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t. It is well known that the length generating fun
tion E(t) of Dy
kpaths (ex
ursions with steps ±1) satis�es 1 − E + t2E2 = 0. The generatingfun
tion E(k)(t) of Dy
k paths of height at most k is E(k) = Fk/Fk+1, wherethe Fk are polynomials in t given by F0 = F1 = 1 and Fk+1 = Fk − t2Fk−1.This means that the generating fun
tion of these polynomials is ∑k≥0 Fkzk =

1/(1 − z + t2z2). We note that the denominator of this fra
tion is the minimalpolynomial of the algebrai
 series E(t).This pattern persists for walks with general steps. For any �nite setof steps S, the generating fun
tion E(k)(t) of ex
ursions (generalized Dy
kpaths) taking their steps in S and of height at most k is the ratio Fk/Fk+1of two polynomials. These polynomials satisfy a linear re
urren
e relationwith 
oe�
ients in Q[t]. Their (rational) generating fun
tion 
an be written
∑

k≥0 Fkzk = N(t, z)/D(t, z). The ex
ursion generating fun
tion E(t) is alge-brai
 and satis�es D(t, E(t)) = 0 (while N(t, E(t)) 6= 0).If maxS = a and minS = b, the polynomials D(t, z) and N(t, z) 
an be takento be respe
tively of degree da,b =
(

a+b

a

) and da,b −a− b in z. These degrees arein general optimal: for instan
e, when S = {a,−b} with a and b 
oprime, D(t, z)is irredu
ible, and is thus the minimal polynomial of the ex
ursion generatingfun
tion E(t).The proofs of these results involve a slightly unusual mixture of 
ombinato-rial and algebrai
 tools, among whi
h the kernel method (whi
h solves 
ertainfun
tional equations), symmetri
 fun
tions, and a pin
h of Galois theory.
1. Introdu
tionOne of the most 
lassi
al 
ombinatorial in
arnations of the famous Catalannumbers, Cn =

(

2n
n

)

/(n + 1), is the set of Dy
k paths. These are one-dimensionalwalks that start and end at 0, take steps ±1, and always remain at a non-negativelevel (Figure 1, left). By fa
toring su
h walks at their �rst return to 0, one easilyproves that their length generating fun
tion E ≡ E(t) is algebrai
, and satis�es
E = 1 + t2E2.This immediately yields:

E =
1 −

√
1 − 4t2

2t2
=
∑

n≥0

Cnt
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1Figure 1. Left: A Dy
k path of length 16 and height 4. Right: Anex
ursion (generalized Dy
k path) of length 8 and height 7, withsteps in S = {−3, 5}.The same fa
torization gives a re
urren
e relation that de�nes the series E(k) ≡

E(k)(t) 
ounting Dy
k paths of height at most k:
E(0) = 1 and for k ≥ 1, E(k) = 1 + t2E(k−1)E(k).This re
ursion 
an be used to prove that E(k) is rational, and more pre
isely, that

E(k) =
Fk

Fk+1
, where F0 = F1 = 1 and Fk+1 = Fk − t2Fk−1.The aim of this paper is to des
ribe what happens for generalized Dy
k paths(also known as ex
ursions) taking their steps in an arbitrary �nite set S ⊂ Z(see an example in Figure 1, right). Their length generating fun
tion E is knownto be algebrai
. What is the degree of this series? How 
an one 
ompute itsminimal polynomial? Furthermore, it is easy to see that the generating fun
tion

E(k) 
an still be written Fk/Fk+1, for some polynomials Fk. Does the sequen
e
(Fk)k satisfy a linear re
urren
e relation? Of what order? How 
an one determinethis re
ursion? Note that any linear re
ursion of order d, of the form

d
∑

i=0

aiFk−i = 0 (1)with ai ∈ Q[t], gives a non-linear re
ursion of order d for the series E(k),
d
∑

i=0

aiE
(k−i+1) · · ·E(k) = 0, (2)and, by taking the limit k → ∞, an algebrai
 equation of degree d satis�ed by

E = limk E(k):
d
∑

i=0

aiE
i = 0.This establishes a 
lose link between the (still hypotheti
al) re
ursion for thesequen
e Fk and the algebrai
ity of E. The 
onne
tion between (1) and (2) is
entral in the re
ent paper [2℄ dealing with ex
ursions with steps ±1,±2.A slightly surprising out
ome of this paper is that symmetri
 fun
tions are
losely related to the enumeration of ex
ursions. This 
an be seen in the following



2 MIREILLE BOUSQUET-MÉLOUsummary of our answers to the above questions. Assume minS = −b and maxS =
a. Then the ex
ursion generating fun
tion E is algebrai
 of degree at most da,b :=
(

a+b
a

). The degree is exa
tly da,b in the generi
 
ase (to be de�ned), but alsowhen S = {−b, a} with a and b 
oprime. Computing a polynomial of degree da,bthat annihilates E boils down to 
omputing the elementary plethysms ek[ea] on analphabet with a + b letters, for 0 ≤ k ≤ da,b.The generating fun
tion E(k) 
ounting ex
ursions of height at most k is rationaland 
an be written Fk/Fk+1 for some polynomials Fk. These polynomials satisfya linear re
urren
e relation of the form (1), of order da,b, whi
h is valid for k >
da,b−a− b. Moreover, Fk 
an be expressed as a determinant of varying size k, butalso as a re
tangular S
hur fun
tion taking the form of a determinant of 
onstantsize a + b.These results are detailed in the next se
tion. Not all of them are new. Thegenerating fun
tion of ex
ursions, given in Proposition 1, �rst appeared in [6℄,but 
an be derived from the earlier paper [17℄. An algorithm for 
omputing apolynomial of degree da,b that annihilates E was des
ribed in [5℄. Hen
e the �rstpart of the next se
tion, whi
h deals with unbounded ex
ursions, is mostly asurvey (the results on the exa
t degree of E are however new). The se
ond part� ex
ursions of bounded height � is new, although an attempt in the same veinappears in [3℄.Let us �nish with the plan of this paper. The kernel method has be
ome a stan-dard tool to solve 
ertain fun
tional equations arising in various 
ombinatorialproblems [4, 14, 26℄. We illustrate it in Se
tion 3 by 
ounting unbounded ex
ur-sions. We use it again in Se
tion 4 to obtain the generating fun
tion of ex
ursionsof bounded height. Remarkably, the same result 
an be obtained by 
ombining thetransfer-matrix method and the dual Ja
obi�Trudi identity. In Se
tion 5, we deter-mine the re
urren
e relation satis�ed by the polynomials Fk. More pre
isely, we
ompute the rational series∑k Fkz

k. This is equivalent to 
omputing the generat-ing fun
tion of re
tangular S
hur fun
tions ∑k skazk, where a = maxS. Finally,we dis
uss in Se
tion 6 the exa
t degree of the series E for 
ertain step sets S.This involves a bit of Galois theory.2. Statement of the resultsWe 
onsider one-dimensional walks that start from 0, take their steps in a �niteset S ⊂ Z, and always remain at a non-negative level. More formally, a (non-negative) walk of length n will be a sequen
e (s1, s2, . . . , sn) ∈ Sn su
h that for all
i ≤ n, the partial sum s1 + · · ·+ si is non-negative. The �nal level of this walk is
s1+· · ·+sn, and its height is maxi s1+· · ·+si. An ex
ursion is a non-negative walkending at level 0 (Figure 1). We are interested in the enumeration of ex
ursions.The generating fun
tions we 
onsider are fairly general, in that every step s ∈ Sis weighted by an element ωs of some �eld K of 
hara
teristi
 0. For instan
e,all the ωs may be 1. Or they may be independent indeterminates. In the latter
ase, K is the fra
tion �eld Q(ωs, s ∈ S). The length of the walks is taken intoa

