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A DECOMPOSITION OF SCHUR FUNCTIONS AND AN ANALOGUE
OF THE ROBINSON–SCHENSTED–KNUTH ALGORITHM

S. MASON

Abstract. We exhibit a weight-preserving bijection between semi-standard Young
tableaux and semi-skyline augmented fillings to provide a combinatorial proof that the
Schur functions decompose into nonsymmetric functions indexed by compositions. The
insertion procedure involved in the proof leads to an analogue of the Robinson–Schensted–
Knuth Algorithm for semi-skyline augmented fillings. This procedure commutes with the
Robinson–Schensted–Knuth Algorithm, and therefore retains many of its properties.

1. Introduction

Given a partition λ = (λ1, λ2, . . .), the Schur function sλ = sλ(x) in the variables x =
(x1, x2, . . .) is the formal power series sλ =

∑
T xT , where the sum is over all semi-standard

Young tableaux T of shape λ. A semi-standard Young tableau is a diagram consisting of rows
of squares such that the ith row contains λi squares, called cells. This diagram, called the
Young (or Ferrers) diagram, is drawn in the first quadrant, French style, as in [1]. Each of
these cells is then assigned a positive integer entry so that the entries are weakly increasing
along rows and strictly increasing along columns, where the rows are read from left to right
and the columns are read from bottom to top. The values assigned to the cells of λ collectively
form the multiset {1a1 , 2a2 , . . . , nan}, for some n, where ai is the number of times i appears
in T . The weight of the semi-standard Young tableau (SSYT) T is given by xT =

∏n
i=1 xai

i .
The sum of the weights of all SSYT of shape λ is the Schur function sλ. See [8] for a more
detailed discussion of symmetric functions and Schur functions in particular.

The Macdonald polynomials H̃λ(x; q, t) are a class of functions symmetric in x =
(x1, x2, . . .) with coefficients in Q(q, t). Macdonald introduced them in [5] and conjectured
that their expansion in terms of Schur polynomials should have positive coefficients. A com-
binatorial formula for the Macdonald polynomials is proved by Haglund, Haiman, and Loehr
in [2]. A corresponding combinatorial formula for the integral form Macdonald polynomials,
Jλ, is obtained from the plethystic substitution which transforms the H̃λ polynomials into
integral form.

Building on this work, Haglund, Haiman, and Loehr [3] derive a combinatorial formula
for nonsymmetric Macdonald polynomials, which gives a new decomposition of Jλ into non-
symmetric components. Letting q = t = ∞ in this decomposition and using the fact that
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Jλ(x; q, q) = sλ(x) produces the identity

(1.1) sλ(x) =
∑
γ∼λ

Êγ(x; 0, 0),

summed over all rearrangements γ of the partition λ, denoted γ ∼ λ. (A rearrangement of a
partition λ is an ordered sequence of non-negative integers (a weak composition), γ, whose

parts, when rearranged into weakly decreasing order, form the partition λ.) Here Êγ(x; 0, 0)
is the specialization of the nonsymmetric Macdonald polynomial studied by Marshall [6]. (We

use the form Ê instead of E and replace q and t with q−1 and t−1 because the associated

combinatorics is more elegant in this setting.) The polynomial Êγ(x; 0, 0) can be described
combinatorially through objects called semi-skyline augmented fillings constructed using the
statistics from [3].

We provide a combinatorial proof of this decomposition of the Schur functions in Section 3
by constructing a weight-preserving bijection Ψ between semi-standard Young tableaux and
semi-skyline augmented fillings. We build a semi-skyline augmented filling through an inser-
tion procedure similar to Schensted insertion. This procedure is the fundamental operation
in an analogue of the Robinson–Schensted–Knuth algorithm.

Theorem 1.1. There exists a bijection between N−matrices with finite support and pairs
(F, G) of semi-skyline augmented fillings of compositions which rearrange the same partition.

This bijection is described in Section 4. We prove that it commutes with the Robinson–
Schensted–Knuth (RSK) algorithm and retains the symmetry of the RSK algorithm plus
many of its other properties. We also describe the standardization of a semi-skyline aug-
mented filling (SSAF) and prove that the RSK analogue commutes with standardization.

2. Combinatorial description of the functions Êγ(x; 0, 0)

The functions Êγ(x; 0, 0) are obtained from the integral form nonsymmetric Macdonald

polynomials Êγ(x; q, t) by letting q and t approach zero. Haglund, Haiman, and Loehr
provide a combinatorial formula for nonsymmetric Macdonald polynomials [3] which can be
specialized to obtain a combinatorial formula for nonsymmetric Schur functions. Several
definitions are necessary in order to describe this formula.

2.1. Statistics on fillings. Let γ = (γ1, γ2, . . .) be a weak composition of n into m parts.
The column diagram of γ is the figure dg′(γ) consisting of n cells arranged into columns, as
in [3]. The ith column contains γi cells, and the number of cells in a column is called the
height of that column. A cell a in a column diagram is denoted a = (i, j), where i is the
column index and j is the row index.

The augmented diagram of γ, defined by d̂g(γ) = dg′(γ) ∪ {(i, 0) : 1 ≤ i ≤ m} is the
column diagram with m extra cells adjoined in row 0. In this paper the adjoined row, called
the basement, always contains the numbers 1 through m in strictly increasing order. (We
italicize the basement entries to avoid confusion.)
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The augmented diagram for γ = (0, 2, 0, 3, 1, 2, 0, 0, 1) is depicted below.

d̂g(γ) =

1 2 3 4 5 6 7 8 9

An augmented filling, σ̂, of an augmented diagram d̂g(γ) is a function σ̂ : d̂g(γ) → Z+,
which can be pictured as an assignment of positive integer entries to the cells of γ. Let σ̂(i)

denote the entry in the ith cell of the augmented diagram encountered when d̂g(γ) is read
across rows from left to right, beginning at the highest row and working down to the bottom
row. This ordering of the cells is called the reading order. A cell a = (i, j) precedes a cell
b = (i′, j′) in the reading order if either j′ < j or j′ = j and i′ > i. The reading word read(σ̂)
is obtained by recording the non-basement entries in reading order. The content of a filling
σ̂ is the multiset of non-basement entries which appear in the filling. (See Figure 2.1.)

A pair of cells a and b are called attacking if either a and b are in the same row or a and
b are in adjacent rows, with the entry in the higher row strictly to the right of the entry
in the lower row. (That is, a = (i1, j1) and b = (i2, j2) are attacking if either j1 = j2, or
j2 − j1 = 1 and i1 < i2, or j1 − j2 = 1 and i2 < i1.) A non-attacking filling is a filling such
that σ̂(a) 6= σ̂(b) for every pair of attacking cells a and b.

Haglund, Haiman and Loehr introduce the statistics Des(σ̂) and Inv(σ̂) to describe the
nonsymmetric Macdonald polynomials. As in [1], a descent of σ̂ is a pair of entries σ̂(a) >
σ̂(b), where the cell a is directly above b. (If b = (i, j), then a = (i, j + 1).) Call Des(σ̂) =
{a ∈ dg′(γ) : σ̂(a) > σ̂(b) is a descent} the descent set and define the leg of u (denoted l(u))

to be the number of cells above u in the column of d̂g(γ) containing u. Let

maj(σ̂) =
∑

u∈Des(bσ)

(l(u) + 1).

Consider the cell u = (i, j) and let Cu be the column containing u. The arm of u, denoted
a(u), is the number of cells to the right of u in row i appearing in columns whose height is
weakly less than the height, h, of Cu plus the number of cells to the left of u in row i − 1
appearing in columns whose height is strictly less than h.

