hexagons,

(3.14)

(
c2a2b4a4

3 2 3 1

)(
c2a2b4a4

3 1 2 1

)
(
c2a2b4a4

3 2 2 1

) (
c2a2b4a4

3 2 3 1

)
(
c2a2b4a4

3 1 2 1

) (
c2a2b4a4

3 2 2 1

)
θ1θ1

θ2θ2

θ2

θ1

...........
...........
...........
...........
...........
...........
..........

............................................................................

...........
...........

...........
...........

...........
...........

..........

............................................................................

.................................................................

.................................................................

(3.15)

(
c5a5b5

3 2 1

)(
c5a5b5

3 2 1

)
(
c5a5b5

3 2 1

) (
c5a5b5

3 2 1

)
(
c5a5b5

3 2 1

) (
c5a5b5

3 2 1

)
θ1θ1

θ2θ2

θ2

θ1

...........
...........
...........
...........
...........
...........
..........

............................................................................

...........
...........

...........
...........

...........
...........

..........

............................................................................

.................................................................

.................................................................
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(3.16)

(
b3a3

3 2

)(
b3a3

2 1

)
(
b3a3

3 1

) (
b3a3

3 2

)
(
b3a3

2 1

) (
b3a3

3 1

)
θ1θ1

θ2θ2

θ2

θ1

..........
..........
..........
..........
..........
..........
.........

.....................................................................

..........
..........

..........
..........

..........
..........

.........

.....................................................................

.................................................................

.................................................................

(3.17)

(
a1

3

)(
a1

1

)
(
a1

1

) (
a1

2

)
(
a1

2

) (
a1

3

)
θ1θ1

θ2θ2

θ2

θ1

...........
...........
...........
...........
...........
...........
..........

............................................................................

...........
...........

...........
...........

...........
...........

..........

............................................................................

.................................................................

................................................................. .

A Yamanouchi tableau is a key-tableau whose shape and weight coincide. A Ya-
manouchi word is a word congruent to a Yamanouchi tableau. By Corollary 3.1, every
three-letter Yamanouchi word w is a shuffle of k ≥ 0 words 3121, l1 ≥ 0 words 321,
l2 ≥ 0 words 21 and l3 − k ≥ 0 words 1, that, by abuse of notation, we shall write
w = shuffle((3121)k, (321)l1 , (21)l2 , 1l3−k).

Theorem 3.8. The hexagon (3.2) is a “shuffle” of the hexagons defined by the bottom
rows of the four hexagons (3.14), (3.15), (3.16), and (3.17) with appropriate multiplic-
ities. That is, there exist a shuffle of k ≥ 0 words 3121, l1 ≥ 0 words 321, l2 ≥ 0 words
21, and l3 − k ≥ 0 words 1, w = shuffle((3121)k, (321)l1 , (21)l2 , 1l3−k), such that

(a) θ̃iw = shuffle((θi3121)k, (θi321)l1 , (θi21)l2 , (θi1)l3−k), i = 1, 2;

(b) θ̃iθ̃jw = shuffle((θiθj3121)k, (θiθj321)l1 , (θiθj21)l2 , (θiθj1)l3−k), 1 ≤ i 6= j ≤ 2;

(c) θ̃1θ̃2θ̃1w = shuffle((θ1θ2θ13121)k, (θ1θ2θ1321)l1 , (θ1θ2θ121)l2 , (θ1θ2θ11)l3−k).

Example 3.9. The hexagon (3.11) gives rise to the hexagon below, where the operators
are based on non-standard pairing of parentheses

(3.18)

3 1 2 1 1̄ 2 1 3 2 3 2 3̄ 3 1

3 2 3 2 2̄ 2 13 1 3 1 1̄ 2 1

3 2 3 1 3̄ 3 13 2 2 1 2̄ 2 1 θ̃1θ1

θ2θ̃2

θ2

θ1

.................
.................

.................
.................

.................
...........

................................................................................................

.................
.................

.................
.................

.................
...........

................................................................................................

......................................................................................

......................................................................................

(the barred letters indicate the subwords 3121 and 1 in the shuffle).

Remark 3.10. The following example is the translation of Remark 3.3 to hexagon (3.2).
The hexagon

3211

3221 3321

3321

3211 3221

..............
..............
..............
..............
.........θ̃1 ........................................................................θ̃2

..............
..............

..............
..............

......... θ̃1

........................................................................

θ̃1

.................................................................

θ̃2

.................................................................