ount by an additional indeterminate t, trans
endental over K. In parti
ular,



DISCRETE EXCURSIONS 3the generating fun
tion of ex
ursions is
E :=

∑

ωs1
· · ·ωsn

tn,where the sum runs over all ex
ursions (s1, s2, . . . , sn). This is a power series in
t with 
oe�
ients in K. In one o

asion (Example 2), we will then spe
ializethe indeterminates ωs into polynomials in t. The series E be
omes a well-de�nedpower series in t.If minS = −b and maxS = a, we assume that ω−b and ωa are non-zero. If ddivides all the elements of S, the ex
ursion generating fun
tion is un
hanged ifwe repla
e ea
h s ∈ S by s/d (up to a renaming of the weights ωs). Thus we 
analways assume that the elements of S are relatively prime. Also, if (s1, s2, . . . , sn)is an ex
ursion, (−sn, . . . ,−s2,−s1) is also an ex
ursion, with steps in −S. Thusthe ex
ursion series obtained for S and −S 
oin
ide, up to a renaming of theweights ωs.The weighting of the walks that we have de�ned depends on the list of steps thatare taken, but not on the positions of these steps in Z. For instan
e, we 
annotkeep tra
k of the number of visits to 0 with our weights, whereas this parameteris sometimes of interest [1, 8℄. However, the methods we present here are fairlyrobust and 
an often be adapted to solve variants of the two main questions studiedin this paper (in
luding the number of visits to 0).In the expression of E given below (Proposition 1), an important role is playedby the following term, whi
h en
odes the steps of S:

P (u) =
∑

s∈S

ωsu
s, (3)where u is a new indeterminate. This is a Laurent polynomial in u with 
oe�
ientsin K. If minS = −b, we de�ne

K(u) = ub (1 − tP (u)) . (4)This is now a polynomial in u with 
oe�
ients in K[t]. If maxS = a, this polyno-mial has degree a + b in u. It has a + b roots, whi
h are fra
tional Laurent series(Puiseux series) in t with 
oe�
ients in K, an algebrai
 
losure of K. (We refer thereader to [30, Ch. 6℄ for generalities on the roots of a polynomial with 
oe�
ientsin K[t].) Exa
tly b of these roots, say U1, . . . , Ub, are �nite at t = 0. These rootsare a
tually formal power series in t1/b, and the �rst term of Ui is ξi (tω−b)
1/b,where ξ is a bth root of unity. In parti
ular, these b series are distin
t, and vanishat t = 0. We 
all them the small roots of K. The a other roots, Ub+1, . . . , Ua+b,are the large roots of K. They are Laurent series in t1/a, and their �rst term is

ct−1/a, for some c 6= 0. Note that K(u) fa
tors as
K(u) = ub(1 − tP (u)) = −tωa

a+b
∏

i=1

(u − Ui) ,so that the elementary symmetri
 fun
tions of the Ui's are:
ei(U) = (−1)i

(

ωa−i

ωa
− 1

tωa
χa=i

)

, (5)



4 MIREILLE BOUSQUET�MÉLOUwith U = (U1, . . . , Ua+b). We refer to [30, Ch. 7℄ or [23℄ for generalities on sym-metri
 fun
tions.2.1. Unbounded ex
ursionsAt least three di�erent approa
hes have been used to 
ount ex
ursions. The�rst one generalizes the fa
torization of Dy
k paths mentioned at the beginningof the introdu
tion. It yields a system of algebrai
 equations de�ning E [1, 15, 21,22, 24℄. The fa
torization di�ers from one paper to another. To our knowledge,the simplest, and most systemati
 one, appears in [15℄.A se
ond approa
h [17℄ relies on a fa
torization of un
onstrained walks takingtheir steps in S, and on a related fa
torization of formal power series. The ex-pression of E that 
an be derived from [17℄ (by 
ombining Proposition 4.4 andthe proof of Proposition 5.1) 
oin
ides with the expression obtained by the thirdapproa
h, whi
h is based on a step by step 
onstru
tion of the walks [6, 5℄. Thisexpression of E is given in (6) below. We repeat in Se
tion 3 the proof of (6)published in [6℄, as it will be extended later to 
ount bounded ex
ursions.Proposition 1. The generating fun
tion of ex
ursions is algebrai
 over K(t) ofdegree at most da,b =
(

a+b
a

). It 
an be written as:
E =

(−1)b+1

tω−b

b
∏

i=1

Ui =
(−1)a+1

tωa

a+b
∏

i=b+1

1

Ui
, (6)where U1, . . . , Ub (respe
tively Ub+1, . . . , Ua+b) are the small (respe
tively large)roots of the polynomial K(u) given by (4). The quantity de�ned by

D(t, z) =
∏

I⊂Ja+bK, |I|=a

(1 + (−1)aztωaUI) , (7)with Ja + bK = {1, 2, . . . , a + b} and
UI =

∏

i∈I

Ui,is a polynomial in t and z with 
oe�
ients in K, of degree da,b in z, satisfying
D(t, E) = 0.On
e the expression (6) is established, the other statements easily follow. In-deed, the se
ond expression of E shows that D(t, E) = 0. Moreover, the expressionof D(t, z) is symmetri
 in the roots U1, . . . , Ua+b, so that its 
oe�
ients belong to
K(t). More pre
isely, the form (5) of the elementary symmetri
 fun
tions of the
Ui's shows that D(t, z) is a Laurent polynomial in t. But the valuation of Ui in tis at least −1/a, and this implies that D(t, z) is a polynomial in t.Clearly, the degree of D(t, z) in z is da,b =

(

a+b
a

). Thus the ex
ursion generatingfun
tion E has degree at most da,b. We prove in Se
tion 6 that D(t, z) is a
tuallyirredu
ible in the two following 
ases:
• S = J−b, aK = {−b, . . . , a − 1, a} and ω−b, . . . , ωa are independent indeter-minates (the generi
 
ase),
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• S = {−b, a} with ω−b = ωa = 1 and a and b 
oprime (two-step ex
ursions).As shown by Example 2 below, D(t, z) is not always irredu
ible.An algebrai
 equation for E. As argued above, D(t, z) is a polynomial in tand z that vanishes for z = E. However, its expression (7) involves the series Ui,while one would prefer to obtain an expli
it polynomial in t and z. Re
all thatthe series Ui are only known via their elementary symmetri
 fun
tions (5). How
an one 
ompute a polynomial expression of D(t, z)? The approa
hes based onresultants or Gröbner bases be
ome very qui
kly ine�e
tive.In the generi
 
ase where S = J−b, aK and the weights ωs are indeterminates,

K(u) is the general polynomial of degree a + b in u, and the problem 
an berephrased as follows: Take n = a + b variables u1, . . . , un, and expand the polyno-mial
Q(z) =