Let a1 = (i1, j1), a2 = (i2, j2), and a3 = (i3, j3) be three cells in d̂g(γ) such that column i1
is taller than or equal in height to column i2. If j1 = j2, j1− j3 = 1, and i1 = i3, then a1, a2,

σ = 3
2 3 1
2 4 5 6 9

1 2 3 4 5 6 7 8 9

Figure 2.1. read(σ) = 3 2 3 1 2 4 5 6 9, content(σ) = {1, 22, 32, 4, 5, 6, 9}
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and a3 are said to form a type A triple, as depicted below.

a1

a3

· · · a2

Define for x, y ∈ Z+

I(x, y) =

{
1 if x > y
0 if x ≤ y

.

Let σ̂ be an augmented filling and let {σ̂(a1), σ̂(a2), σ̂(a3)} be the entries of σ̂ in the cells
{a1, a2, a3}, respectively, of a type A triple. The triple {a1, a2, a3} is called a type A inversion
triple if and only if I(σ̂(a1), σ̂(a2)) + I(σ̂(a2), σ̂(a3))− I(σ̂(a1), σ̂(a3)) = 1.

Similarly, consider three cells {a1 = (i1, j1), a2 = (i2, j2), a3 = (i3, j3)} ∈ λ such that
column i2 is strictly taller then column i1. The cells {a1, a2, a3} are said to form a type B
triple if j1 = j2, i2 = i3, and j3 − j2 = 1, as shown below.

a1

. . . a3

a2

Let σ̂ be an augmented filling and let {σ̂(a1), σ̂(a2), σ̂(a3)} be the entries of σ̂ in the cells
{a1, a2, a3} of a type B triple. The triple {a1, a2, a3} is called a type B inversion triple if and
only if I(σ̂(a3), σ̂(a1)) + I(σ̂(a1), σ̂(a2))− I(σ̂(a3), σ̂(a2)) = 1.

Let inv(σ̂) be the number of type A inversion triples plus the number of type B inver-
sion triples. Let coinv(σ̂) be the number of type A or B triples which are not inversion
triples. These two statistics appear in the formula for nonsymmetric Macdonald polyno-
mials Eγ given by Haglund, Haiman, and Loehr [3]. For our purposes it will be more

convenient to work with the integral form nonsymmetric Macdonald polynomials Êγ studied

by Marshall [6], which are related to the Eγ via the equation Êγp,...,γ1(xn, . . . , x1; 1/q, 1/t) =
Eγ(x1, x2, . . . , xn; q, t).

Theorem 2.1 ([3]). The nonsymmetric Macdonald polynomials Êγ are given by the formula

(2.1) Êγ(x; q, t) =
∑

σ : γ→[n]
non-attacking

xσqmaj(bσ)tcoinv(bσ)
∏

u∈dg′(γ)bσ(u) 6=bσ(d(u))

1− t

1− ql(u)+1ta(u)+1
,

where xσ =
∏

u∈dg′(µ) xσ(u).



RSK ANALOGUE 5

We are concerned only with the polynomial Êγ(x; 0, 0), so setting q and t equal to zero
produces the polynomial

Êγ(x; 0, 0) =
∑

σ : γ→[n]
non-attacking

xσ0maj(bσ)0coinv(bσ)
∏

u∈dg′(γ)bσ(u) 6=bσ(d(u))

1− 0

1− 0l(u)+10a(u)+1

=
∑

σ : γ→[n]
non-attacking

maj(bσ)=coinv(bσ)=0

xσ

A non-attacking filling F satisfying maj(F ) = coinv(F ) = 0 is called a semi-skyline
augmented filling, SSAF. In the following section, we provide a simpler definition of a semi-
skyline augmented filling.

2.2. Semi-skyline augmented fillings. Let F be a semi-skyline augmented filling. The
condition maj(F ) = 0 implies that

maj(F ) =
∑

a∈Des(F )

(l(a) + 1) = 0.

Since maj(F ) is increased by at least 1 for each element in the descent set of F , we must
have Des(F ) = ∅. The condition coinv(F ) = 0 implies that every triple of cells in F must
be an inversion triple. Therefore a semi-skyline augmented filling is a non-attacking filling
with no descents such that every triple is an inversion triple.

The following two lemmas demonstrate that any filling satisfying these descent and inver-
sion conditions must be a non-attacking filling.

Lemma 2.2. Let F be a descentless augmented filling such that every triple of F is an
inversion triple. If the cells a and b are in the same row of F , then F (a) 6= F (b).

Proof. Suppose a and b are in the same row of F . We may assume that a is to the left of
b. Assume first that the column containing a is weakly taller than the column containing b.
The cell a is directly on top of some cell c, so {a, b, c} is a type A triple as depicted below.

a
c

. . . b

The triple must be a Type A inversion triple, so I(F (a), F (b)) + I(F (b), F (c)) −
I(F (a), F (c)) = 1. We know that F contains no descents, so I(F (a), F (c)) = 0. There-
fore I(F (a), F (b)) + I(F (b), F (c)) = 1 implies that either F (a) > F (b) and F (b) ≤ F (c) or
F (a) ≤ F (b) and F (b) > F (c). If F (a) ≤ F (b), then F (b) > F (c) implies that F (a) < F (b),
for otherwise F (a) = F (b) > F (c), which contradicts the fact that F (a) ≤ F (c).

Next suppose that the column containing b is strictly taller than the column containing
a. There must be a cell d on top of b such that {a, d, b} is a type B triple as depicted below.

a
. . . d

b



6 S. MASON

There are no descents in F , so F (d) ≤ F (b). Every triple of F is an inversion triple, so
I(F (d), F (a))+I(F (a), F (b))−I(F (d), F (b)) = 1 implies that I(F (d), F (a))+I(F (a), F (b))−
0 = 1. We only need to consider the situation in which F (a) ≤ F (b), which implies that
I(F (a), F (b)) = 0. This means that I(F (d), F (a)) = 1, so F (a) < F (d). But F (d) ≤ F (b),
so F (a) < F (d) ≤ F (b) and therefore F (a) < F (b). So F (a) 6= F (b). �

Lemma 2.3. Let F be a descentless augmented filling such that every triple of F is an
inversion triple. For each pair of cells a and b in F , with a to the left of b in the row
immediately below b, we have F (a) 6= F (b).

Proof. Consider two cells a and b in the augmented filling situated as described. There exists
a cell d immediately below b and possibly a cell c immediately above a as depicted below.

c

a
. . . b

d

If the column containing a is taller than or equal to the column containing b, then a lies
directly below the cell c which must have F (c) ≤ F (a). Since the triple {c, b, a} is a type A
triple, it must satisfy I(F (c), F (b)) + I(F (b), F (a))− I(F (c), F (a)) = 1. Since F (c) ≤ F (a),
we have I(F (c), F (a)) = 0 and hence I(F (c), F (b)) + I(F (b), F (a)) = 1. We only need to
consider the situation in which F (b) ≤ F (a), which implies that I(F (b), F (a)) = 0. In this
case, I(F (c), F (b)) = 1, so F (b) < F (c) ≤ F (a). This means that F (a) > F (b) and hence
F (a) 6= F (b).

If the column containing b is strictly taller than the column containing a, the triple {a, b, d}
is a type B triple and must satisfy I(F (b), F (a))+ I(F (a), F (d))− I(F (b), F (d)) = 1. There
are no descents in F , so F (b) ≤ F (d), which means that I(F (b), F (d)) = 0. Therefore
either I(F (b), F (a)) = 1 or I(F (a), F (d)) = 1. If I(F (b), F (a)) = 1, then F (b) > F (a)
and we are done. Assume I(F (b), F (a)) = 0 and I(F (a), F (d)) = 1. This means that
F (a) > F (d) ≥ F (b). So F (a) > F (b) and hence F (a) 6= F (b). �

Corollary 2.4. The descent and inversion conditions used to describe the semi-skyline aug-
mented fillings are enough to guarantee that the filling is non-attacking.

Corollary 2.4 follows immediately from Lemmas 2.2 and 2.3. It allows us to reformulate

the combinatorial interpretation of Êγ(x; 0, 0) as follows.

