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Abstract. A tree is called k-decomposable if it has a spanning forest whose com-
ponents are all of size k. In this paper, we study the number of k-decomposable
trees in families of increasing trees, i.e. labeled trees in which the unique path from
the root to an arbitrary vertex forms an increasing sequence. Functional equations
for the corresponding counting series are provided, yielding asymptotic or even exact
formulas for the proportion of k-decomposable trees. In particular, the case k = 2
(trees with a perfect matching) and the case of recursive trees are treated. For two
cases, bijections to alternating permutations and permutations with only odd-length
cycles can be given, thus providing alternative proofs for the respective counting for-
mulas. Furthermore, it turns out that k-decomposable recursive trees become more
numerous as k grows to infinity, a behavior that has also been observed for simply
generated families of trees.

1. Introduction

An increasing tree is a labeled tree with the property that the sequence of labels
along any path starting from the root is increasing. The enumeration of families of
increasing trees has been the topic of many papers in the past — there is a variety of
bijections between certain families of increasing trees and other combinatorial objects
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(in particular, permutations) — see [13] and the references therein. Bergeron, Flajolet
and Salvy [3] developed a general theory for the asymptotic enumeration of increasing
trees, based on the general differential equation

T ′(x) = Φ(T (x)). (1)

Here, Φ(t) is the so-called degree function associated with a family of increasing trees.
Two major types of increasing trees are distinguished: plane (meaning that the subtrees
stemming from a node are ordered) and non-plane increasing trees (meaning that the
subtrees are not ordered). Now, the variety of (plane or non-plane) increasing trees
associated with a sequence {sj} of non-negative integers (with s0 6= 0 and sj > 0 for
some j > 0) is the family of all (plane or non-plane) increasing trees with sj different
sorts of nodes of degree j. The degree function is then defined by

Φ(t) =
∞∑

j=0

sjt
j and Φ(t) =

∞∑
j=0

sj

j!
tj

in the plane and non-plane case respectively. Differential equation (1) for the counting
series T (x) of the respective variety of increasing trees follows immediately from the
definition. Based on this equation, asymptotic formulas for the number of increasing
trees in a given variety can be found by means of the Flajolet–Odlyzko singularity
analysis [8].

Varieties of increasing trees which can be generated by a natural evolution process
are of special interest. The best-known example of a variety of increasing trees is
probably the variety of recursive trees, corresponding to the sequence {1, 1, . . .} in the
non-plane case. A random recursive tree is obtained in the following manner: starting
with the root (label 1), the node with label i + 1 is attached to any previous node v
at step i + 1, where the probability is pi(v) = 1

i
for each of the nodes. Due to this

property recursive trees are sometimes called uniform recursive trees, in contrast to
non-uniform models such as plane-oriented recursive trees (see [3, 20]).

The varieties of d-ary increasing trees and generalized plane-oriented recursive trees
(abbreviated gports) are defined in a similar way, although the probability pi(v) de-
pends on the outdegree deg+(v) of the node v as well.

pi(v) =



1

i
for recursive trees,

d− deg+(v)

(d− 1)i + 1
for d-ary increasing trees,

deg+(v) + α

(α + 1)i− 1
for generalized plane oriented recursive trees.

(2)

The corresponding degree-weight generating functions are Φ(t) = (1 + t)d and Φ(t) =
(1 − t)−α respectively (a little more generally, one can use the functions Φ(t) =
s0 exp(c1t/s0), Φ(t) = s0(1 + c2t/s0)

d and Φ(t) = s0(1 − c2t/s0)
1−c1/c2 with certain

constants s0, c1, c2 to define recursive trees, d-ary increasing trees and gports). In a
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recent paper of Panholzer and Prodinger it was proved that only recursive trees, d-ary
increasing trees and gports can be obtained by a simple tree evolution process as given
above, see [17] for details.

Due to their simple growth rule random recursive trees have been introduced as a
probability model in several areas. For instance, they are used to model the spread of
epidemics [14], to aid in the construction of the family trees of preserved copies of an-
cient manuscripts [16], or to model chain letter and pyramid schemes [11]. Furthermore
they are used to model the stochastic growth of networks [7]. For further information
on recursive trees, see also the survey paper [20] and the references therein.