∏

I⊂JnK, |I|=a

(1 − zuI) (8)in the basis of elementary symmetri
 fun
tions of u1, . . . , un. For instan
e, for
a = 2 and b = 1,
Q(z) = (1 − zu1u2)(1 − zu1u3)(1 − zu2u3)

= 1 − z(u1u2 + u1u3 + u2u3) + z2(u2
1u2u3 + u1u

2
2u3 + u1u2u

2
3) − z3(u1u2u3)

2

= 1 − ze2 + z2e3,1 − z3e3,3,while for a = b = 2,
Q(z) = 1−ze2+z2(e3,1−e4)−z3(e3,3+e4,1,1−2e4,2)+z4e4(e3,1−e4)−z5e4,4,2+z6e4,4,4.(9)Using the standard notation for plethysm [30, Appendix 2℄, the polynomial Q(z)reads

Q(z) =

da,b
∑

k=0

(−z)kek[ea].This shows that, in the generi
 
ase, the problem of expressing D(t, z) as a poly-nomial in t and z is equivalent to expanding the plethysms ek[ea] in the basis ofelementary symmetri
 fun
tions, for an alphabet of n = a + b variables. Unfortu-nately, there is no general expression for the expansion of ek[ea] in any standardbasis of symmetri
 fun
tions, and only algorithmi
 solutions exist [9, 10℄. Mostof them expand plethysms in the basis of S
hur fun
tions. This is justi�ed bythe representation-theoreti
 meaning of plethysm. Still, in our walk problem, thenatural basis is that of elementary fun
tions. We have used for our 
al
ulationsthe simple platypus1 algorithm presented in [5℄, whi
h only exploits the 
onne
-tions between power sums and elementary symmetri
 fun
tions. This algorithmtakes advantage automati
ally of simpli�
ations o

urring in non-generi
 
ases.For instan
e, when only two steps are allowed, say −b and a, all the elementarysymmetri
 fun
tions of the Ui's vanish, apart from e0(U), ea(U) and ea+b(U). Itwould be a shame to 
ompute the general expansion of ek[ea] in the elementary1Don't ask me why it is 
alled so!



6 MIREILLE BOUSQUET�MÉLOUbasis, and then spe
ialize most of the ei to 0. The platypus algorithm dire
tly givesthe expansion of ek[ea] modulo the ideal generated by the ei, for i 6= 0, a, a + b.For instan
e, when a = 2 and b = 1,
Q(z) ≡ 1 − ze2 − z3e2

3,while for a = 2 and b = 3,
Q(z) ≡ 1 − ze2 − 2z5e2

5 + z6e2e
2
5 − z7e2

2e
2
5 + z10e4

5.and for a = 5 and b = 2,
Q(z) ≡ 1 − ze5 − 3z7e5

7 + 2z8e5e
5
7 − 2z9e2

5e
5
7 + z10e3

5e
5
7 − z11e4

5e
5
7

+ 3z14e10
7 − z15e5e

10
7 + 2z16e2

5e
10
7 − z21e15

7 .From the above examples, one may suspe
t that, in the two-step 
ase, the 
oe�-
ient of zk in Q(z) is always a monomial in the ei. Going ba
k to the polynomial
D(t, z), and given that

ea(U) =
(−1)a+1

tωa

and ea+b(U) = (−1)a+b ω−b

ωa

,this would mean that the 
oe�
ient of zk in D(t, z) is always a monomial in t.This observation �rst gave us some hope to �nd (in the two-step 
ase) a simpledes
ription of D(t, z) and, why not, a dire
t 
ombinatorial proof of D(t, E) = 0.However, this ni
e pattern does not persist: for a = 3 and b = 5, the 
oe�
ient of
z16 in Q(z) 
ontains e6

8 and e8
3e

3
8.For the sake of 
ompleteness, let us des
ribe this platypus algorithm. Take apolynomial L(z) of degree n with 
onstant term 1, and de�ne U1, . . . , Un impli
itlyby

L(z) =

n
∏

k=1

(1 − zUk).The algorithm gives a polynomial expression of
Q(z) =

∏

|I|=a

(1 − zUI) =

d
∑

k=0

(−z)kek[ea](U)with d =
(

n
a

) and U = (U1, . . . , Un). The only general identity that is needed isthe expansion of ea in power sums. This 
an be obtained from a series expansionvia
ea = [za] exp

(

−
∑

i≥1

(−z)i

i
pi

)

= Φa(p1, . . . , pa) (10)for some polynomial Φa. The rest of the 
al
ulation also uses series expansions,and goes as follows:
• 
ompute pi(U) for 1 ≤ i ≤ ad using pi(U) = i[zi] log(1/L(z)),
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• 
ompute log Q(z) up to the 
oe�
ient of zd using

log Q(z) = −
∑

i≥1

zi

i
Φa(pi(U), p2i(U), . . . , pai(U)), (11)

• 
ompute Q(z) up to the 
oe�
ient of zd using Q(z) = exp(log Q(z)).Sin
e Q(z) has degree d, the 
al
ulation is 
omplete. The identity (11) followsfrom (10) and
log Q(z) = −

∑

i≥1

zi

i

∑

|I|=a

U i
I = −

∑

i≥1

zi

i
ea(U

i
1, . . . , U

i
n).Given a set of steps S, with maxS = a, one obtains a polynomial expression of

D(t, z) by applying the platypus algorithm to
L(z) =

∑

s∈S

ωs

ωa
za−s − za

tωa
.If the output of the algorithm is the polynomial Q(z), then D(t, z) =

Q((−1)a+1tωaz).Example 1: Two step ex
ursions. The simplest walks we 
an 
onsider areobtained for S = {−b, a} and ωa = ω−b = 1. We always assume that a and b are
oprime.If b = 1, Proposition 1 gives E = U/t, where U is the only power series satisfying
U = t(1+Ua+1). Equivalently, E = 1+ta+1Ea+1. This equation 
an be understood
ombinatorially by looking at the �rst visit of the walk at levels a, a − 1, . . . , 1, 0,and fa
toring the walk at these points. Of 
ourse, a similar result holds when
a = 1.If a, b > 1, it is still possible, but more di�
ult, to write dire
tly a system ofpolynomial equations, based on fa
torizations of the walks, that de�ne the series
E. See for instan
e [15, 21, 22, 24℄. It would be interesting to work out the pre
iselink between the 
omponents of these systems and the series Ui. To 
ompare bothtypes of results, take a = 3 and b = 2. On the one hand, it is shown in [15℄ that
E is the �rst 
omponent of the solution of







E = 1 + L1R1 + L2R2 L1 = L2R1 + L3R2

R1 = L1R2 L2 = L3R1

R2 = tE L3 = tE.On the other hand, Proposition 1 gives E = −U1U2/t, where U1, U2 are the smallroots of u2 = t(1 + u5). The platypus algorithm gives D(t, E) = 0 with
D(t, z) = 1 − z + t5z5(2 − z + z2) + t10z10. (12)This polynomial is irredu
ible. Similarly, for a = 4 and b = 3, D(t, E) = 0 with

D(t, z) = 1 − z + t7z7
(

5 − 4 z + z2 + 3 z3 − z5 + z6
)

+ t14z14
(

10 − 6 z + 3 z2 + 5 z3 − z4 + z5
)