Definition 2.5. Let γ be a weak composition of n into m parts (where m ∈ Z+ ∪ {∞}).
The polynomial Êγ(x; 0, 0) in the variables x = (x1, x2, ..., xk) is the formal power series

Êγ(x; 0, 0) =
∑

F∈SSAF (γ)

xF ,

where SSAF (γ) is the set of all descentless fillings of d̂g(γ) in which every triple is an
inversion triple.

The combinatorial interpretation of Ê(1,0,3,2)(x; 0, 0) is depicted in Figure 2.2. Notice that
the first row of the ith column contains the entry i, since any smaller entry j would attack
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3
3 4

1 3 4

1 2 3 4

2
3 4

1 3 4

1 2 3 4

1
3 4

1 3 4

1 2 3 4

3
3 2

1 3 4

1 2 3 4

3 3 4 1 3 4 2 3 4 1 3 4 1 3 4 1 3 4 3 3 2 1 3 4

2
3 2

1 3 4

1 2 3 4

1
3 2

1 3 4

1 2 3 4

2
2 4

1 3 4

1 2 3 4

1
2 4

1 3 4

1 2 3 4

2 3 2 1 3 4 1 3 2 1 3 4 2 2 4 1 3 4 1 2 4 1 3 4

Figure 2.2. All possible SSAFs of shape (1, 0, 3, 2) with the reading word

listed below each filling. Ê(1,0,3,2)(x; 0, 0) = x1x
3
3x

2
4 + x1x2x

2
3x

2
4 + x2

1x
2
3x

2
4 +

x1x2x
3
3x4 + x1x

2
2x

2
3x4 + x2

1x2x
2
3x4 + x1x

2
2x3x

2
4 + x2

1x2x3x
2
4.

the basement entry j and any larger entry would create a descent. The following lemma
characterizes the type B triples in an SSAF.

Lemma 2.6. If {a, b, c} is a type B triple in a semi-skyline augmented filling F with a and
c in the same row and b directly above c, then F (a) < F (c).

Proof. Let {a, b, c} be a type B triple situated as described:

a
. . . b

c

Lemma 2.2 implies that F (a) 6= F (c). If F (a) > F (c), then consider the cells e and g
immediately below a and c as shown.

a

e
. . . c

g

The descent condition implies that F (a) ≤ F (e), which means that I(F (c), F (e)) = 0, since
F (c) < F (a) ≤ F (e). Lemma 2.3 therefore implies that F (c) < F (e). Since {e, c, g} form
a type B inversion triple, we must have I(F (c), F (e)) + I(F (e), F (g)) − I(F (c), F (g)) = 1.
Therefore 0+I(F (e), F (g))−I(F (c), F (g)) = 1 implies that I(F (e), F (g)) = 1. By definition
this means that F (e) > F (g). We now have the same situation as above, but one row lower
in the diagram. Repeating the argument eventually implies that the basement entry in
the column containing a is greater than the basement entry in the column containing b, a
contradiction. Therefore F (a) < F (c). �
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Given any type B triple {a, b, c} as described in Lemma 2.6, the descent condition implies
that F (b) ≤ F (c). If F (a) ≥ F (b), then Lemma 2.6 and the fact that the filling is non-
attacking implies that F (b) < F (a) < F (c). This means that I(F (b), F (a))+I(F (a), F (c))−
I(F (b), F (c)) = 0 + 0 − 0 = 0, so {b, a, c} is a type B non-inversion triple. Thus F (a) <
F (b) ≤ F (c). Therefore Lemma 2.6 completely characterizes the relative values of the cells
in a type B inversion triple.

Lemma 2.7. Consider two cells a1 = (i1, j1) and a2 = (i2, j2) in an augmented diagram

d̂g(γ) such that i2 = i1 − 1 and j2 < j1. Let a3 = (i3, j3) be the cell directly on top of a2.
(Then j3 = j2 + 1 and i3 = i2.) If F is a semi-skyline augmented filling and F (a1) ≤ F (a2),
then F (a3) > F (a1).

Proof. The cells a1, a2, a3 form a type A triple. The filling F must not contain any descents, so
F (a3) ≤ F (a2). If F (a3) ≤ F (a1), then I(F (a3), F (a1))+I(F (a1), F (a2))−I(F (a3), F (a2)) =
0 + 0 − 0 = 0 6= 1. However, if F (a3) > F (a1), then I(F (a3), F (a1)) + I(F (a1), F (a2)) −
I(F (a3), F (a2)) = 1 + 0− 0 = 1, as required. Therefore F (a3) > F (a1). �

Lemmas 2.2, 2.3, 2.6, and 2.7 provide several conditions on the cells in a semi-skyline
augmented filling. These conditions are used to describe the bijection between semi-standard
Young tableaux and semi-skyline augmented fillings and to prove Theorem 1.1.

3. Two equivalent bijections between SSAFs and SSYTs

Recall that we seek a weight-preserving bijection between semi-standard Young tableaux
of shape λ and semi-skyline augmented fillings whose shape rearranges λ. Such a bijection
provides the first combinatorial proof that

(3.1)
∑
γ∼λ

Êγ(x; 0, 0) = sλ(x),

where the sum is over all infinite weak compositions γ which rearrange λ, denoted γ ∼ λ.
Set xi = 0 for i > n to obtain the equation∑

γ∼λ

Êγ(x1, x2, . . . , xn; 0, 0) = sλ(x1, x2, . . . , xn).

3.1. A weight-preserving bijection between SSAFs and reverse SSYTs. Assume
that F is a semi-skyline augmented filling of a weak composition γ of n into infinitely many
parts whose largest part is equal to m. Let Ri be the set of entries in the ith row of F . The
collection {Ri}i∈[m] of all sets of row entries is called the row set of F .

Recall that a reverse semi-standard Young tableau is a filling of a partition shape with
positive integer values whose entries are strictly decreasing along rows and weakly decreasing
along columns, where the rows are read from left to right and the columns are read from
bottom to top. We construct a reverse semi-standard Young tableau ρ(F ) by placing the
entries from the set Ri into the ith row of ρ(F ) in decreasing order from left to right. (See
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F

3
4

2 4
1 3 5

1 2 3 4 5

ρ
3
4
4 2
5 3 1

ρ(F )

Figure 3.1. The map ρ(F )

Figure 3.1.) The entries in Ri are distinct since F is a non-attacking filling. Therefore the
row entries of ρ(F ) are strictly decreasing.

To see that the column entries of ρ(F ) are weakly decreasing, notice that any element
in Ri lies immediately above an element of Ri−1 in F . No descents occur in F , so the kth

largest element, α, in Ri must be less than or equal to at least k of the elements in Ri−1. The
entry α appears in ρ(F ) immediately on top of the kth largest element, β, of Ri−1. At least
k elements in Ri−1 are greater than or equal to α, so β ≥ α. Therefore the column entries
of ρ(F ) are weakly decreasing and ρ(F ) is indeed a reverse semi-standard Young tableau.

The inverse of the map ρ sends a reverse semi-standard Young tableau P to a semi-skyline
augmented filling ρ−1(P ) as follows. Assume that the first i rows of P , denoted {P1, P2, . . . Pi}
have been mapped to a semi-skyline augmented filling. Consider the largest element, α1, in
the (i + 1)th row Pi+1. There exists an element greater than or equal to α1 in the ith row
of the SSAF since α1 is immediately above such an element in P . Place α1 on top of the
leftmost such element.

Assume that the largest k − 1 entries in Pi+1 have been placed into the SSAF. The kth

largest element, αk, of Ri+1 is then placed into the SSAF. There are at least k elements of Pi

which are greater than or equal to αk, so at most k− 1 of these are already directly beneath
an element of Pi+1. Place αk on top of the leftmost entry β in row k−1 such that β ≥ αk and
the cell immediately above β is empty. Again, such a β exists since the number of entries in
row Pi+1 which are greater than or equal to αk is less than or equal to the number of entries
in row Pi which are greater than or equal to αk. Continue this procedure until all entries in
Pi+1 have been mapped into the (i + 1)th row and then repeat for the remaining rows of P
to obtain the semi-skyline augmented filling ρ−1(P ). (See Figure 3.2.)

