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Abstract. Recently, Bagno, Garber and Mansour [Sém. Lotharingien Combin. 56
(2007), Art. B56d] studied a kind of excedance number on the complex reflection
groups and computed its multidistribution with the number of fixed points on the set
of involutions in these groups. In this note, we consider the similar problems in more
general cases and make a correction of one result obtained by them.

1. Introduction

It is well known that there is a single infinite family of groups Gr,s,n and exactly
34 other “exceptional” complex reflection groups [4]. The infinite family Gr,s,n, where
r, s, n are positive integers with s | r, consists of the groups of n×n matrices such that

• the entries are either 0 or rth roots of unity;
• there is exactly one nonzero entry in each row and each column;
• the (r/s)th power of the product of the nonzero entries is 1.

The classical Weyl groups appear as special cases: for r = s = 1 we have the
symmetric group G1,1,n = Sn, for r = 2, s = 1 we have the hyperoctahedral group
G2,1,n = Bn, and for r = s = 2 we have the group of even-signed permutations G2,2,n =
Dn.

We say that a permutation π ∈ Gr,s,n is an involution if π2 = 1. More generally,
we define Gm

r,s,n = {σ ∈ Gr,s,n|σm = 1}. Recently, Bagno, Garber and Mansour [2]
studied an excedance number on the complex reflection groups (see [5]) and computed
the number of involutions having specific numbers of fixed points and excedances. In
this note, we consider the similar problems on the set Gm

r,s,n.
This paper is organized as follows. In Section 2, we recall some properties of Gr,s,n

and define some parameters on Gr,n = Gr,1,n and hence also on Gr,s,n. In Section 3,
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we present our main results and compute the corresponding recurrences together with
explicit formulas.

2. Preliminaries

Let r and n be any two positive integers. The group of colored permutations of
n digits with r colors is the wreath product Gr,n = Zr o Sn = Zn

r o Sn consisting of
all the pairs (z, τ) where z ∈ Zn

r and τ ∈ Sn. Let τ, τ ′ ∈ Sn, z = (z1, ..., zn) ∈ Zn
r

and z′ = (z′1, ..., z
′
n) ∈ Zn

r , the multiplication in Gr,n is defined by (z, τ) · (z′, τ ′) =
((z1 + z′τ−1(1), ..., zn + z′τ−1(n)), τ ◦ τ ′), where + is taken modulo r.

We use some conventions along this paper. For an element σ = (z, τ) ∈ Gr,n with
z = (z1, ..., zn) we write zi(σ) = zi. For σ = (z, τ), we denote |σ| = (0, τ), (0 ∈ Zn

r ).
A much more natural way to present Gr,n is the following: consider the alphabet

Σ = {1[0], . . . , n[0], 1[1], . . . , n[1], . . . , 1[r−1], . . . , n[r−1]} as the set [n] = {1, . . . , n} colored
by the colors 0, . . . , r− 1. Then, an element of Gr,n is called a colored permutation, i.e.,
a bijection σ : Σ → Σ such that if σ(i) = k[t] then σ(i[j]) = k[t+j] where 0 ≤ j ≤ r − 1
and the addition is taken modulo r. Occasionally, we write j bars over a digit i instead
of i[j]. For example, an element (z, τ) = ((1, 2, 1, 2), (3, 1, 2, 4)) ∈ G3,4 will be written

as (3̄¯̄12̄¯̄4).
For each s | r, the complex reflection group can also be defined as:

Gr,s,n := {σ ∈ Gr,n | csum(σ) ≡ 0 mod s},

where csum(σ) =
n∑

i=1

zi(σ).

One can define the following well-known statistics on Sn. For any permutation σ ∈ Sn,
i ∈ [n] is an excedance of σ if and only if σ(i) > i. We denote the number of excedances
by exc(σ). Another natural statistic on Sn is the number of fixed points, denoted by
fix(σ). We can similarly define some statistics on Gr,n. The complex reflection group
Gr,s,n inherits all of them. Given any ordered alphabet Σ′, we recall the definition of
the excedance set of a permutation σ on Σ′:

Exc(σ) = {i ∈ Σ′ | σ(i) > i},

and the excedance number is defined to be exc(σ) = |Exc(σ)|.
We define the color order on the set Σ = {1, . . . , n, 1̄, . . . , n̄, . . . , 1[r−1], . . . , n[r−1]} for

0 ≤ j < i < r by 1[i] < 2[i] < · · · < n[i] < 1[j] < 2[j] < · · · < n[j]. We note that
there are some other possible ways of defining orders on Σ, some of them lead to other
versions of the excedance number, see for example [1]. For example, given the color
order ¯̄1 < ¯̄2 < ¯̄3 < 1̄ < 2̄ < 3̄ < 1 < 2 < 3, we write σ = (21̄¯̄3) ∈ G3,3 in an extended
form

(?)