+ t21z21
(

10 − 4 z + 3 z2 + z3 − z4
)

+ t28z28
(

5 − z + z2 − z3
)

+ z35t35. (13)



8 MIREILLE BOUSQUET�MÉLOUWe prove in Se
tion 6 that, in the 
ase of two step walks, D(t, z) is always irre-du
ible. That is, the degree of E is exa
tly (a+b
a

).Example 2: Playing basket-ball with A. and Z. In a re
ent paper [2℄, theauthors 
onsider ex
ursions with steps in {±1,±2}, where the steps ±2 havelength 2 rather than 1. They use fa
torizations of walks to 
ount ex
ursions (morespe
i�
ally, ex
ursions of bounded height). This problem �ts in our framework by
hoosing ω−2 = ω2 = ω and ω−1 = ω1 = 1, and then spe
ializing ω = t. Observethat the small roots of u2 = t(ω+u+u3+ωu4), involved in Proposition 1, spe
ializeinto the small roots U1 and U2 of u2 = t(t + u + u3 + tu4) when ω is set to t. Weobtain E = −U1U2/t
2. The platypus algorithm yields

D(t, z) = D̄(t, z)(1 + t2z)2, (14)where
D̄(t, z) = t8z4 − t4

(

1 + 2 t2
)

z3 + t2
(

3 + 2 t2
)

z2 −
(

1 + 2 t2
)

z + 1 (15)is the minimal polynomial of E. This fa
torization is an interesting phenome-non, whi
h is not related to the unequal lengths of the steps. Indeed, the samephenomenon o

urs when S = {±1,±2} and all weights are 1. In this 
ase, one�nds:
D(t, z) = D̄(t, z)(1 + tz)2with D̄(t, z) = t4z4 − t2(2t + 1)z3 + t(3t + 2)z2 − (2t + 1)z + 1,so that the ex
ursion generating fun
tion has degree 4 again.The fa
torization of D(t, z) is due to the symmetry of the set of steps. For ea
hset S su
h that S = −S and weights ωs su
h that ωs = ω−s, the polynomial P (u)given by (3) is symmetri
 in u and 1/u. In parti
ular, a = b. This implies that thesmall and large roots of 1−tP (u) 
an be grouped by pairs: Ua+1 = 1/U1, . . . , U2a =

1/Ua. In parti
ular, if a is even, the polynomial D(t, z) given by (7) 
ontains thefa
tor (1+ tωaz) at least ( a
a/2

) times. In the basket-ball 
ase (a = 2), this explainsthe fa
tor (1 + tz)2 o

urring in D(t, z). More generally, we prove in Se
tion 7that if S is symmetri
, with symmetri
 weights, then the degree of E is at most
2a, where a = maxS.2.2. Ex
ursions of bounded heightWe now turn our attention to the enumeration of ex
ursions of height at most
k. These are walks on a �nite dire
ted graph, so that the 
lassi
al transfer-matrixmethod applies2. The verti
es of the graph are 0, 1, . . . , k, and there is an edgefrom i to j if j − i ∈ S. The adja
en
y matrix of this graph is A(k) = (Ai,j)0≤i,j≤kwith

Ai,j =

{

ωj−i if j − i ∈ S,
0 otherwise. (16)2In language theoreti
 terms, the words of S∗ that en
ode these bounded ex
ursions arere
ognized by a �nite automaton.



DISCRETE EXCURSIONS 9By 
onsidering the nth power of A(k), it is easy to see [29, Ch. 4℄ that the series
E(k) 
ounting ex
ursions of height at most k is the entry (0, 0) in (1 − tA(k))−1.The translational invarian
e of our step system gives

E(k) =
Fk

Fk+1where F0 = 1 and Fk+1 is the determinant of 1 − tA(k). The size of this matrix,
k + 1, grows with the height.As was already observed in [3℄, the series 
ounting walks 
on�ned in a strip of�xed height 
an also be expressed using determinants of size a+b, where a = maxSand −b = minS. However, the expressions given in the above referen
e are heavy.A di�erent route yields determinants that are S
hur fun
tions in the series Ui(re
all that these series are the roots of the polynomial K(u) given by (4)). Thiswas shown in [7℄ for the enumeration of 
ulminating walks. The 
ase of ex
ursionsis even simpler, as it only involves re
tangular S
hur fun
tions.Let us re
all the de�nition of S
hur fun
tions in n variables x1, . . . , xn. Let
δ = (n − 1, n − 2, . . . , 1, 0). For any integer partition λ with at most n parts,
λ = (λ1, . . . , λn) with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0,

sλ(x1, . . . , xn) =
aδ+λ

aδ
, with aµ = det

(

x
µj

i

)

1≤i,j≤n
. (17)Proposition 2. The generating fun
tion of ex
ursions of height at most k is

E(k) =
Fk

Fk+1
=

(−1)a+1

tωa

ska(U)

s(k+1)a(U)where U = (U1, . . . , Ua+b) is the 
olle
tion of roots of the polynomial K(u) givenby (4), and Fk+1 = det(1 − tA(k)) where A(k) is the adja
en
y matrix (16). Inparti
ular,
Fk = (−1)k(a+1)(tωa)

kska(U). (18)This proposition is proved in Se
tion 4 in two di�erent ways. In Se
tion 5,we derive from the S
hur expression of Fk that these polynomials satisfy a linearre
urren
e relation. Equivalently, the generating fun
tion ∑k Fkz
k is a rationalfun
tion of t and z.Proposition 3. The generating fun
tion of the polynomials Fk is rational, and
an be written as

∑

k≥0

Fkz
k =

N(t, z)

D(t, z)where D(t, z) is given by (7), and N(t, z) has degree (a+b
a

)

− a− b in z. Moreover,
D(t, E) = 0 and N(t, E) 6= 0.In other words, the sequen
e Fk satis�es a linear re
urren
e relation of theform (1), of order da,b =
(

a+b
a

), valid for k >
(

a+b
a

)

− a − b (with Fi = 0 for
i < 0). This proposition follows from Proposition 4 (Se
tion 5), whi
h deals with



10 MIREILLE BOUSQUET�MÉLOUthe generating fun
tion of re
tangular S
hur fun
tions of height a: for symmetri
fun
tions in n variables,
∑

k

skazk =
P (z)

Q(z)
(19)where Q(z) is given by (8) and has degree (n

a

), while P (z) has degree (n
a

)

− n.Computational aspe
ts. We have shown in Se
tion 2.1 that, given the stepset S, the polynomial D(t, z) 
an be 
omputed via the platypus algorithm. Oneway to determine the numerator N(t, z) is to 
ompute Fk expli
itly (e.g. as thedeterminant of (1 − tA(k))) for k ≤ δ :=
(

a+b
a

)

− a − b, and then to 
ompute
N(t, z) = D(t, z)

∑

k Fkz
k up to the 
oe�
ient of zδ.In the generi
 
ase, 
omputing the generating fun
tion of the polynomials Fkboils down to 
omputing the generating fun
tion (19). As dis
ussed above, theplatypus algorithm 
an be used to determine Q(z) in terms of the elementarysymmetri
 fun
tions. In order to determine P (z), we express the S
hur fun
tions

ska , for k ≤ δ :=
(

n
a

)