We must prove that ρ−1(P ) is a semi-skyline augmented filling, and that this is the only
SSAF with row entries {Pi}.

Lemma 3.1. The filling ρ−1(P ) = F ′ is a semi-skyline augmented filling.

Proof. By construction, the filling has no descents. Therefore, we must show that all triples
are inversion triples. First consider a type A triple of cells, {a, b, c} where a and b are cells
in the ith row and c is the cell immediately below a as depicted below.

a

c
. . . b
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8
12
13 11 8
14 13 10 8
14 13 11 8 6

P

ρ−1

8
12

8 13 11
8 10 13 14

6 8 11 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 3.2. The map ρ−1(P )

The column containing a and c lies to the left of the column containing b and therefore must
be weakly taller than the column containing b.

The filling is constructed in such a way that F ′(a) ≤ F ′(c). Therefore I(F ′(a), F ′(c)) = 0.
We want to show 1 = I(F ′(a), F ′(b)) + I(F ′(b), F ′(c)) − I(F ′(a), F ′(c)) = I(F ′(a), F ′(b)) +
I(F ′(b), F ′(c))− 0. If I(F ′(a), F ′(b)) = 0, then F ′(a) < F ′(b), since a and b are in the same
row of F ′. Since F ′(b) > F ′(a), the entry F ′(b) was inserted into F ′ before the entry F ′(a).
Since F ′(b) was not placed on top of c, the entry F ′(c) must be less than F ′(b). Therefore
I(F ′(b), F ′(c)) = 1. So I(F ′(a), F ′(b))+ I(F ′(b), F ′(c))− I(F ′(a), F ′(c)) = 0+1− 0 = 1 and
{a, b, c} is a type A inversion triple.

If I(F ′(a), F ′(b)) = 1, then F ′(a) > F ′(b). This implies that F ′(b) < F ′(c), since F ′(a) ≤
F ′(c). So I(F ′(a), F ′(b)) + I(F ′(b), F ′(c)) − I(F ′(a), F ′(c)) = 1 + 0 − 0 = 1. So every type
A triple in F ′ is a type A inversion triple.

Next consider a type B triple {a, b, c} such that a and b are in the ith row and a is to the
left of b as shown below.

a
. . . c

b

Let c be the cell immediately on top of b. Then the column containing b and c is strictly
taller than the column containing a. We have the equation I(F ′(c), F ′(a))+I(F ′(a), F ′(b))−
I(F ′(c), F ′(b)) = I(F ′(c), F ′(a)) + I(F ′(a), F ′(b))− 0 since F ′(c) ≤ F ′(b).

If I(F ′(a), F ′(b)) = 1, then F ′(a) > F ′(b). Since F ′(c) was not placed on top of F ′(a),
there must be an entry F ′(d) greater than F ′(c) which was already on top of F ′(a) when
F ′(c) was inserted. If this is the case, then the same situation occurs in row i + 1. Repeat
this argument until a row r is reached such that the column containing b and c contains an
entry α in row r but the column containing a does not. (Such a row must exist since the
triple is a type B triple.) Then the entry α would have been placed on the column containing
a, which is a contradiction. Therefore I(F ′(a), F ′(b)) = 0.

Since I(F ′(a), F ′(b)) = 0 implies F ′(a) ≤ F ′(b) and the row entries of P are distinct, we
have F ′(a) < F ′(b). Since F ′(c) was not placed on top of F ′(a), either F ′(c) > F ′(a) or there
was already an entry larger than F ′(c) on top of a. If there was already an entry on top of a,
then the situation is precisely the situation described in the previous paragraph, shifted one
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row higher. Therefore F ′(c) > F ′(a) and I(F ′(c), F ′(a))+ I(F ′(a), F ′(b))− I(F ′(c), F ′(b)) =
1 + 0− 0 = 1 and hence {a, b, c} is a type B inversion triple. �

Lemma 3.2. The SSAF ρ−1(P ) is the only SSAF with row entries {Pi}.

Proof. Let K be an arbitrary SSAF whose row entries are given by the collection {Pi}. Find
the lowest row r of K whose entries appear in a different order from their appearance in
row r of ρ−1(P ) = F ′. Consider the largest element, δ, of Pr whose position in K does not
agree with its position in F ′. Then δ was placed in the cell on top of the left-most possible
cell a in F ′ such that α = F ′(a) ≥ δ. Therefore in K the entry δ must reside in a cell c of
a column strictly to the right of the column containing a in K. The situation is depicted
below, where b is the cell immediately below the cell c containing δ = K(c) in K and the
entry δ is shown as the entry in its cell.

K F ′

row r − 1

row r

a
. . . δ

b
δ
a

. . .
b

If the column containing δ and the cell b is strictly taller than the column containing the
cell a in K, then the triple {a, b, c} is a type B triple. We have I(δ,K(a))+ I(K(a), K(b))−
I(δ,K(b)) = 0 + I(K(a), K(b)) − 0. We know that K(a) < K(b) by Lemma 2.6. So
I(K(a), K(b)) must equal 0 and hence {a, b, c} is not a type B inversion triple.

If the column containing a is weakly taller in K than the column containing b and c,
then the cell d immediately on top of a in K contains an entry K(d) which is less than
δ. (If it were greater than δ, this would contradict the assumption that δ is the greatest
value for which the row placement differs.) In particular, K(d) < δ = K(c) implies that
I(K(d), K(c)) + I(K(c), K(a))− I(K(d), K(a)) = 0 + 0− 0 = 0. So the triple {d, c, a} is a
type A triple that is not a type A inversion triple.

Therefore, regardless of which column is taller, K contains at least one non-inversion
triple. So K is not a semi-skyline augmented filling. �

The above implies that the map ρ−1 sends a reverse semi-standard Young tableau P to
the only possible semi-skyline augmented filling whose row entries are the same as the row
entries of P . In fact, let {Ri}j be any collection of sets of positive integers such that the
number of entries in Ri which are greater than or equal to α is great than or equal to the
number of entries in Ri+1 which are greater than or equal to α, for all i ≥ 1 and all positive
integers α. Any set with this property could be the set of row entries for a reverse semi-
standard Young tableau. So applying the map ρ produces a semi-skyline augmented filling,
the only semi-skyline augmented filling with row entries {Ri}j.

3.2. An analogue of Schensted insertion. Schensted insertion is a procedure for inserting
a positive integer k into a semi-standard Young tableau T . It is the fundamental operation
of the Robinson–Schensted–Knuth (RSK) algorithm. We define a procedure for inserting
a positive integer k into a semi-skyline augmented filling F using a similar “scanning and
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bumping” technique. In Section 4 we use this procedure to describe an analogue of the RSK
algorithm.

Let F be a semi-skyline augmented filling of a weak composition γ of n into m parts.
Then F = (F (j)), where F (j) is the entry in the jth cell in reading order. (Here we include

the cells in the basement, so j goes from 1 to n + m.) Let ĵ be the cell immediately above

j. If the cell is empty, set F (ĵ) = 0. We define the operation k → F , for k ≤ m.

Procedure 3.3. The insertion k → F :
P1. Set i := 1, set x1 := k, set p0 = ∅, and set j := 1.
P2. If F (j) < xi or F (ĵ) ≥ xi, then increase j by 1 and repeat this step. Otherwise, set

xi+1 := F (ĵ) and set F (ĵ) := xi. Set pi = (a, b + 1), where (a, b) is the jth cell in reading
order. (This means that the entry xi ‘bumps’ the entry xi+1 from the cell pi.)

P3. If xi+1 6= 0 then increase i by 1, increase j by 1, and repeat step P2.
P4. Set tk equal to pi and terminate the algorithm.