θ̃2

is not a shuffle of the two hexagons (3.15) and (3.17).
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Next we show that the family of actions of S3 defined by the operators θ̃i (Θ̃i),
i = 1, 2, based on shuffle decompositions of a three-letter Yamanouchi word w (three-
column tableau) as shown in the previous theorems, includes the action defined by
the operators θi (Θi), i = 1, 2. This is achieved in the following algorithm, where a
special shuffle decomposition for a three-letter Yamanouchi word w is exhibited. Using
(3.13), it follows that the hexagon (3.4) contains, in particular, the action defined by
the operators Θi. That is, the Lascoux–Schützenberger action of the symmetric group:
on frank words is obtained from a particular shuffle decomposition of a three-column
tableau into rows of length ≤ 3, and tableaux of column-shape (2, 1, 1); and on words
congruent to key-tableaux is obtained from a shuffle decomposition of a three-letter
Yamanouchi word into words 3121 and column-words 321, 21, 1.

Let w = w1 · · ·wl be a word of length l. We denote by w|A the subword of w obtained
by suppressing the letters not in A. If X ⊆ [l], then w|X is the subword of w defined
by the letters of w in positions X. If X, Y ⊆ [l] with X ∩ Y = ∅, then w|(X, Y ) is the
shuffle of the subwords w|X and w|Y defined by the letters of w in positions X ∪Y . By
induction, we define w|(X1, . . . , Xk), for any k ≥ 0, putting the empty word for k = 0.
Given the positive integers i ≤ j, we put [i, j] for the set {i, i+ 1, . . . , j}.

Algorithm 3.11. Let w be a Yamanouchi word over a three-letter alphabet. Our
algorithm is consists of three steps.

Step 1. Consider the subword w|{2,1} and bracket every factor 21 of w|{2,1}. The
letters which are not bracketed constitute a subword of w|{2,1}. Then bracket every
factor 21 of this subword. Again, the letters which are not bracketed constitute a
subword. Continue this procedure until it stops, that is, until we get a word consisting
of l1 non-bracketed letters 1′s in w. This bracketing process enables us to decompose
w as

(3.19) w|(I1, . . . , Il3+l2 , J1, . . . , Jl3 , K1, . . . , Kl1),

where w|Il = 21, l ∈ [l3 + l2], w|Jl = 3, l ∈ [l3], and w|Kl = 1, l ∈ [l1].
Step 2. Let w′ be the subword of w obtained by removing all letters 1 belonging to

the factors w|Il, for all l ∈ [l3 + l2]. As in the previous step, we bracket all the successive
factors 32 and 31 of w′. We get a new decomposition (3.19), by making the unions of
k sets Jl with k sets Kl, for some integer 0 ≤ q ≤ min{l3, l1}, and making the unions
of the remaining l3 − q sets Jl with l3 − q sets Il:

w|(F1, . . . , Fq, G1, . . . , Gl3−q, I1, . . . , Il2+q, K1, . . . , Kl1−q),

where w|Fl = 31, l ∈ [q], w|Gl = 321, l ∈ [l3 − q], w|Il = 21, l ∈ [l2 + q], and w|Kl = 1,
l ∈ [l1 − q] (reordering the sets Ii’s, Jj’s and Kl’s in (3.19) if necessary).

Step 3. Finally, let w′′ be the subword of w obtained by removing the subwords
w|Gl = 321 and w|Kl = 1, for all l ≥ 1. As before, we bracket all the successive factors
3121 of w′′. This operator consists of the union of the q sets Fl with q sets Il. The
decomposition of w obtained in this way, is denoted by w|(I∗1 , . . . , I∗l3+l2+l1−q), where
w|I∗l = 3121, l ∈ [q], w|I∗l = 321, l ∈ [q + 1, l3], w|I∗l = 21, l ∈ [l3 + 1, l3 + l2], and
w|I∗l = 1, l ∈ [l3 + l2 + 1, l3 + l2 + l1 − q].

The next example illustrates the application of the previous algorithm.
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Example 3.12. Let w = 33121121 ≡ K(4, 2, 2). Following the first step of Algorithm
3.11, we bracket all the successive factors 21 of w|{1,2}, that is, 331(21)1(21), obtaining
in this way the decomposition

w = w|({4, 5}, {7, 8}, {1}, {2}, {3}, {6}),
where w|{4, 5} = w|{7, 8} = 21, w|{1} = w|{2} = 3 and w|{3} = w|{6} = 1. Next, let
w′ = 3312 − 12− (where − indicates the place of the suppressed letters of w) be the
subword of w obtained by removing the letters 1 belonging to w|{4, 5} and w|{7, 8},
and bracket all the successive factors 31 and 32 of w′. Thus, we have w′ = 3(31)2−12−,
with the letters 3 and 1 belonging to w|{2} and w|{3}, respectively; and then, we have
w′1 = (3 − −2) − 12−, with the letters 3 and 2 of this factor belonging to w|{1} and
w|{4, 5}, respectively. Then, we get the decomposition