− n, in the elementary basis. This 
an be done using thedual Ja
obi�Trudi identity (see Se
tion 5 for details). One �nally obtains P (z) byexpanding the produ
t Q(z)
∑

k skazk in the elementary basis up to order δ. Forinstan
e, for a = b = 2,
∑

k≥0

skazk =
1 − z2e4

Q(z)
,where Q(z) is given by (9). More values of P (z) are given in Se
tion 7.2. Let usnow revisit the examples of Se
tion 2.1.Example 1: Two step ex
ursions. When S = {a,−1}, one has D(t, z) = 1−z+

ta+1za+1. The polynomials Fk satisfy the re
ursion Fk = Fk−1− ta+1Fk−a−1, whi
h
an be understood 
ombinatorially using Viennot's theory of heaps of pie
es [33℄.Via this theory, Fk appears as the generating fun
tion of trivial heaps of segmentsof length a on the line J0, kK, ea
h segment being weighted by −ta+1. The re
ursionis valid for k ≥ 1, with F0 = 1 and Fi = 0 for i < 0. The generating fun
tion ofthe Fk's is
∑

k≥0

Fkz
k =

1

1 − z + ta+1za+1
.When a = 3 and b = 2, the minimal polynomial of the ex
ursion series E is givenby (12) and the generating fun
tion of the polynomials Fk is found to be

∑

k≥0

Fkz
k =

1 + t5z5

1 − z + t5z5(2 − z + z2) + t10z10
.For a = 4 and b = 3, we refer to (13) for the minimal polynomial D(t, z) of E,and

∑

k≥0

Fkz
k =

1 + t7z7 (4 + z3 + z4) + t14z14 (6 + z3) + 4 t21z21 + t28z28

D(t, z)
.



DISCRETE EXCURSIONS 11Example 2: Basket-ball again. For S = {±1,±2} with ω−2 = ω2 = t, ω−1 =
ω1 = 1,
∑

k≥0

Fkz
k =

1 − t2z

(1 + t2z) (1 − z(1 + 2t2) + z2t2(3 + 2t2) − z3t4(1 + 2 t2) + z4t8)
.The denominator is not irredu
ible. Its se
ond fa
tor is the minimal polynomialof E, see (15). Moreover, 
omparing to (14) shows that N(t, z) and D(t, z) have afa
tor (1 + t2z) in 
ommon. A similar phenomenon o

urs for S = {±1,±2} with

ωs = 1 for all s. In this 
ase,
∑

k≥0

Fkz
k =

1 − tz

(1 + zt) (1 − z (1 + 2 t) + t (2 + 3 t) z2 − t2 (1 + 2 t) z3 + z4t4)
.Again, the minimal polynomial of E is the se
ond fa
tor of the denominator, and

N(t, z) and D(t, z) have a fa
tor (1 + tz) in 
ommon.3. Enumeration of unbounded ex
ursionsHere we establish the expression (6) of the ex
ursion generating fun
tion E. Theproof is based on a step-by step 
onstru
tion of non-negative walks with steps in
S, and on the so-
alled kernel method. This type of argument is by no meansoriginal. The proof that we are going to present 
an be found in [6, Example 3℄,then in [5℄, and �nds its origin in [20, Ex. 2.2.1.4 and 2.2.1.11℄. The reason whywe repeat the proof is be
ause it will be adapted in Se
tion 4 to 
ount ex
ursionsof bounded height.Let W be the set of walks that start from 0, take their steps in S, and alwaysremain at a non-negative level. Let W (t, u) be their generating fun
tion, wherethe variable t 
ounts the length, the variable u 
ounts the �nal height, and ea
hstep s ∈ S is weighted by ωs:

W (t, u) =
∑

(s1,s2,...,sn)∈W

ωs1
· · ·ωsn

tnus1+···+sn.We often denote W (t, u) ≡ W (u), and use the notation Wh for the generatingfun
tion of walks of W ending at height h:
W (t, u) =

∑

h≥0

uhWh where Wh =
∑

(s1,s2,...,sn)∈W

s1+···+sn=h

ωs1
· · ·ωsn

tn.A non-empty walk of W is obtained by adding a step of S at the end of anotherwalk of W. However, we must avoid adding a step i to a walk ending at height j,if i + j < 0. This gives
W (u) = 1 + t

(

∑

s∈S

ωsu
s

)

W (u) − t
∑

i∈S,j≥0
i+j<0

ωiu
i+jWj .



12 MIREILLE BOUSQUET�MÉLOULet minS = −b. Rewrite the above equation so as to involve only non-negativepowers of u:
ub(1 − tP (u))W (u) = ub − t

b
∑

h=1

ub−h
∑

i∈S,j≥0

i+j=−h

ωiWj, (20)with P (u) =
∑

s∈S ωsu
s. The 
oe�
ient of W (u) is the kernel K(u) of the equation,given in (4). As above, we denote by U1, . . . , Ub (respe
tively Ub+1, . . . , Ua+b) theroots of K(u) that are �nite (respe
tively in�nite) at t = 0. For 1 ≤ i ≤ b, theseries W (Ui) is well-de�ned (it is a formal power series in t1/b). The left-hand sideof (20) vanishes for u = Ui, with i ≤ b, and so the right-hand side vanishes too.But the right-hand side is a polynomial in u, of degree b, leading 
oe�
ient 1, andit vanishes at u = U1, . . . , Ub. This gives
ub(1 − tP (u))W (u) =

b
∏

i=1

(u − Ui).As the 
oe�
ient of u0 in the kernel is −tω−b, setting u = 0 in the above equationgives the generating fun
tion of ex
ursions:
E = W (0) =

(−1)b+1

tω−b

b
∏

i=1

Ui.This is the �rst expression in (6). The se
ond follows using
U1 · · ·Ua+b = (−1)a+bω−b/ωa (21)(see (5)).Remark. There exists an alternative way to solve (20), whi
h does not exploitthe fa
t that the right-hand side of (20) has degree b in u. This variant will beuseful in the enumeration of bounded ex
ursions. Write

Z−h =
∑

i∈S,j≥0

i+j=−h

ωiWj ,so that the right-hand side of (20) reads
ub − t

b
∑

h=1

ub−hZ−h.This term vanishes for u = U1, . . . , Ub. Hen
e the b series Z−1, . . . , Z−b satisfy thefollowing system of b linear equations: For U = Ui, with 1 ≤ i ≤ b,
b
∑

h=1

U b−hZ−h = U b/t.



DISCRETE EXCURSIONS 13In matrix form, we have MZ = C/t, where M is the square matrix of size b givenby
M =











U b−1
1 U b−2

1 · · · U1
1 1

U b−1
2 U b−2

2 · · · U1
2 1... ...