Notice that this procedure produces a sequence Ik = (x1, x2, . . . , xr) of entries which are af-
fected by the insertion of k, called the insertion sequence. The sequence Pk = (p1, p2, . . . , pr)
records which cells are affected by the insertion of k, with tk (the termination cell) denoting
the new cell created at the termination of the insertion. This sequence is called the insertion
path of k.

Lemma 3.4. Let xi be an entry in Ik and let αi be the first occurrence in F of the value xi

after pi−1 in reading order. Then xi is inserted into a row above αi by the procedure k → F .

Proof. Let s be the cell containing αi in F and let a be the cell immediately above s. The
entry xi must appear before a in the reading order of F since F is a non-attacking filling.
(If xi is x1, we think of xi as appearing before all letters of F in reading order.) The entry
in a must be less than xi by the choice of αi. Therefore if xi reaches a during the insertion
of k, then xi will replace the entry in a. So xi appears in a row above αi. �

Lemma 3.4 implies that each entry xi is inserted into a row of F which is higher than
the next row containing an entry equal in value to xi. In particular, this means each entry
appears in k → F above the basement entry of equal value, since every value appears in the
basement. Therefore the procedure k → F terminates in finitely many steps. (See Figure 3.3
for an example.) To see that the resulting figure is indeed a semi-skyline augmented filling,
we need the following lemma.

Lemma 3.5. The set of entries in a given row of the figure k → F is equal to the set of
entries in the corresponding row of the figure (ρ(F)← k).

Proof. To prove this, we determine which entry of F is bumped to a lower row of F dur-
ing (k→ F) and show that this is the same entry bumped to a lower row of ρ(F ) during
(ρ(F)← k).

If Ri is the collection of row entries appearing in row i of F , let Ri = Ri ∪ xj, where xj

is the last entry bumped from a row higher than row i. Let |R≥u

i | be the number of entries
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F

3
4 2

1 4 5

1 2 3 4 5 6 7

4→

Ik = (4)

4
4 2

1 4 5

1 2 3 4 5 6 7

3→

Ik = (4, 3)
Pk = ((4, 3))

4
4 3

1 4 5

1 2 3 4 5 6 7

2→

Ik = (4, 3, 2)
Pk = ((4, 3), (5, 2))

4
4 3

1 2 4 5

1 2 3 4 5 6 7

4→ F

Ik = (4, 3, 2)
Pk = ((4, 3), (5, 2), (2, 1))

tk = (2, 1)

Figure 3.3. The insertion 4→ F

in Ri which are greater than or equal to u. Similarly, let |R≥u
i−1| be the number of entries in

row i− 1 of F which are greater than or equal to u. We claim that if v is the largest entry

in row i such that |R≥v

i | > |R
≥v
i−1|, then v is the entry in row i which is bumped down to row

i− 1. If no such v exists, then no entry is bumped to row i− 1 and the insertion procedure
is terminated at row i.

To see this, let v be the largest entry in Ri such that |R≥v

i | > |R
≥v
i−1|. If no such v exists,

then the mth largest entry in Ri is less than or equal to m entries in row i−1, for all m. This
means that each entry in Ri can be inserted into row i, and so the procedure terminates at
row i, as predicted by the claim.

Assume next that such a v exists. Since F is an SSAF, the pigeonhole principle implies

that |R≥u
i | ≤ |R

≥u
i−1| for all u in row i. Therefore the largest v which satisfies |R≥v

i | > |R
≥v
i−1|

must be less than or equal to xj. If v = xj, then all the entries greater than or equal to xj

in row i− 1 are immediately below entries greater than xj and therefore xj is bumped down
to the following row, as claimed.

If v < xj, then there exists an entry in row i − 1 of F which is greater than or equal to
xj but lies immediately beneath an entry, α, less than xj. During the insertion, xj bumps
the leftmost such α. Note that α must be greater than or equal to v since all the entries
greater than or equal to v in row i − 1 must lie beneath entries greater than or equal to v.
If α = v, then all the entries greater than or equal to α in row i− 1 lie immediately beneath
entries greater than or equal to α, so α is bumped to the next row as claimed. If α > v,
there exists an entry smaller than α that sits on top of an entry greater than or equal to α.
By the construction of F , this entry is to the right of α, so α will bump this entry. Again,
since all entries greater than or equal to v in row i−1 lie below entries greater than or equal
to v, this entry is greater than or equal to v. The same argument as above shows that either
this bumped entry is v or this entry bumps another entry in row i. Therefore, the entry v
is eventually bumped. Since all the entries greater than or equal to v in row i− 1 lie below
entries greater than or equal to v, the entry v cannot bump anything in row i. Therefore v
is the entry bumped to the next row down, as claimed.
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Now consider the insertion ρ(F )← k. This insertion procedure scans columns rather than
rows, but the insertion path moves weakly south as it progresses through the columns from
left to right. To see this, consider an entry α bumped from row i of ρ(F ). Then α will be
inserted into the column directly to its right on top of an entry weakly greater than α. The
entry immediately to the right of α is strictly less than α, so α cannot be inserted on top
of this entry or at any higher row. Therefore α is inserted into a row weakly lower than the
row from which it is bumped.

If α is bumped to a row lower than row i, this means that the set of entries in row i− 1
which are greater than or equal to α has cardinality less than the cardinality of the set
containing α and the entries in row i which are greater than or equal to α. Therefore an

entry α is bumped to a lower row if α is the greatest entry in row i such that |R≥α

i | > |R
≥α
i−1|,

which is the same condition under which an entry is bumped to a lower row during k → F .
Therefore the set of entries in a given row of the figure k → F is equal to the set of entries
in the corresponding row of the figure (ρ(F)← k). �

Proposition 3.1. If F is a semi-skyline augmented filling and k is an arbitrary positive
integer, then the figure k → F is a semi-skyline augmented filling. In particular, the insertion
procedure commutes with the map ρ in the sense that

ρ(k → F ) = (ρ(F )← k),

where ρ(F )← k is the reverse Schensted insertion of k into ρ(F ).

Proof. Lemma 3.5 states that the row entries of k → F are the same as those of (ρ(F )← k).
The semi-skyline augmented filling ρ−1(ρ(F )← k) is the only semi-skyline augmented filling
with these row entries by Lemma 3.2, so we must prove that ρ−1(ρ(F )← k) and k → F are
the same semi-skyline augmented filling. In other words, we must show that the row entries
of k → F appear in the same positions as in ρ−1(ρ(F )← k).

To see this, we prove that every triple in k → F is an inversion triple. Consider first a
type A triple in k → F , as depicted below.

a

c
b

Let α, β, γ be the entries contained in the cells a, b, c respectively. This triple is a non-
inversion triple if α < β ≤ γ. The cell a cannot be the termination cell for k → F . (If it
were, then c and b would violate Lemma 2.6 in F .) If b were the termination cell, then β
must have been bumped from a cell to the right of a for otherwise β would have bumped
α. If the column containing β before β was bumped were taller than the column containing
a, then c, the cell containing β, and the cell below β would form a type B non-inversion
triple in F . Otherwise it must be that a, c, and the cell containing β would form a type A
non-inversion triple in F . Since all triples in F are inversion triples, this is a contradiction.
Therefore a type A non-inversion triple in k → F can only appear if some of the cells in the
triple were bumped by the insertion.
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The entries in the cells of the triple are weakly increasing in reading order, so at most one
of these entries is affected by the insertion procedure. If α bumped a smaller entry, then the
cells a, b, and c would form a type A non-inversion triple in F . The entry β could not have
bumped an entry from the cell b for the same reason that it cannot be the termination cell.
Therefore the only cell in this triple that could be affected by the insertion procedure is c.
If γ bumped a smaller entry, κ, from the cell c, then κ < β, for otherwise a, b, c would be a
type A non-inversion triple in F .