(¯̄1 ¯̄2 ¯̄3 1̄ 2̄ 3̄ 1 2 3
¯̄2 1 3̄ 2̄ ¯̄1 3 2 1̄ ¯̄3

)
which implies that Exc(σ) = {¯̄1, ¯̄2, ¯̄3, 1̄, 3̄, 1} and exc(σ) = 6.

Define ExcA(σ) = {i ∈ [n − 1] | σ(i) > i}, where the comparison is with respect to
the color order, and denote excA(σ) = |ExcA(σ)|. For instance, if σ = (1̄¯̄32¯̄4) ∈ G3,4,
then csum(σ) = 5, ExcA(σ) = {3} and hence excA(σ) = 1.
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Now we can define the colored excedance number for Gr,n by

excClr(σ) = r · excA(σ) + csum(σ).

Let Σ ordered by the color order, then we can state that exc(σ) = excClr(σ) obtained
by Bagno and Garber [1] for any σ ∈ Gr,n.

For σ = (z, τ) ∈ Gr,n, |σ| is the permutation of [n] satisfying |σ|(i) = τ(i). We say
that i ∈ [n] is an absolute fixed point of σ ∈ Gr,n if |σ|(i) = i. We denote the number
of absolute fixed point of σ ∈ Gr,n by fix(σ).

3. Main results and proofs

Recall that Gm
r,s,n = {σ ∈ Gr,s,n|σm = 1}, define

H(m)
r,s,n(u, v, w) =

∑
σ∈Gm

r,s,n

ufix(σ)vexcA(σ)wcsum(σ),

H(m)
r,s (x; u, v, w) =

∑
n≥0

H(m)
r,s,n(u, v, w)

xn

n!
.

It is well known that the Eulerian number, Ad−1,k, is the number of permutations on
[d − 1] with k − 1 excedances for k ∈ [d − 1], which is also the number of cyclic
permutations in Sd with k excedances. A bijective proof of this fact is given in [3,
Theorem 1.19].

Our main result can be formulated as follows.

Theorem 3.1. For any integers r, m ≥ 1, the generating function H(m)
r,1 (x; u, v, w) is

exp

 ∑
{t|0≤t<r,r|tm}

xuwt +
∑

d|m,d≥2

xd

d!

d−1∑
k=1

Ad−1,k

k∑
i=0

(
k

i

)
vk−i

∑
r| tm

d

U
(i)
d−k,tw

t

 ,

where U
(i)
d−k,t is the coefficient of xt in (x + x2 + · · ·+ xr−1)i(1 + x + · · ·+ xr−1)d−k, i.e.,

U
(i)
d−k,t =

i∑
j=0

(−1)i−j

(
i

j

) ∑
`≥0

(−1)`

(
d + j − k

`

)(
d + j + t− k − `r − 1

t− `r

)
.

Proof. For any π ∈ Gm
r,1,n, the length of each cycle of π is a factor of m, then there exist

k1, k2, . . . , kd−1 ∈ [n− 1] with d|m such that k1, k2, . . . , kd−1 and n form a cycle of |π|.
If d = 1, that is π(n) = n[j] for some j with 0 ≤ j ≤ r − 1, then πm(n) = n[jm] = n

which implies that r|jm. Define π′ ∈ Gm
r,1,n−1 by ignoring the last digit of π. Then we

have

fix(π) = fix(π′) + 1,

excA(π) = excA(π′),

csum(π) = csum(π′) + j.

If d ≥ 2, we know that there are Ad−1,k cyclic permutations in Sd with k excedances
for k ∈ [d− 1]. For any cyclic permutation C of length d in Sd with

Exc(C) = {j ∈ [d− 1]|C(j) > j}
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such that exc(C) = k, we can color the symbols in C with the color set {[0], [1], . . . , [r−
1]} and obtain the colored cyclic permutation C ′. Suppose that excA(C ′) = k − i, we
know that ExcA(C ′) ⊆ Exc(C), which means that exc(C)−excA(C) = i, in other words,
there are i number of symbols in Exc(C) with color numbers ranging from [1] to [r−1],
so there are

(
k
i

)
ways to do this.

Let t = csum(C ′) and t` be the color number of ` ∈ [d], then we have the equation
t = t1 + t2 + · · ·+ td with 0 ≤ t1, t2, · · · , td ≤ r − 1 such that

• tj = 0 for j ∈ Exc(C) and j has a color number [0], and

• 1 ≤ tj ≤ r− 1 for all j ∈ Exc(C)−ExcA(C ′), so there are i number of such j’s.