Binary increasing trees (d = 2) are of special importance in computer science, since
they are isomorphic to binary search trees, which themselves serve as an analytic model
for the Quicksort algorithm. Plane-oriented recursive trees are a special instance of the
so-called Albert–Barabási model for scale-free networks (see, for example, [5]). They
are used as a simplified growth model of the world wide web.

Furthermore, it should be noted that the number of recursive trees on n vertices is
(n − 1)!, and the number of binary increasing trees is n!. As the numbers (n − 1)!
and n! suggest, these two tree families are closely related to permutations. There
are several well known bijections between recursive trees, binary increasing trees and
permutations. We refer the reader to the work of Bergeron, Flajolet and Salvy [3]. In
this paper, we are going to study k-decomposable trees in families of increasing trees.
Here, a tree is said to be k-decomposable if it has a spanning forest whose components
are all of size k. Tree decompositions of a very general nature are of interest in the
theory of networks (cf. [1, 2]) — for a given partition λ = {λ1, . . . , λr} of n, a graph
with n vertices is called λ-decomposable if there exists a partition {V1, . . . , Vr} of the
vertex set V such that |Vi| = λi and Vi induces a connected subgraph. Thinking of the
graph as a network, the underlying problem is whether one can split up the network
into subunits of prescribed size. The problem we are going to consider corresponds
to the special case where all the parts are of equal size. Since increasing trees (and
in particular recursive trees) are used as models for networks, it is natural to consider
decomposability for this kind of trees, even though the analysis is more difficult than for
simply generated families of trees (see the recent paper [21]). In view of our probabilistic
model, enumerating k-decomposable increasing trees is equivalent to determining the
(asymptotic) probability that a tree (network) evolving from that model can be divided
into connected parts of equal size k.

It should also be noted that the special case k = 2 corresponds to the question
whether a tree has a perfect matching or not — the enumeration of trees with perfect
matchings has been extensively studied by Moon [15] and Simion [18, 19]. Here, this
special case will also be of major interest, since the differential equations arising in
the enumeration of k-decomposable trees can be solved in this case, yielding implicit
solutions for the generating functions. Furthermore, one obtains remarkable explicit
solutions for the number of 2-decomposable trees in two cases, for which we are going
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to give bijective proofs as well. In the general case k > 2, we are only able to give a
complete solution of the enumeration problem for recursive trees.

2. Generating functions

For now, let k be a fixed natural number and let A(x) denote the exponential gen-
erating function for the number of k-decomposable increasing trees from a variety
determined by the degree function Φ(t); the set of these trees is denoted by T . Fur-
thermore, let Tl denote the set of increasing trees from our variety with a spanning
forest whose components are of size k, except for the component containing the root,
which is of size l, and let Al(x) be its generating function. Note at this point that
A(x) = Ak(x) by definition.

Furthermore, define the bivariate generating function B(x, y) =
∑

l≥1 Al(x)yl for the
union

⋃
l Tl, where the exponent of x gives the size of a tree and the exponent of y

the size of the component containing the root in the associated spanning forest whose
other components have size k.

The starting point of our investigation is the following differential equation for
B(x, y):

∂

∂x
B(x, y) = yΦ(A(x) + B(x, y)), (3)

with initial condition B(0, y) = 0. Despite its simple appearance, it is not easy to give
a general approach to this differential equation. So far, we have only been able to treat
two special cases successfully — namely, the case k = 2 (which corresponds to perfect
matchings) and the case of recursive trees (Φ(t) = et).

Let us briefly sketch the derivation of (3): we think of a tree T in the class Tl as
being decomposed into the root, followed by several subtrees T1, T2, . . . attached to it.
Now note that the associated spanning forest F whose components (with exception of
the distinguished component that contains the root) all have size k induces spanning
forests of the same kind in T1, T2, . . .: those Ti whose roots belong to the component
of F that contains the root of T belong to some Tri

, whereas the others have to belong
to T . Conversely, a collection of rooted trees from T ∪

⋃
l Tl whose roots are joined

to a new common root yields a rooted tree from
⋃

l Tl. This decomposition translates
directly to equation (3) in analogy to (1) — we refer to the work of Bergeron, Labelle
and Leroux [4] for a detailed account on the algebraic equivalents of combinatorial
relations of this kind.