This implies that the entry κ must be smaller than the entry δ in the cell d directly below
b, and so the entry ε in the cell e directly below c must be smaller than the entry δ, for
otherwise the cells c, d, e form a type A non-inversion triple in F . But then if γ appeared
before β in reading order, γ would have bumped β. So γ was bumped from a cell after b in
reading order. If γ appeared on the same row of F as b, the cell containing γ would form an
inversion triple with either b and d or d and the cell immediately below γ in F , depending
on the column heights. Therefore γ must have been bumped from a cell on the same row as
c. Lemma 2.6 implies that the column containing γ in F must be shorter than the column
containing a, since γ > α. The entry above γ must therefore be greater than β so that these
two cells together with the cell b form a type A inversion triple in F . This means that γ
must be bumped by an entry greater than β. Repeating the above argument implies that the
entry which bumps γ must come from the same row as γ, and continued repetition implies
that every entry in the insertion must be bumped from the same row as γ, which contradicts
the fact that the insertion algorithm begins at the highest cell in the diagram. Therefore
this situation cannot happen and every type A triple is an inversion triple.

Next consider a type B triple in k → F , as depicted below.

a
c

b

Let α, β, γ be the entries contained in the cells a, b, c respectively. This triple is a non-
inversion triple if γ ≤ α < β. The cell c cannot be the termination cell for k → F . To see
this, notice that if c were the termination cell, then γ was bumped from a cell to the right
of the column containing a. (Otherwise γ would be placed on top of a.) But if γ appears to
the right of a in F , then the cell containing γ, the cell beneath it, and the cell a form a type
B non-inversion triple in F .

If the insertion algorithm terminates at the cell a, then the entry α must have been bumped
from a cell after c in reading order. If α were in the same row of F as c, then Lemma 2.6
implies that the column containing α is weakly shorter than the column containing c and b,
since α ≤ β. But then c, b, and the cell containing α form a type A non-inversion triple. If
α were in the same row of F as b, then c, b, and the cell containing α in F would constitute
a type B non-inversion triple unless the column containing α were weakly taller in F than
the column containing b and c. In this case, the entry which bumps α must be less than β
since it must be inserted on top of an entry that is greater than β. (The entry below α in F
is greater than β since these two cells together with b form a type A inversion triple in F .)
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Then we are in the same situation as before and can repeat the argument indefinitely to show
that no entry is bumped from the row above a, which contradicts the fact that the insertion
algorithm begins at the first cell in reading order. Therefore a type B non-inversion triple
in k → F can only appear if some of the cells in the triple were bumped by the insertion.

The entries in the cells of the triple are weakly decreasing in reading order, so at most
one of these entries is affected by the insertion procedure. If γ bumped a smaller entry from
the cell c, then this entry would be less than α and Lemma 2.6 implies that the triple a, b, c
would be a type B non-inversion triple in F . If α bumps an entry from the cell a, then α
must be bumped from a cell after c in reading order, for otherwise α would bump γ. If the
entry α is bumped from the row containing c, then the column containing α in F must be
weakly shorter than the column containing c and b since α > β. But then the cell containing
α together with c and b form a type A non-inversion triple. Therefore α must be bumped
from the row containing a. Lemma 2.6 implies that the column containing α in F must be
taller than or equal in height to the column containing c, since γ ≤ α. The entry above α
must therefore be greater than γ so that these two cells together with the cell c form a type A
inversion triple in F . This means that α must be bumped by an entry greater than or equal
to γ. Repeating the above argument implies that the entry which bumps α must come from
the same row as α, and continued repetition implies that every entry in the insertion must
be bumped from the same row as α, which contradicts the fact that the insertion algorithm
begins at the highest cell in the diagram. Therefore the entry α could not have bumped
a smaller entry from the cell a. The entry β could not have bumped a smaller entry from
the cell b, for if so then a, b, c would be a type B non-inversion triple in Fby Lemma 2.6.
Therefore this situation cannot happen and every type B triple is an inversion triple. �

The insertion procedure k → F is closely connected to Schensted insertion. Let reverse
Schensted insertion be the variation of Schensted insertion which maps a positive integer k
into a reverse semi-standard Young tableau [8]. This is equivalent to altering the Schensted
insertion procedure described by Knuth [4] by reversing the directions of the inequalities,
and scanning columns rather than rows.

3.3. The bijection Ψ between SSYT and SSAF. Let T be a semi-standard Young
tableau. We may associate to T the word col(T ), which consists of the entries from each
column of T , read top to bottom from columns left to right, as in Figure 3.4. In general,
any word w can be decomposed into its maximal strictly decreasing subwords, called column
words. This decomposition is called col(w). For example, if w = 3 5 4 2 2 1, then col(w) =
3 · 5 4 2 · 2 1.

Begin with an arbitrary SSYT T and the empty SSAF φ whose basement row contains all
the letters of Z+. Let k be the rightmost letter in col(T ). Insert k into φ to obtain the SSAF
(k → φ). Then let k′ be the next letter in col(T ) reading right to left. Obtain the SSAF
(k′ → (k → φ)). Continue in this manner until all the letters of col(T ) have been inserted.
The resulting diagram is the SSAF Ψ(T ). (See Figure 3.5.)

Lemma 3.5 implies that that the entries in the rows of Ψ(T ) are precisely the entries in
the rows of the reverse SSYT P obtained by applying reverse Schensted insertion to col(T ).
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10
9 11
8 10 10
4 7 8
2 5 5
1 2 3 5 10

Figure 3.4. Here col(T ) = 10 9 8 4 2 1 · 11 10 7 5 2 · 10 8 5 3 · 5 · 10

The shape of P is equal to the transpose of the shape of T ([4], [7]). This implies that the
shape of Ψ(T ) is a rearrangement of the shape of T .

The map Ψ is therefore a weight-preserving map from semi-standard Young tableaux of
shape λ to semi-skyline augmented fillings whose shape rearranges λ. We now show that Ψ
is a bijection.

Note that Ψ is invertible, since reverse Schensted insertion is an invertible procedure and
Ψ commutes with reverse Schensted insertion by Proposition 3.1. To describe the inverse
directly, consider an arbitrary SSAF F . Consider the set S of nonzero columns of F . (In
Figure 3.5, S contains the third, fifth, seventh, eighth, tenth, and eleventh columns.) The
highest cell in each of these columns is a cell which was created during the reverse Schensted
insertion of the leftmost column of col(T ), since the SSAF produced by the insertion of all
columns except the leftmost column has the shape of the diagram of T with the leftmost
column omitted. Pick the shortest such column, C1, where if two columns have equal height
then the column farther to the right is considered to be shorter.

The cell c1 at the top of column C1 of F is the cell at which the insertion of the leftmost
letter of col(T ) terminates. Delete F (c1) and scan the reading word in reverse order to
determine which entry (if any) bumped the entry F (c1). (Any entry, β, greater than F (c1)
beneath an entry less than F (c1) would have bumped F (c1).) If such an entry is found,
replace it with F (c1) and then scan the reading word in reverse order beginning at that

10
9 11
8 10 10
4 7 8
2 5 5
1 2 3 5 10

T

Ψ

4
10

2 5 1 10
2 5 8 10 9
3 5 7 8 10 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

F

Figure 3.5. The map Ψ : T → F takes a SSYT T to an SSAF F .
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4
9

2 5 1 10
2 5 8 10 7
3 5 8 10 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

F

Figure 3.6. The SSAF obtained by removing the 7 in the seventh column of F .

position to determine the previous bumping entry and replace it with the entry which bumped
F (c1). Continue until the first letter of the reading word is reached. The last bumping entry
is therefore the first entry of col(T ).

For example, in Figure 3.5, the entry 7 in the seventh column was the last to be placed
into F . It was bumped by the 9 in the eleventh column, which was bumped by the 10 in the
fourth row of the tenth column. This 10 was not bumped from any other position, so the
10 is the first letter in the word col(T ). Removing the 7 in this manner produces the SSAF
pictured in Figure 3.6.