w = w|({1, 4, 5}, {7, 8}, {2, 3}, {6}),
with w|{1, 4, 5} = 321, w|{7, 8} = 21, w|{2, 3} = 31 and w|{6} = 1. Finally, let w′′ =
−31−−−21 be the subword of w obtained by removing the subwords w|({1, 4, 5} = 321
and w|{6} = 1. This word has only one factor 3121 and thus we get the decomposition

w = w|({2, 3, 7, 8}∗, {1, 4, 5}∗, {6}∗) = 3 3 1 2 1 1 2 1,

where the underlined letters define 3121, the overlined letters define 321 and the re-
maining letter defines the shuffle component 1. It is easy to check that the parentheses
matching operations induced by this decomposition are the standard ones:

(3.20)
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...................................................................................... .

Theorem 3.13. Let w be a Yamanouchi word over a three-letter alphabet and consider
the decomposition w|(I∗1 , . . . , I∗q ) given by Algorithm 3.11. Then, for each ij · · · k ∈ [2]∗,

θiθj · · · θk(w) = wij···k satisfy wij···k|Il = θiθj · · · θk(w|Il), for all l = 1, . . . , q.

Proof. By the construction of w|(I∗1 , . . . , I∗q ), it is clear that θiθj · · · θk(w) = wij···k, for
ij · · · k ∈ {1, 21, 121}. For the computation of θ2(w), we must match all successive
factors 32 of w|{2,3}, until we get the subword 2l2 , for some non-negative integer l2.
Each matched pair 32 belongs either to a component 321, or 3121, while the letters 2 of
the subword 2l2 belong to components 21. The word θ2(w) is then obtained by replacing
in w the subword 2l2 by 3l2 . Since θ2(3121) = 3121, θ2(321) = 321 and θ2(21) = 31, it
follows that θ2(w) = w2.

Finally, consider the subword θ1θ2(w), obtained by matching the successive factors
21 of θ2(w)|{1,2}. By the construction of w|(I∗1 , . . . , I∗q ), each one of the matched pairs
21 belongs either to a component 321 or 3121. On the other hand, each letter of the
subword 1l2+l1 , obtained by removing the matched pairs, is itself a component or it
represents the leftmost letter 1 of a component 3121. Since θ1θ2(3121) = 3221 and
θ1θ2(1) = 2, we get θ1θ2(w) = w12. �

Finally, our construction in Theorem 3.6 has a matrix interpretation.
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Theorem 3.14. [5] To each hexagon (3.4) it corresponds a hexagon (3.1). That is,
given a hexagon (3.4), ∃U ∼ I such that, for some partition α, {∆αUK(σβ) : σ ∈ S3}
is a hexagon whose indexing-set frank words are those of (3.4).

Next we give an example of our construction in Theorems 3.6 and 3.8 in the case of
S4.

Example 3.15. Dual permutahedra in S4 generated by variants of jeu de taquin and
non-standard reflection crystal operators.

Consider the Yamanouchi word w = 4312211 ∈ [4]∗ and the contre-tableau J =

1 1 32 451. The biwords Σ =

(
1112345
4312211

)
and Σ′ =

(
1 1 32 451
4 3 22 111

)
correspond by the

dual RSK to the pair (K,P ), with K = 4321 21 1 the Yamanouchi tableau of shape
(3, 2, 1, 1), and P = 321 51 1 4.

The vertices of the following permutahedron in S4 contains the contre-tableau J =
1 1 32 541 ≡ P = 321 51 1 4 and the tableau T = 321 41 1 5 of the same shape and weight
as P . The remaining ones are frank words either in the Knuth classes of P or T .
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The vertices of the corresponding dual permutahedron in S4 contain the Yamanouchi
words 4312211 ≡ K(3, 2, 1, 1) and 4324431 ≡ K(1, 1, 2, 3) with Q-symbols

Q =

6
3
2 7
1 4 5

= (std P ) τ and Q′ =

7
3
2 6
1 4 5

= (std T ) τ , respectively.

The Q-symbols of the remain ones are either Q or Q′.
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[3] O. Azenhas, E. Marques de Sá, Matrix realizations of Littlewood–Richardson sequences, Linear
Algebra and Multilinear Algebra 401 (1990), 221–275.

[4] O. Azenhas, Opposite Littlewood–Richardson sequences and their matrix realizations, Linear Al-
gebra and its Applications 225 (1995), 91–116.

[5] O. Azenhas, R. Mamede, Actions of the symmetric group on sets of skew-tableaux with prescribed
matrix realization, Linear Algebra and its Applications 401 (2005), 221–275.

[6] O. Azenhas, R. Mamede, Matrix realizations of pairs of tableaux, keys and shuffles, Séminaire
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