Note that a similar argument was used in [21] for the analysis of simply generated tree
families, where one obtains a functional equation for B(x, y) instead of a differential
equation.
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2.1. Matchings: the case k = 2. In the special case k = 2, (3) yields the system of
differential equations

A′(x) = A′
2(x) = Φ′(A(x))A1(x),

A′
1(x) = Φ(A(x)).

(4)

Multiplying the two equations, we obtain

A1(x)A′
1(x) =

Φ(A(x))

Φ′(A(x))
A′(x)

and thus

1
2
A1(x)2 =

∫ A(x)

0

Φ(t)

Φ′(t)
dt.

Using this formula for A1(x) in the first equation yields the implicit solution for A =
A(x), which is given by

x =

∫ A

0

du

Φ′(u)
√

2
∫ u

0
Φ(t)
Φ′(t)

dt
. (5)

Of course, the integral does not necessarily exist. To be precise, it exists if and only if
s1, the coefficient of t in Φ(t), is positive. Equivalently, there exists at least one sort of
vertices of outdegree 1. Not surprisingly, this is equivalent to the fact that there exist
2-decomposable trees within the corresponding variety of increasing trees. It is easy to
give a proof for this: if the root is not allowed to have outdegree 1, there is always at
least one branch in a tree with a perfect matching that has itself a perfect matching.
But this contradicts the existence of a smallest 2-decomposable tree. Thus, if one
considers even trees (Φ(t) = cosh t, i.e. all nodes have even outdegree) for instance,
there are no trees with a perfect matching (in this case, it is quite obvious, since all
even trees have an odd number of vertices).

Turning back to equation (5), we are especially interested in those families of in-
creasing trees which can be generated by a (natural) tree evolution process: recursive
trees (Φ(t) = exp(t)), gports (Φ(t) = 1/(1 − t)α, α > 0), and d-ary increasing trees
(Φ(t) = (1 + t)d, d > 1). We have

x =

∫ A

0

1√
2t

e−t dt, recursive trees,

x =

∫ A

0

(1− u)α+1du
√

α
√

2u− u2
, gports,

x =

∫ A

0

du

(1 + u)d−1
√

d
√

2u + u2
, d-ary increasing trees.

(6)

First we turn our attention to binary and ternary increasing trees (d = 2, 3), re-
spectively, where the corresponding integrals of (6) can be evaluated easily using the
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substitution v =
√

u/(2 + u). For binary increasing trees we obtain

x√
2

= arctan

√
A

2 + A
, A(x) = sec(

√
2x)− 1,

and for ternary increasing trees
√

3x

2
=

√
A(2 + A)

2(1 + A)
, A(x) =

1√
1− 3x2

− 1.

This proves two remarkable combinatorial formulas: the number of binary increasing
trees on 2n vertices with a perfect matching is exactly 2nEn, where En is a secant
number, counting alternating permutations of 2n beginning with a rise. Note that En

counts alternating permutations of 2n beginning with a rise. Similarly, the number of
ternary increasing trees on 2n vertices with a perfect matching is 3n(2n − 1)!!2. The
number (2n− 1)!!2 counts permutations with odd-length cycles only (or permutations
with even-length cycles only). In Section 3, we are going to give bijective proofs of
these formulas.

For gports (with α ∈ N) and arbitrary d-ary increasing trees, the integrals (6)

can also be computed explicitly. The substitutions v =
√

u/(2− u) respectively

v =
√

u/(2 + u) help to write them in a simpler form, which also shows an intimate
connection between the two:

√
αx

2
=

∫ q
A

2−A

0

(1− v2)α+1

(1 + v2)α+2
dv

respectively √
dx

2
=

∫ q
A

2+A

0

(1− v2)d−2

(1 + v2)d−1
dv.

For an arbitrary integer d > 1 we have∫ q
A

2+A

0

(1− v2)d−2

(1 + v2)d−1
dv =

∫ q
A

2+A

0

d−2∑
l=0

(
d−2

l

)
(−1)d−2−l2l

(1 + v2)l+1
dv

=
d−2∑
l=0

(
d− 2

l

)
(−1)d−2−l2lIl+1

(√ A

2 + A

)
,

(7)

where Il(z) :=
∫ z

0
1/(1 + v2)ldv. By partial integration, one obtains a recurrence for

Il(z):

2lIl+1(z) =
z

(1 + z2)l
+ (2l − 1)Il(z).