U b−1
b U b−2

b · · · U1
b 1











,

Z is the 
olumn ve
tor (Z−1, . . . , Z−b), and C is the 
olumn ve
tor (U b
1 , . . . , U

b
b ).The determinant of M is the Vandermonde in U1, . . . , Ub, and it is non-zero be-
ause the Ui are distin
t. We are espe
ially interested in the unknown Z−b = ω−bE.Applying Cramer's rule to solve the above system yields

Z−b =
(−1)b+1

t

det(U b−j+1
i )1≤i,j≤b

det(U b−j
i )1≤i,j≤b

.The two determinants 
oin
ide, up to a fa
tor U1 . . . Ub, and we �nally obtain
E =

Z−b

ω−b
=

(−1)b+1

tω−b
U1 · · ·Ub.4. Enumeration of bounded ex
ursionsAs argued in Se
tion 2.2, the generating fun
tion of ex
ursions of height at most

k is
E(k) =

Fk

Fk+1
, (22)where Fk+1 = det(1 − tA(k)) and A(k) is the adja
en
y matrix (16) des
ribingthe allowed steps in the interval J0, kK. In order to prove Proposition 2, it re-mains to establish the expression (18) of the polynomial Fk as a S
hur fun
tionof U1, . . . , Ua+b. We give two proofs. The �rst one uses the dual Ja
obi�Trudiidentity to identify Fk as a S
hur fun
tion. The se
ond determines E(k) in termsof S
hur fun
tions via the kernel method, and the S
hur expression of Fk thenfollows from (22) by indu
tion on k (given that F0 = 1).First proof via the Ja
obi�Trudi identity. The dual Ja
obi�Trudi identityexpresses S
hur fun
tions as a determinant in the elementary symmetri
 fun
tions

ei [30, Cor. 7.16.2℄: for any partition λ,
sλ = det

(

eλ′

j+i−j

)

1≤i,j≤λ1

,where λ′ is the 
onjugate of λ. Apply this identity to λ = (k+1)a. Then λ′ = ak+1and
s(k+1)a = det J (k) with J (k) = (ea+i−j)1≤i,j≤k+1.Now, spe
ialize this to symmetri
 fun
tions in the a+b variables V = (V1, . . . , Va+b)where Vi = −Ui for all i. By (5), the elementary symmetri
 fun
tions of the Vi are

ei(V) =
ωa−i

ωa
− 1

tωa
χi=a = − 1

tωa
(χi=a − tωa−i) .



14 MIREILLE BOUSQUET�MÉLOUThis shows that the matrix J (k) 
oin
ides with −(1 − tA(k))/(tωa), so that
sλ(V) = (−tωa)

−(k+1)Fk+1 = (−1)a(k+1)sλ(U),sin
e sλ is homogeneous of degree a(k + 1). This gives the S
hur expression of
Fk+1.Se
ond proof via the kernel method. We adapt the step by step approa
hof Se
tion 3 to 
ount ex
ursions of height at most k. Let W (k)(t, u) ≡ W (k)(u)be the generating fun
tion of non-negative walks of height at most k. As before,we 
ount them by their length (variable t) and �nal height (u) with multipli
ativeweights ωs on the steps. We use notations similar to those of Se
tion 3. When
onstru
ting walks step by step, we must still avoid going below level 0, but alsoabove level k. This yields:

W (k)(u) = 1 + t

(

∑

s∈S

ωsu
s

)

W (k)(u) − t
∑

i∈S,j≥0

i+j>k or i+j<0

ωiu
i+jW

(k)
j ,or, with minS = −b,

ub(1 − tP (u))W (k)(u) = ub − t
k+a
∑

h=k+1

ub+hZ
(k)
h − t

b
∑

h=1

ub−hZ
(k)
−h , (23)where

Z
(k)
h =

∑

i∈S,j≥0

i+j=h

ωiW
(k)
j .The series W (k)(u) is now a polynomial in u (with 
oe�
ients in the ring of powerseries in t). This implies that any root Ui of the kernel K(u) = ub(1− tP (u)) 
anbe legally substituted for u in (23). The right-hand side and the left-hand sidethen vanish, and provide a system of a + b linear equations satis�ed by the Zh:For U = Ui, with 1 ≤ i ≤ a + b,

k+a
∑

h=k+1

U b+hZ
(k)
h +

b
∑

h=1

U b−hZ
(k)
−h = U b/t.In matrix form, we have M(k)Z(k) = C/t, where M(k) is the square matrix of size

a + b given by
M(k) =











Ua+b+k
1 Ua+b+k−1

1 · · · U b+k+1
1 U b−1

1 U b−2
1 · · · 1

Ua+b+k
2 · · · · · · 1... ...

Ua+b+k
a+b Ua+b+k−1

a+b · · · U b+k+1
a+b U b−1

a+b U b−2
a+b · · · 1











,

Z(k) is the 
olumn ve
tor (Z
(k)
k+a, . . . , Z

(k)
k+1, Z

(k)
−1 , . . . , Z

(k)
−b ), and C is the 
olumnve
tor (U b

1 , . . . , U
b
a+b). We are espe
ially interested in the series Z

(k)
−b = ω−bE

(k).



DISCRETE EXCURSIONS 15Cramer's rule now gives
Z

(k)
−b =

(−1)b+1

t

det(Ua+b+k
i , . . . , U b+k+1

i , U b
i , U

b−1
i , . . . , Ui)1≤i≤a+b

detM(k)
, (24)provided detM(k) 6= 0. In view of the de�nition (17) of S
hur fun
tions, thisyields:

E(k) =
Z

(k)
−b

ω−b
=

(−1)b+1

tω−b
U1 · · ·Ua+b

ska(U)

s(k+1)a(U)
.Thanks to (21), the generating fun
tion of ex
ursions of height at most k 
an�nally be rewritten

E(k) =
(−1)a+1

tωa

ska(U)

s(k+1)a(U)
.Using (22), we �nally express the polynomial Fk in terms of S
hur fun
tions:

Fk =
1

E(0) · · ·E(k−1)
= (−1)k(a+1)(tωa)

kska(U).We still have to prove that the determinant of M(k) is non-zero. Whether M(k)is singular or not, the following variant of (24) remains valid:
detM(k)Z

(k)
−b =

(−1)b+1

t
det(Ua+b+k

i , . . . , U b+k+1
i , U b

i , U
b−1
i , . . . , Ui)1≤i≤a+b

=
(−1)b+1

t
V (U) ska(U)

a+b
∏

i=1

Ui,where V (U) denotes the Vandermonde in the Ui's. Sin
e these series are distin
tand non-zero, this shows that if detM(k) = 0, that is, s(k+1)a(U) = 0, then
ska(U) = 0 as well. But this would �nally imply s0(U) = 0, while s0(U) = 1. Thus
detM(k) 6= 0, and the se
ond proof of Proposition 2 is now 
omplete.5. Generating fun
tions of re
tangular S
hur fun
tionsWe will now prove Proposition 3, whi
h 
onne
ts the (algebrai
) ex
ursion gen-erating fun
tion E to the polynomials Fk o

urring in the (rational) generatingfun
tion E(k) 
ounting ex
ursions of height at most k. Now that we have expressed
Fk as a S
hur fun
tion (18), Proposition 3 will be a 
onsequen
e of the followingresult.Proposition 4. Let 1 ≤ a ≤ n. The generating fun
tion of re
tangular S
hurfun
tions of length a in n variables u1, . . . , un is

∑

k≥0

skazk =
P (z)

Q(z)where
Q(z) =

∏

I⊂JnK, |I|=a

(1 − zuI) =
∑

k≥0

(−1)kzkek[ea] (25)



16 MIREILLE BOUSQUET�MÉLOUhas degree (n
a

) in z and P (z) has degree (n
a

)

− n. (We have used the notation
uI =

∏

i∈I ui.) Moreover, for all J of 
ardinality a,
P (1/uJ) =

∏

I:|I|=a,|I∆J |≥4

(1 − uI/uJ). (26)Proof. Let us write n = a + b. By de�nition of S
hur fun
tions,
ska =