Therefore there are U
(i)
d−k,t number of solutions of the above equation, totally, there are(

k
i

)
U

(i)
d−k,t ways to color the symbols in C such that csum(C ′) = t and excA(C ′) = k− i,

where U
(i)
d−k,t is the coefficient of xt in (x+x2 + · · ·+xr−1)i(1+x+ · · ·+xr−1)d−k, which

can be expressed as

U
(i)
d−k,t = [xt](x + x2 + · · ·+ xr−1)i(1 + x + · · ·+ xr−1)d−k

= [xt]

(
1− xr

1− x
− 1

)i (
1− xr

1− x

)d−k

= [xt]
i∑

j=0

(−1)i−j

(
i

j

)(1− xr

1− x

)d+j−k

=
i∑

j=0

(−1)i−j

(
i

j

) ∑
`≥0

(−1)`

(
d + j − k

`

)(
d + j + t− k − `r − 1

t− `r

)
.

Let C ′ = (i
[t1]
1 , i

[t2]
2 , . . . , i

[td]
d ), then C ′d = (i

[t]
1 , i

[t]
2 , . . . , i

[t]
d ) with t = t1 + t2 + · · ·+ td, hence

C ′m = (i
[ tm

d
]

1 , i
[ tm

d
]

2 , . . . , i
[ tm

d
]

d ) = 1 implies that r| tm
d

. For any π ∈ Gm
r,1,n such that the

symbol n lies in a cycle C ′ of length d ≥ 2 with d|m (note that there are
(

n−1
d−1

)
ways

to choose the digits of such a cycle), define π′′ ∈ Gm
r,1,n−d in the following way: write π

in its complete notation, i.e., as a matrix of two rows, see (?). The first row of π′′ is
(1, 2, . . . , n− d) while the second row is obtained from the second row of π by ignoring
the digits in C ′ and the other digits are placed with the numbers 1, 2, . . . , n − d in an
order preserving way with respect to the second row of π. The parameters satisfy

fix(π) = fix(π′′),

excA(π) = excA(π′′) + excA(C ′),

csum(π) = csum(π′′) + csum(C ′).

The above consideration gives the following recurrence

H
(m)
r,1,n(u, v, w) = H

(m)
r,1,n−1(u, v, w)

∑
{t|0≤t<r,r|tm}

uwt+

+
∑

d|m,d≥2

H
(m)
r,1,n−d(u, v, w)

(
n− 1

d− 1

)
Am,d(v, w),
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where

Am,d(v, w) =
d−1∑
k=1

Ad−1,k

k∑
i=0

(
k

i

)
vk−i

∑
r| tm

d

U
(i)
d−k,tw

t.

Rewriting the recurrence in terms of generating functions, we obtain that

∂

∂x
H(m)

r,1 (x; u, v, w) =
∑
n≥1

H
(m)
r,1,n(u, v, w)

xn−1

(n− 1)!

=
∑
n≥1

xn−1

(n− 1)!
H

(m)
r,1,n−1(u, v, w)

∑
{t|0≤t<r,r|tm}

uwt+

+
∑

d|m,d≥2

Am,d(v, w)
xd−1

(d− 1)!

∑
n≥d

xn−d

(n− d)!
H

(m)
r,1,n−d(u, v, w)

= H(m)
r,1 (x; u, v, w)

( ∑
{t|0≤t<r,r|tm}

uwt +
∑

d|m,d≥2

Am,d(v, w)
xd−1

(d− 1)!

)
.

Thus, the generating function H(m)
r,1 (x; u, v, w) satisfies

∂
∂x
H(m)

r,1 (x; u, v, w)

H(m)
r,1 (x; u, v, w)

=
∑

{t|0≤t<r,r|tm}

uwt +
∑

d|m,d≥2

Am,d(v, w)
xd−1

(d− 1)!
.

Integrating with respect to x on both sides of the above differential equation, using

the fact that H(m)
r,1 (0; u, v, w) = 1, we obtain the explicit expression for H(m)

r,1 (x; u, v, w)
given in Theorem 3.1, and hence we complete the proof. �

Specially, if m = p is a prime, then we have

Corollary 3.2. Let r ≥ 1 and p be a prime. The generating function H(p)
r,1(x; u, v, w) is

exp

{
uxλr,p(w) +

xp

p!

p−1∑
k=1

Ap−1,k

k∑
i=0

(
k

i

)
vk−i

∑
j≥0

U
(i)
p−k,jrw

jr

}
,

where λr,p(w) =
∑p−1

i=0 w
ir
p for p | r, and λr,p(w) = 1 for p - r.