Repeat this procedure using the resulting SSAF for the second smallest column C2 in S to
obtain the second letter of col(T ). Continue in this manner until the highest cell in each of
the columns in S has been removed. At this point the first column of T has been recovered.
Then repeat the entire procedure with the new SSAF, whose nonzero columns are each one
cell shorter than the nonzero columns in the original SSAF. Continue this procedure until
there are no columns remaining. The resulting word is col(T ).

The map Ψ : SSY T → SSAF is a weight-preserving, shape-rearranging bijection. This
proves combinatorially that

sλ(x) =
∑
γ+=λ

Êγ(x; 0, 0),

since the left-hand side consists of all monomials xT where T is a semi-standard Young
tableau of shape λ while the right-hand side consists of all monomials xF where F is a
semi-skyline augmented filling of shape γ, where γ+ = λ.

3.4. A basis for Q[x]. Let γ be a weak composition of n into m parts, where m ∈ Z+ ∪
{∞}. The monomial corresponding to the composition γ is xγ =

∏m
i=1 xγi

i . The monomials
corresponding to compositions with infinitely many parts form a Q-basis for Q[x], where
x = {x1, x2, . . .}.

Recall that the reverse dominance order on weak compositions γ and µ is given by

µ ≤ γ if and only if
∞∑

i=k

µi ≤
∞∑

i=k

γi, ∀k ≥ 1.
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Let NKγ,µ be the coefficient of xµ in Êγ(x; 0, 0). Then NKγ,µ is equal to the number
of semi-skyline augmented fillings of shape γ and content µ. The bijection presented in
Section 3.3 implies that

Kλ,µ =
∑
γ+=λ

NKγ,µ,

where Kλ,µ is the Kostka number, equal to the number of SSYT of shape λ and weight µ.

Proposition 3.2. Suppose that γ and µ are both weak compositions of n into k parts and
NKγ,µ 6= 0. Then µ ≤ γ in the reverse dominance order. Moreover, NKγ,γ = 1.

Proof. Assume that NKγ,µ 6= 0. By definition, this means that there exists a semi-skyline
augmented filling of shape γ and content µ. Suppose that an entry m appears in one of the
first m− 1 columns. Then this column contains a descent, since the basement entry of this
column is less than m. Therefore all entries greater than or equal to m must appear after
the (m− 1)th column. So

∑∞
i=m µi ≤

∑∞
i=m γi for each m, as desired.

Moreover if µ = γ, then the entries in the ith column must all be equal to i. To see that
this augmented filling is a semi-skyline augmented filling, consider first a type A triple as
shown.

α
α

δ.. .

Here δ > α, so I(α, δ) + I(δ, α)− I(α, α) = 0 + 1− 0 = 1 implies that the triple is indeed a
type A inversion triple.

Next consider a type B triple as shown below.

α
β
β. ..

Since α < β, we have I(β, α) + I(α, β) − I(β, β) = 1 + 0 − 0 = 1. Therefore the triple is
indeed a type B inversion triple.

Since all triples are inversion triples and there are no descents, the filling is a semi-skyline
augmented filling. It is the only SSAF of shape γ and content γ, so NKγ,γ = 1. �

Corollary 3.6. The polynomials Êγ(x; 0, 0) are a Q-basis for Q[x].

Proof. Proposition 3.2 is equivalent to the assertion that the transition matrix from the

polynomials Êγ(x; 0, 0) to the monomials (with respect to the reverse dominance order) is

upper triangular with 1’s on the main diagonal. Since this matrix is invertible, the Êγ(x; 0, 0)
are a basis for all polynomials. �

Notice that restriction to compositions of n into m parts implies that the Êγ(x; 0, 0) form
a basis for polynomials of degree n in m variables.
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4. An analogue of the Robinson–Schensted–Knuth Algorithm

The insertion procedure utilized in the above bijection is an analogue of Schensted inser-
tion, the fundamental operation of the Robinson–Schensted–Knuth (RSK) Algorithm.

Theorem 4.1 (Robinson–Schensted–Knuth [7]). There exists a bijection between N-
matrices of finite support and pairs of semi-standard Young tableaux of the same shape.

We apply the same procedure to arrive at an analogue of the RSK Algorithm for semi-
skyline augmented fillings. Recall that Theorem 1.1 states that there exists a bijection be-
tween N-matrices of finite support and pairs of semi-skyline augmented fillings whose shapes
are rearrangements of the same partition. Composing the RSK algorithm with the bijec-
tion Φ between semi-standard Young tableaux and semi-skyline augmented fillings proves
Theorem 1.1. We now provide a direct bijection that commutes with this composition.

4.1. The map Φ : N-matrices −→ SSAF × SSAF. Let A = (ai,j) be an N-matrix with
finite support. There exists a unique two-line array corresponding to A which is defined by
the non-zero entries in A. Let ai,j be the first non-zero entry encountered when scanning
the entries of A from left to right, top to bottom. Place an i in the top line and a j in the
bottom line ai,j times. When this has been done for each non-zero entry, one obtains the
following array.

wA =

(
i1 i2 ...
j1 j2 ...

)
Notice that if ir = ir+1, then jr ≤ jr+1 in wA. Every two-line array with this property can
be obtained from a matrix with finite support. We may therefore consider two-line arrays
with this property instead of matrices of finite support.

Procedure 4.2. The map Φ : wA −→ SSAF× SSAF:
P1. Set r := l, where l is the length of wA. Let F = φ = G, where φ is the empty SSAF.
P2. Set F := (jr → F ). Let hr be the height of the column in (jr → F ) at which the

insertion procedure (jr → F ) terminates.
P3. Place ir on top of the leftmost column of height hr − 1 in G such that doing so does

not create a descent. Set G equal to the resulting figure.
P4. If r − 1 6= 0, repeat step P2 for r := r − 1. Else terminate the algorithm.

Notice that the entries in the top row of the array are weakly increasing when read from
left to right. This means that if hr > 1, placing ir on top of the leftmost column of height
hr − 1 in G does not create a descent. If hr = 1, we claim that the ithr column of G does not
contain an entry from a previous step. To see this, argue by contradiction. Assume there
exists an entry im in the ithr column, where m > r. Then the entries jm, jm−1, . . . jr of the
array wA form a weakly decreasing sequence by the nature of the array. The properties of
the reverse Schensted insertion of jr imply that the termination of the insertion of jr into F
must occur in a higher row of F than the termination of the insertion of jm. This contradicts
the assumption that ir and im are inserted into columns of the same height.
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Figure 4.1. Φ : A→ SSAF × SSAF

In this way the shape of G becomes a rearrangement of the shape of F . When the process
is complete, the result is a pair (F, G) = Φ(A) of fillings whose shapes are rearrangements of
the same partition (see Figure 4.1). To see that F and G are indeed semi-skyline augmented
fillings, we prove that the map Φ produces precisely the pair of SSAFs obtained by applying
the reverse RSK algorithm to A followed by the map ρ−1.

Proposition 4.1. If (P, Q) is the pair of reverse semi-standard Young tableaux obtained by
applying the reverse RSK algorithm to the matrix A, then (ρ−1(P ), ρ−1(Q)) = Φ(A) = (F, G).

Proof. Proposition 3.1 implies that ρ−1(P ) = F . We must prove that ρ−1(Q) = G, where Q
is the recording tableau. Consider the insertion of an element ir into G. The position of ir
in G is determined by the termination of insertion (jr → F ). Let hr denote the height of the
column at which the insertion of (jr → F ) terminates. The entry ir appears in row hr of G
by definition. By Proposition 3.1, the reverse Schensted insertion of jr terminates in row hr

of P . Hence ir appears in row hr of Q. Therefore the entries in the rows of Q are the same
as those in the rows of G.