1

Vn
det
(

(un+k−1
i , · · · , ub+k

i , ub−1
i , · · · , 1)1≤i≤n

)

, (27)where Vn =
∏

1≤i<j≤n(ui − uj). Thus
∑

k≥0

skazk =
1

Vn

∑

k≥0

zk
∑

σ∈Sn

ε(σ) σ
(

un+k−1
1 · · ·ub+k

a ub−1
a+1 · · ·u1

n−1u
0
n

) (28)
=

1

Vn

∑

σ∈Sn

ε(σ) σ

(

un−1
1 · · ·ub

au
b−1
a+1 · · ·u1

n−1u
0
n

1 − zu1 · · ·ua

)

,where σ a
ts on fun
tions of u1, . . . , un by permuting the variables:
σF (u1, . . . , un) = F (uσ(1), . . . , uσ(n)).Equivalently,

∑

k≥0

skazk =
P (z)

Q(z)where Q(z) is given by (25) and
P (z) =

1

Vn

∑

σ∈Sn

ε(σ) σ



un−1
1 · · ·u0

n

∏

|I|=a,I 6=JaK

(1 − zuI)



 . (29)The above expression suggests that the degree of P (z) 
ould be as large as (n
a

)

−1,while we 
laim it is only (n
a

)

−n. To explain this gap, it su�
es to noti
e that thedeterminant (27) vanishes for k ∈ {−n + 1,−n + 2, . . . ,−1}. Thus the sum over
k in the right-hand side of (28) 
ould just as well start at k = −n + 1, giving:

zn−1
∑

k≥0

skazk =
1

Vn

∑

σ∈Sn

ε(σ) σ

(

u0
1u

−1
2 · · ·u−a+1

a ub−1
a+1 · · ·u1

n−1u
0
n

1 − zu1 · · ·ua

)

.This provides the following alternative expression of P (z):
zn−1P (z) =

1

Vn

∑

σ∈Sn

ε(σ) σ



u0
1u

−1
2 · · ·u−a+1

a ub−1
a+1 · · ·u1

n−1u
0
n

∏

|I|=a,I 6=JaK

(1 − zuI)



 .(30)The right-hand side is a polynomial in z of degree (at most) (n
a

)

− 1, and thispolynomial is the produ
t of P (z) and zn−1. This shows that P (z) has degree
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a

)

− n. Moreover, by extra
ting the 
oe�
ient of z(n

a)−1 in the aboveidentity, one �nds:
[z(n

a)−n]P (z) =
1

Vn

∑

σ∈Sn

ε(σ) σ



u0
1u

−1
2 · · ·u−a+1

a ub−1
a+1 · · ·u1

n−1u
0
n

∏

|I|=a,I 6=JaK

(−uI)



 .Up to a sign and a power of u1 · · ·un, the sum over σ is the Vandermonde in the
ui's. Finally,

[z(n

a)−n]P (z) = (−1)(
n

a)+ab−1 (u1 · · ·un)
(n−1

a−1
)−a , (31)so that P (z) has degree (n

a

)

− n exa
tly.It remains to determine P (1/uJ), for |J | = a. We spe
ialize the expression (29)of P (z) to the 
ase z = 1/uJ . The only permutations σ having a non-zero 
ontri-bution are those su
h that σ(JaK) = J . Every su
h permutation σ 
an be writtenin a unique way σ = πτσJ , where σJ is the shortest permutation sending JaKto J , and τ (respe
tively π) is any permutation on J (respe
tively cJ). Thus, if
J = {j1, . . . , ja} with j1 < . . . < ja and cJ = {k1, . . . , kb} with k1 < . . . < kb, wehave

P (1/uJ) =
∏

|I|=a,I 6=J

(1 − uI/uJ)
ε(σJ)

Vn

×
∑

τ∈S(J)

ε(τ)τ
(

un−1
j1

· · ·ub
ja

)

∑

π∈S(cJ)

ε(π)π
(

ub−1
k1

· · ·u0
kb

)

=
∏

|I|=a,I 6=J

(1 − uI/uJ)
ε(σJ)

Vn

ub
J V (J) V (cJ),where V (J) denotes the Vandermonde in the variables uj, j ∈ J . This is easilyseen to be equivalent to (26).We 
an now 
omplete the proof of Proposition 3. We 
ombine the S
hur ex-pression of Fk given in Proposition 2 with Proposition 4. Set n = a + b. Theindeterminates u1, . . . , ua+b are spe
ialized to U1, . . . , Ua+b, and we obtain:

∑

k≥0

Fkz
k =

P ((−1)a+1tωaz)

Q((−1)a+1tωaz)
=

N(t, z)

D(t, z)where D(t, z) = Q((−1)a+1tωaz) is exa
tly the polynomial (7). The dominant
oe�
ient of P (z), given by (31), does not vanish when spe
ializing ui to Ui. Thus
N(t, z) = P ((−1)a+1tωaz) has degree (n

a

)

− n exa
tly. We have already seen thatthe ex
ursion generating fun
tion E given in Proposition 1 satis�es D(t, E) = 0.Now, sin
e E = (−1)a+1/(tωaUJ), with J = {b + 1, . . . , a + b},
N(t, E) = P (1/UJ) =

∏

|I|=a,|I∆J |≥4

(1 − UI/UJ)



18 MIREILLE BOUSQUET�MÉLOUby (26). Re
all that Ub+1, . . . , Ua+b are the roots of K(u) with valuation −1/a,while the b other roots have valuation 1/b. This implies that UI 6= UJ for I 6= J ,so that N(t, E) 6= 0.6. The degree of the ex
ursion generating fun
tionWe 
on
lude this paper by proving that the results stated in Se
tion 2 are, in asense, optimal. We have de�ned in (7) a polynomial D(t, z), of degree da,b =
(

a+b
a

),whi
h satis�es D(t, E) = 0 and is the denominator of the rational series∑k Fkz
k.We prove that D(t, z) is irredu
ible in the following two 
ases:

• S = J−b, aK and ω−b, . . . , ωa are independent indeterminates,
• S = {−b, a} with ω−b = ωa = 1 and a and b 
oprime.In the �rst 
ase, the kernel K(u) is essentially the general algebrai
 equation ofdegree a + b, so that the result may be predi
table. The idea is that there are nonon-trivial relations between the series Ui. The se
ond 
ase is less obvious.Proposition 5. In the above two 
ases, the generating fun
tion of ex
ursionswith steps in S is algebrai
 of degree da,b =

(

a+b
a

). Its minimal polynomial is givenby (7).Re
all, from Example 2 in Se
tion 2.1, that E has sometimes degree less than
da,b (for instan
e when S = {±1,±2} with weights 1).The key tool is the study of the Galois group of the polynomial K(u). We beginwith a 
ondition implying the irredu
ibility of D(t, z).Lemma 6. Let S be a �nite set of steps with weights ωs ∈ K. Let a = maxS,
−b = minS and n = a + b. Let K(u) be the polynomial in u, with 
oe�
ients in
K(t), de�ned by (4).If the Galois group of K(u) over K(t), seen as a permutation group of the U ′

is,is the full symmetri
 group Sn, then the produ
t U1 . . . Ub of the small roots of
K(u) has degree da,b =