Together with I1(z) = arctan z, iteration gives

Il(z) =
l
(
2l
l

)
4l(2l − 1)

l−1∑
i=1

4iv

i
(
2i
i

)
(1 + v2)i

+
2l
(
2l
l

)
4l(2l − 1)

arctan(z).



PERFECT MATCHINGS AND k-DECOMPOSABILITY OF INCREASING TREES 7

Substituting the result for Il(z) into (7) leads to the following result:∫ q
A

2+A

0

(1− v2)d−2

(1 + v2)d−1
dv = c0 arctan(

√
A

2 + A
) +

d−2∑
l=1

cl

√
A

2+A

(1 + A
2+A

)l
,

where the coefficients are given by

c0 =

{
0 d odd,

2−d+2
(

d−2
d/2−1

)
d even,

cl =
4l

2l
(
2l
l

) d−2∑
i=l

(−1)d−2−i

(
d− 2

i

)(2i
i

)
2i

.

As a direct consequence A is always an algebraic function if d is odd (and similarly if
α is even). The formula or the coefficients cl is easily obtained for l ≥ 0. For l = 0 we
have to simplify the sum

c0 =
d−2∑
i=0

(−1)d−2−i

(
d− 2

i

)(2i
i

)
2i

,

which can be written in terms of hypergeometric functions. Applying several hyperge-
ometric identities leads to the stated result (we refer the interested reader to the book
of Graham, Knuth and Patashnik [12], p. 259, Exercise 70, and p. 535).

Of course, one can easily obtain asymptotic formulas for the number of trees with
a perfect matchings in virtually every increasing family following the lines of [3]. As
an example, let us consider the case of “festoon” trees, where the labels of a node’s
children form an alternating permutation (cf. [3]; there, however, all internal vertices
were supposed to have odd degree). In this case, we have Φ(t) = (1 + sin t)/ cos t =
sec t + tan t. Then, equation (5) gives us

x =

∫ A

0

(1− sin u) du√
2 sin u

.

It follows that the dominating singularity of A is given by

ρ =

∫ π/2

0

(1− sin u) du√
2 sin u

=

∫ 1

0

√
1− v

2v(1 + v)
dv = 1.006862.

The value of ρ can also be written in terms of elliptic integrals. Now, expanding the
integral around π

2
, we obtain

x = ρ− 1

6
√

2

(π

2
− A(x)

)3

+ O

((π

2
− A(x)

)4
)

and hence
A(x) =

π

2
− (72ρ2)1/6 · (1− x/ρ)1/3 + O

(
(1− x/ρ)2/3

)
.
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Application of the Flajolet–Odlyzko singularity analysis [8] yields the asymptotics of
the coefficients an of A(x):

an ∼
2(72ρ2)1/6

−Γ(−1/3)
n−4/3 ρ−n =

(
8ρ2

3

)1/6

· Γ(1/3)

π
· n−4/3 · ρ−n

for even n, the numerical value of the multiplicative factor being 1.006462. The
exponential generating function for the number of festoon trees is easily seen to be
arcsin(ex − 1), from which the asymptotics of its coefficients tn follow at once:

tn ∼
√

log 2

π
· n−3/2 · (log 2)−n.

Hence, the proportion of trees with a perfect matching among festoon trees is asymp-
totically

an

tn
∼
(

8ρ2

3

)1/6

· Γ(1/3)√
π log 2

· n1/6 ·
(

log 2

ρ

)n

= 2.142692 · n1/6 · (0.688423)n.

2.2. The general case for recursive trees. Generally, one obtains a system of k
differential equations from (3) that seems to be difficult to study. There is only one case
(essentially) for which a simple solution can be obtained, namely the case of recursive
trees, where Φ(t) = et. For these trees, we can proceed as follows. The differential
equation

∂

∂x
B(x, y) = y exp(A(x) + B(x, y))

has the explicit solution

B(x, y) = log
( 1

1− y
∫ x

0
exp(A(t))dt

)
.