Recall that ρ−1(Q) is the unique SSAF whose rows contain precisely the row entries of Q.
The row entries of Q are inserted into ρ−1(Q) in decreasing order, so that an entry α appears
in the leftmost available column such that the entry immediately below α in this column is
greater than or equal to α.

The top line of the array wA is a weakly increasing sequence, so its entries are inserted
into G in weakly decreasing order. Therefore the entries in a given row r are inserted into G
in decreasing order. An entry ir is placed on top of the leftmost possible column which does
not create a descent. To see that the entries in a given row of ρ−1(Q) appear in the same
columns as the entries in a given column of G, argue by induction on the entries in the top
line of the array wA.

Consider first the entry il, where l is the length of wA. This entry appears in the first row
of G, in the ithl column. This entry also appears in the ithl column of ρ−1(Q), since that is
the leftmost possible position for il in ρ−1(Q).

Assume that the entries il, il−1, . . . , ir appear in the same columns in G as they do in
ρ−1(Q). Consider the entry ir−1. This entry appears on top of the entry α in ρ−1(Q).
Therefore α ≥ ir−1. This fact and the fact that α appears in a lower row of G than ir−1

imply that α is inserted into G before ir−1. Since all the entries which were inserted into
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G before ir−1 appear in the same columns as in ρ−1(Q), there is no entry on top of α in G
during the insertion of ir−1. This means that if ir−1 is not placed on top of α, then ir−1 is
placed in a column to the left of the column containing α. Let β be the entry under ir−1 in
this situation. Then β appears in this same position in ρ−1(Q). Since ir−1 is not on top of β
in ρ−1(Q), there must be an entry γ > ir−1 on top of β in ρ−1(Q). But if this were the case,
then γ would also be on top of β in G since by assumption, all entries greater than ir−1 are
in the same positions in G as they are in ρ−1(Q). This contradicts the assumption that ir−1

is placed on top of β. Therefore the entries of G are in precisely the same positions as in
ρ−1(Q), so ρ−1(Q) = G. �

Proposition 4.1 implies in particular that F and G are indeed semi-skyline augmented
fillings. The semi-skyline augmented filling G records the column to which a cell is added in
F . Therefore F and G are rearrangements of the same shape. These two facts imply that ρ is
a map from N-matrices to pairs of semi-skyline augmented fillings which are rearrangements
of the same shape.

4.2. The inverse of the map Φ. Let (F, G) be a pair of semi-skyline augmented fillings
whose shapes are rearrangements of the same partition λ. Then (ρ(F ), ρ(G)) is a pair of
reverse semi-standard Young tableaux of shape λ. Since the reverse Robinson–Schensted–
Knuth algorithm is invertible, this pair (ρ(F ), ρ(G)) comes from a unique matrix A of finite
support. This matrix is Φ−1((F, G)).

We describe the computation of this inverse without mapping through the reverse semi-
standard Young tableau pair. Let Grs be the highest occurrence of the smallest entry of G
in reading order. (Here Grs is the element of G in row r and column s.)

Let s′ be the rightmost column of height r in F . Then Frs′ is the termination cell for the
insertion of the last letter, j1 in the array corresponding to the matrix A. Delete Frs′ from
F and Grs from G. Scan right to left, bottom to top (backwards through the reading word)
starting with the cell directly to the left of Frs′ to determine which cell (if any) bumped
Frs′ . If there exists a cell k before Frs′ in the reading word such that F (k) > Frs′ and
the cell directly on top of k has value less than or equal to Frs′ , this F (k) bumped Frs′ by
the argument from Section 3.3. Replace F (k) by Frs′ and repeat the procedure with F (k)
starting from the cell k. Continue working backward through the reading word until there
are no more letters in the reading word. The resulting entry is the letter j1. (Notice that
this is the same procedure used in the map Ψ−1 in Section 3.3, so we have already proved
that this procedure does in fact yield the inverse of the insertion of j1.)

Next find the highest occurrence of the smallest entry j2 of the new recording filling.
Repeat the procedure to find i2. Continue until there are no more entries in the insertion
and recording tableaux. Then all of the i and j values of the array wA have been determined.

Corollary 4.3. The RSK algorithm commutes with the above analogue Φ. That is, if
(P, Q) is the pair of SSYT produced by the RSK algorithm applied to a matrix A, then
(Ψ(P ), Ψ(Q)) = Φ(A).
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Proof. The pair (P, Q) maps bijectively to the pair (S, T ) of reverse SSYT produced by apply-
ing the reverse RSK algorithm to A. Proposition 4.1 states that (ρ−1(S), ρ−1(T )) = (F, G) =
Φ(A). Proposition 3.1 implies that (Ψ(P ), Ψ(Q)) = (ρ−1(S), ρ−1(T )), so (Ψ(P ), Ψ(Q)) =
(F, G) as desired. �

The algorithm Φ retains many of the properties of the Robinson–Schensted–Knuth Al-
gorithm. Several of these properties are listed below, although this list is by no means
complete.

Corollary 4.4. Assume that Φ(A) = (F, G). Then Φ(At) = (G, F ).

Corollary 4.5. Let Φ(A) = (F, G). Let B be a matrix such that the bottom line of wB is
Knuth equivalent to the bottom line of wA. Then Φ(B) = (F, G′) for some SSAF G′.

Corollaries 4.4 and 4.5 follow directly from the fact that the algorithm Φ commutes with
the Robinson–Schensted–Knuth Algorithm.

4.3. Standardization. A standard Young tableau of shape λ is a semi-standard Young
tableau whose weight is

∏n
i=1 xi, where n = |λ|. Any semi-standard Young tableau T can be

mapped to a standard Young tableau through a procedure called standardization.

Definition 4.6. Let γ be a weak composition of n. A skyline augmented filling (SAF) of
shape γ is an SSAF of weight

∏n
i=1 xi. Let Fγ denote the number of skyline augmented

fillings of shape γ.

Notice that Fγ = 0 for certain compositions γ. This means that our analogue of standard-
ization, skylining, must alter the shape of such compositions.

Procedure 4.7 (Skylining(F )). Assume that F is an SSAF of shape γ, where |γ| = n.
Consider the reading word as a collection of row words for F . Standardize the reading word
for F in the usual manner. Then place the new entries back into the original shape of F ,
maintaining the same order. If the lowest entry, αj of the jth column is not equal to j, shift
the entire column to rest immediately on top of the αth

j column. Denote the result by sk(F ).

The entries in the first row of F are always strictly increasing from left to right. There-
fore the shifting does not permute the order of the non-zero columns. Notice that if a
appears before c in reading order, then F (a) ≤ F (c) ⇔ sk(F (a)) < sk(F (c)). Therefore
I(F (a), F (b)) + I(F (b), F (c))− I(F (a), F (c)) remains the same after skylining. The same is
true for I(F (c), F (a)) + I(F (a), F (b)) − I(F (c), F (b)) since F (a) < F (c). This means that
skylining preserves the inversion triples. This fact and the fact that there are no descents
within the columns of F imply that the figure sk(F ) is indeed a semi-skyline augmented
filling.

Proposition 4.2. The bijection Ψ commutes with standardization.

Proof. Let T be a semi-standard Young tableau and Ψ(T ) the corresponding SSAF. We saw
in section 3.1 that the SSAFs are in bijective correspondence with reverse SSYTs, so it is
enough to consider the reverse SSYT R corresponding to T .
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F = 4
10

2 5 1 10
2 5 8 10 9
3 5 7 8 10 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17

sk(F ) = 5
13

2 6 1 14
3 7 10 15 12
4 8 9 11 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17

Figure 4.2. An SSAF F and its standardization sk(F )

The set of entries in a given row r of R are sent to a new set of row entries under
standardization. However, the new entries are the same entries which appear in row r of the
skylining of Ψ(T ) by the definition of sk(Ψ(T )). There is only one SSAF with the same row
entries as the standardization of R, so this must be sk(Ψ(T )). �
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