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The purpose of this comment is to clarify the connections between Demazure characters and the objects
studied in this work. The nonsymmetric Macdonald polynomials introduced by Macdonald [7] and studied
by Cherednick [1] are denoted by Eα(X; q, t), where α is a weak composition and X = (x1, x2, . . .). The
Demazure characters introduced by Demazure in [2] and studied by Ion [3], Joseph [4], and Sanderson [10]
are the specializations Eα(X; 0, 0).

Marshall [8] works with a variation of the above nonsymmetric polynomials obtained by reversing
the indexing composition, reversing the variables, and replacing q and t by q−1 and t−1 respectively.
These nonsymmetric polynomials, denoted Êα(X; q, t), can therefore be written as Êα(x1, x2, . . . ; q, t) =
Ereverse(α)(. . . , x2, x1; q−1, t−1). It is these polynomials that we specialize to obtain the polynomials explored
in this paper. In fact, the specializations of the Êα(X; q, t) to q = t = 0 are equivalent to the second
family of Demazure characters, often called “standard bases” or “Demazure atoms”, introduced by Lascoux
and Schützenberger in [5] and studied by Lascoux in [6]. Please see [9] for a combinatorial proof of this
equivalence.

We provide the following short table for the partition λ = (2, 1, 0) to illustrate the distinction between
Eα(X; 0, 0) and Êα(X; 0, 0).

Composition α Eα(X; 0, 0) Êα(X; 0, 0)
(2, 1, 0) x2

1x2 x2
1x2

(2, 0, 1) x2
1x2 + x2

1x3 x2
1x3

(1, 2, 0) x2
1x2 + x1x

2
2 x1x

2
2

(1, 0, 2) x2
1x2 + x1x

2
2 + x2

1x3 + x1x2x3 + x1x
2
3 x1x2x3 + x1x

2
3

(0, 2, 1) x2
1x2 + x1x

2
2 + x2

1x3 + x1x2x3 + x2
2x3 x1x2x3 + x2

2x3

(0, 1, 2) x2
1x2 + x1x

2
2 + x2

1x3 + 2x1x2x3 + x2
2x3 + x1x

2
3 + x2x

2
3 x2x

2
3

References

[1] Cherednik, I,. Nonsymmetric Macdonald polynomials, Math. Res. Notices, 10 (1995), pp. 483–515.
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