Extracting the coefficient of yl leads to

Al(x) =
1

l

(∫ x

0

exp(A(t))dt
)l

,

and so we arrive at the equation

Ak(x) = A(x) =
1

k

(∫ x

0

exp(A(t))dt
)k

.

Further simplification and differentiation with respect to x gives

k
1
k
−1A′(x)A(x)

1
k
−1 = exp(A(x)),

which leads to the implicit solution

x =

∫ A

0

(kt)
1
k
−1e−t dt. (8)
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Note that A has nonzero coefficients only for those powers xn for which n is a multiple
of k. Following [3], we see that A(x) = B(xk), where B has a dominant singularity at
ρk and ρ is given by

ρ =

∫ ∞

0

(kt)
1
k
−1e−t dt = k

1
k
−1Γ

(
1
k

)
.

Expanding around the singularity shows that A behaves like

A(x) = log
1

1− (x/ρ)k
−
(

1− 1

k

)
log log

1

1− (x/ρ)k
+ O(1),

so that a simple singularity analysis gives us the behavior of the coefficients [xkn]A(x):

akn = [xkn]A(x) ∼ 1

n

(
k1− 1

k

Γ
(

1
k

))kn

.

Since the number of recursive trees with n vertices is well-known to be (n− 1)!, we see
that the ratio of k-decomposable recursive trees among all recursive trees is asymptot-
ically

k ·

(
k1− 1

k

Γ
(

1
k

))kn

.

Note that k1−1/kΓ(1/k)−1 tends to 1 as k → ∞, a behavior that was also observed in
[21] — we expect this to be true for arbitrary classes of increasing trees, but a proof
has to involve some deeper understanding of the analytic behavior of equation (3).

3. Bijections for binary and ternary increasing trees with a perfect
matching

In this section, we are going to give bijective proofs of two identities observed in Sec-
tion 2.1. A lot of similar bijections are known between various types of increasing trees
and alternating permutations (which are enumerated by the secant and the tangent
numbers) — the interested reader is referred to [9, 10, 13].

First of all, we define equivalence classes on binary and ternary increasing trees
with a perfect matching. Let B0 and C0 denote the sets of binary respectively ternary
increasing trees with a perfect matching. Now, we consider the following operation: let
a tree T ∈ B0 on 2n vertices be given together with its unique perfect matching M . For
every vertex v that is joined to its left child in M , we flip the branches attached to v,
obtaining a new tree T ′ ∈ B0. Similarly, if a tree T ∈ C0 on 2n vertices is given together
with its unique perfect matching M , we perform a right-rotation on the branches of
every vertex v that is joined to one of its children in M , in such a way that this child
becomes the right child. Again, we obtain a new tree T ′ ∈ C0. Figure 3 shows two
examples of this procedure — the edges of the perfect matching are represented by
broken lines.
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Figure 1. Constructing T ′ from T .

Obviously, the resulting tree T ′ is characterized by the condition that all edges of
the unique perfect matching link a parent and its right child. Two trees are called
equivalent if they yield the same tree T ′. Since M contains n edges, the number of
trees in each equivalence class is 2n respectively 3n, as there are two respectively three
possible directions for each of the edges of M .

In an analogous manner, we define equivalence classes on B1 and C1, the classes of
binary respectively ternary increasing trees with a matching that covers all vertices
except the root. Again, the number of trees in an equivalence class is 2n respectively
3n if the number of vertices is 2n + 1.

Now, let R0 be the set of representatives of equivalence classes of B0, and define R1

analogously. Furthermore, we write Ri,n for the set of n-vertex trees in Ri. Finally,
let Altn be the set of alternating permutations of {1, 2, . . . , n}, beginning with a rise.
We are going to construct a bijection between R0,2n and Alt2n as well as a bijection
between R1,2n+1 and Alt2n+1.

The bijection is constructed by means of induction. The empty tree corresponds
to the “permutation” of 0 elements, and the bijection between R1,1 and Alt1 is also
trivial. Now, note that a tree T ∈ R0 is characterized by the following properties:

• the left branch lies in R0,
• the right branch lies in R1.