For the sake of comparison, the cases p = 2 and p = 3 in Corollary 3.2 generate the

explicit formulas for H(2)
r,1(x; u, v, w) and H(3)

r,1(x; u, v, w), that is

H(2)
r,1(x; u, v, w) = exp(uxλr,2(w) +

x2

2
(v + (r − 1)wr)),

H(3)
r,1(x; u, v, w) = exp(uxλr,3(w) +

x3

6
B3,3(v, w)),

where B3,3(v, w) = v2 + v(1 + 3(r − 1)wr) + (r2 − 1)wr + (r − 1)(r − 2)w2r.

Now let us compute the exponential generating function H(m)
r,s (x; u, v, w) for the se-

quence {H(m)
r,s,n(u, v, w)}n≥0. For any σ ∈ Gm

r,s,n, we have csum(σ) ≡ 0 (mod s), so we

should collect all the terms in which the exponent of w in H(m)
r,1 (u, v, w) is a multiplica-

tion of s. This observation can make us get the following:
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Theorem 3.3. For r, m, s ≥ 1, let H(m)
r,1 (x; u, v, yw) =

∑
n≥0 Gm,r,n(x; u, v, w)yn. Then

H(m)
r,s (x; u, v, w) =

∑
k≥0

Gm,r,sk(x; u, v, w).

Now let us focus on the case m = 2. Recall that

H(2)
r,1(x; u, v, w) =

{
eux+ 1

2
x2(v+(r−1)wr), if r odd,

eux(1+w
r
2 )+ 1

2
x2(v+(r−1)wr), if r even .

Then by Theorem 3.3, we can compute the explicit formula for H(2)
r,s (x; u, v, w). Since

s | r, we have two cases either r odd or r even.

• If r is an odd number, then it is clear that the exponent of y in each term of

the expansions of H(2)
r,1(x; u, v, yw) is always a multiplication of s. Hence,

H(2)
r,s (x; u, v, w) = H(2)

r,1(x; u, v, w).

• Similarly, if r is an even number and s | r
2
, we have that

H(2)
r,s (x; u, v, w) = H(2)

r,1(x; u, v, w).

• Let r be any even number such that s - r
2
. Since eux(1+(yw)

r
2 ) = eux

∑
k≥0

(ux(yw)
r
2 )k

k!

and e
1
2
x2(v+(r−1)(yw)r) = e

1
2
x2v

∑
k≥0

((r−1)x2(yw)r)k

2kk!
, then by collecting the coeffi-

cients of y in H(2)
r,1(x; u, v, w) such that the exponent y is a multiplication of s,

we get that

e
1
2
x2(v+(r−1)(yw)r)

∑
k≥0

(ux)2k(yw)kr

(2k)!
= eux+ 1

2
x2(v+(r−1)(yw)r) e

uxw
r
2 + e−uxw

r
2

2
.

Therefore, the above cases give the following result.

Proposition 3.4. We have

H(2)
r,s (x; u, v, w) =


eux+ 1

2
x2(v+(r−1)wr), if r odd,

eux(1+w
r
2 )+ 1

2
x2(v+(r−1)wr), if r even and s | r

2
,

eux+ 1
2
x2(v+(r−1)wr) euxw

r
2 +e−uxw

r
2

2
, if r even and s - r

2
.

Note that H(2)
r,s (x; u, v, w) is the generating function for the number of involutions in

G(2)
r,s,n. By expanding the generating functions, Bagno, Garber and Mansour [2] obtained

the explicit formulas for the number of involutions in G(2)
r,s,n. But the expression in

Proposition 5.7 [2] should be corrected by the third case of H(2)
r,s (x; u, v, w) and hence

Corollary 5.8− 5.10 therein should be the following three corollaries, respectively.

Corollary 3.5. The polynomial H
(2)
r,s,n(u, v, w) is given by∑

k1+2k2+2k3=n

n!

k1!(2k2)!k3!
· uk1+2k2wrk2(v + (r − 1)wr)k3

2k3
.
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Corollary 3.6. Let r ≥ 1. The number of colored involutions in G(2)
r,s,n (r even, s - r

2
)

with exactly k absolute fixed points and excA(π) = ` is given by∑
k+2k3=n,k1+2k2=k

(
k3

`

)
· n!

k1!(2k2)!k3!
· (r − 1)k3−`

2k3
.

Corollary 3.7. The number of involutions π ∈ G(2)
r,s,n (r even, s - r

2
) with excClr(π) = k

is given by ∑
k1+2k2+2k3=n, r(k2+k3)=k

n!

k1!(2k2)!k3!
·
(r

2

) k
r
.
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