Hence, there are two alternating permutations σ1, σ2 associated with the branches of
T . Note that σ1 is a permutation of an even number of labels, whereas σ2 is a permu-
tation of an odd number of labels. Now, a simple construction yields the alternating
permutation associated with T : reverse the labels in σ2, i.e. interchange the positions
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of the largest and smallest label, the positions of the second-largest and second-smallest
label, etc. (for instance, 57692 becomes 75629), so that one obtains an alternating per-
mutation σ′2 beginning with a fall (and ending with a rise, since the number of labels
is odd) on the same set of labels. Now append σ1, 1 and σ′2 to obtain the alternating
permutation σ associated with T .

Similarly, a tree T ∈ R1 is characterized by the fact that both its branches belong
to R0. Given the alternating permutations σ1, σ2 corresponding to these branches, we
obtain a new alternating permutation (which we associate with T ) by reversing the
labels of σ2 (obtaining a permutation σ′2) and appending σ1, 1 and σ′2.

Clearly, the described construction defines a bijection, which proves the fact that
there are En equivalence classes and thus 2nEn binary increasing trees on 2n vertices
with a perfect matching.

485          845

6723 + 1 + 845 = 67231845

6723

2

36

7

2

36

7

4

5

8

4

5

8
1

Figure 2. Application of the recursive procedure for binary increasing trees.

For ternary increasing trees, let S0 and S1 be the sets of representatives for the
equivalence classes of C0 and C1 respectively, let S0,n and S1,n be defined analogously
to R0,n and R1,n and denote by On the set of permutations of {1, 2, . . . , n} with the
property that all cycles have odd length. We will provide a bijection between S0,2n

and O2n and a bijection between S1,2n+1 and O2n+1 by means of a similar recursive
construction as in the case of binary increasing trees.

First, note that there is a simple bijection φ between permutations with odd-length
cycles and permutations with even-length cycles only, as demonstrated in [6] for in-
stance. For the sake of completeness, we state this bijection as well: given a permu-
tation σ with odd-length cycles and an even number of cycles, write it in such a way
that the largest element in each cycle occurs first and these elements are in increas-
ing order. Then, move the last element of the 1st, 3rd, 5th, . . . cycle to the end of
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the 2nd, 4th, 6th, . . . cycle to obtain a permutation σ′ with even-length cycles. For
instance, (3)(512)(847)(9) is mapped to (5123)(84)(97). It is not difficult to see that
the correspondence is bijective.

Now, we are ready to construct the bijections between S0,2n and O2n and between
S1,2n+1 and O2n+1. Again, the empty tree corresponds to the “permutation” of 0
elements, and the bijection between S1,1 and O1 is trivial. Now, a tree T ∈ S0 is
characterized by the following properties:

• the left and middle branch lie in S0,
• the right branch lies in S1.

Hence, there are two permutations σ1, σ2 with odd-length cycles associated with the left
and middle branches of T . We apply the bijection φ to σ2 and obtain a permutation σ′2
with even-length cycles. The union of the cycles of σ1 and σ′2 uniquely defines a permu-
tation of the labels of the left and middle subtrees. We write this permutation as a list
of elements rather than in cycle notation and prepend 1 to obtain the cycle containing
1 (for instance, the permutation 27834 yields the cycle (127834)). Together with the
permutation associated with the right branch, this gives us the unique permutation σ
(with odd-length cycles only) associated with T .

(2) (4 14 5) = (2) (14 5 4)            (14 5 4 2)

(6 7 12) (10)

(3) (8 13 11) (9)

(1 14 2 4 7 12 10 6 5) (3) (8 13 11) (9)

(6 7 12) (10) (14 5 4 2) = 14 2 4 7 12 10 6 5

2 3

4

5

6

7

9

810

1112

1314

1

2 3

4

5

7

6

8

9

10

1112

1314

Figure 3. Application of the recursive procedure for ternary increasing trees.
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In a similar manner, we construct the permutation associated with a tree T ∈ S1: the
three branches all belong to S0, so we may use the left and middle branch to define the
cycle that contains 1, and the right branch to define the permutation of the remaining
elements.

So finally, we have established a bijective proof of the fact that there are 3n(2n−1)!!2

ternary increasing trees on 2n vertices with a perfect matching. Note also that the
number of ternary increasing trees on n vertices is precisely (2n − 1)!!. Hence, there
might be a simple bijection between equivalence classes of ternary increasing trees on
2n vertices and pairs of ternary increasing trees on n vertices.
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