(

a+b
a

). In other words, the polynomial D(t, z) given by (7)is irredu
ible.Proof. The extension K(t, U1, . . . , Un) of K(t) is normal by 
onstru
tion, and sep-arable sin
e we have assumed K to be of 
hara
teristi
 0. Assume that the Galoisgroup of K(t, U1, . . . , Un) over K(t) is Sn. By the main result of Galois the-ory, the 
orresponden
e Φ between subgroups G of Sn and sub-extensions L of
K(t, U1, . . . , Un) de�ned by

Φ(G) = L = {x ∈ K(t, U1, . . . , Un) : σ(x) = x for all σ ∈ G}is bije
tive. Its inverse is given by
Φ−1(L) = G = {σ ∈ Sn : σ(x) = x for all x ∈ L}.Moreover, the degree of K(t, U1, . . . , Un) over L is |G|.In parti
ular, let L = K(t, U1 · · ·Ub) be the extension of K(t) generated by theprodu
t of the small roots. Given that U1, . . . , Ub have valuation 1/b in t, while

Ub+1, . . . , Ua+b have valuation −1/a, the only permutations σ of Sn that leave
U1 . . . Ub un
hanged are those that �x the set JbK. That is, Φ−1(L) ≃ Sb × Sa.



DISCRETE EXCURSIONS 19Thus K(t, U1, . . . , Un) has degree a!b! over L, degree (a + b)! over K(t), so that
L = K(t, U1 · · ·Ub) has degree (a+b

a

) over K(t).We now apply the above lemma to prove Proposition 5.Proof of Proposition 5. In the �rst 
ase, K(u) is the general equation of degree
n = a + b. It is well-known that its Galois group is Sn. See for instan
e [31℄.In the se
ond 
ase, we want to prove that the Galois group of K(u) = ub −
t(1 + ua+b) over Q(t) is Sn, with n = a + b. This has been proved for trinomials
ua+b + αub + β with two indeterminate 
oe�
ients α and β (see [28, 11℄), andfor some trinomials with rational 
oe�
ients [25, 12℄. The latter results are of
ourse harder than the former. Given that we 
ould not �nd any referen
e dealingwith trinomials involving exa
tly one indeterminate 
oe�
ient, we will rely on thestrong results obtained for trinomials of Q[u].We �rst note that it su�
es to prove that the trinomial ub − t0(1 + ua+b) hasGalois group Sn over Q for some rational number t0. Sin
e a and b are 
oprime,Theorem 8 of [27℄ implies that there exist only �nitely many α ∈ Z su
h that
ua+b + αub + 1 is redu
ible. Thus we 
an 
hoose α ∈ Z, 
oprime with n = a + b,and su
h that the above trinomial is irredu
ible. Then by [25, Thm. 1℄, thistrinomial has Galois group Sn over Q.7. Con
luding remarks and questions7.1. The degree of the ex
ursion generating fun
tionWe have shown in Se
tion 6 that the degree of E is maximal, equal to (a+b

a

),both in the generi
 
ase and in the two-step 
ase. This 
an be extended to all setsteps su
h that K(u) has at least two (algebrai
ally independent) indeterminate
oe�
ients, using the results of [11℄.It would be interesting to study more 
ases, in parti
ular those involving asymmetry, whi
h redu
es the degree. Assume S = −S, and ω−s = ωs for all
s ∈ S. In parti
ular, a = b. Then, as dis
ussed in Example 2, the small andlarge roots of K(u) are simply related by Ua+1 = 1/U1, . . . , U2a = 1/Ua. Thisimplies that many produ
ts Ui1 · · ·Uia , with i1 < · · · < ia, are a
tually of theform Uj1 · · ·Uja−2k

for some k > 0. The produ
ts that redu
e in that way have aminimal polynomial that stri
tly divides
Q(z) =

∏

|I|=a

(1 − zUI).The non-redu
ing produ
ts Ui1 · · ·Uia are the 2a terms UI = U±1
1 · · ·U±1

a . Thus
Q̄(z) =

∏

ε∈{±1}a

(1 − zUε),is a polynomial in z and t that divides Q(z), and vanishes at z = E. Hen
e in thesymmetri
 
ase, E has degree at most 2a.One 
ould try to study systemati
ally the 
ases S = J−a, aK or S = {±1,±a},with weights 1. When S = {±1,±2}, we have seen in Example 2 that E has



20 MIREILLE BOUSQUET�MÉLOUdegree 4. The Galois group G of K(u) = u2 − t(1 + u)2(1− u + u2) over Q(t) 
anbe seen to be isomorphi
 to the dihedral group D4. More pre
isely,
G = {id, (1, 2, 3, 4), (1, 4, 3, 2), (1, 3)(2, 4), (1, 2)(3, 4), (1, 4)(2, 3), (1, 3), (2, 4)}.The subgroup that leaves U1U2 invariant is the subgroup of index 4 generated by

(1, 2)(3, 4). This explains why E = −U1U2/t has degree 4.7.2. The generating fun
tion of re
tangular S
hur fun
tionsWe proved in Se
tion 5 that, for symmetri
 fun
tions in n variables, the gener-ating fun
tion of re
tangular S
hur fun
tions of height a is rational:
∑

k≥0

skazk =
P (z)

Q(z)
,where Q(z) is given by (25) and has degree (n

a

), while P (z) has degree (n
a

)

−n. Wehave given two expressions of P (z) in terms of the ui's (see (29�30)), and provedthat P (1/uJ) has a simple expression (26). However, we have no expansion of
P (z) in symmetri
 fun
tions, other than

P (z) =

(n

a)−n
∑

i=0

zi
∑

j+k=i

(−1)jej [ea] ska,whi
h 
omes dire
tly from the fa
t that P (z) = Q(z)
∑

k≥0 skazk. It would beinteresting to �nd a simpler expression for the 
oe�
ients of P (z). The term
(−1)j , in parti
ular, leaves hope for possible simpli�
ations, whi
h may in turnallow us to 
ompute P (z) more e�
iently. Let us give the expression of P for afew values of a and n: for a = 2 and n = 4,

P (z) = 1 − e4z
2 = 1 − s4z

2.For a = 2 and n = 5,
P (z) = 1 − e4 z2 + e5,1 z3 − e5

2z5 = 1 − s14z2 + s2,14z3 − s25z5.For a = 3 and n = 6,
P (z) = 1 − s214z2 + (s241 + s3214) z3 − s322212z4 − (s35 + s525) z5

+ (s53322 + s4323 + s42331) z6 − 2 s542322z
7 + (s5333 + s64332 + s52432) z8

− (s552 + s745) z9 − s625242z10 + (s6454 + s7654) z11 − s7645z
12 + s76z14.We have used the S
hur basis rather than the elementary basis be
ause it seems,from these examples, that the 
oe�
ient of zi in P (z) is either S
hur-positiveor S
hur-negative. The 
onversions to S
hur fun
tions have been made with thepa
kage ACE [32℄.



DISCRETE EXCURSIONS 217.3. The height of random ex
ursionsEquip the set of ex
ursions of length n with the uniform distribution. It isknown that the random ex
ursion of length n thus obtained 
onverges in law tothe Brownian ex
ursion, after normalizing the length by n and the height by κ
√

n,for some 
onstant κ depending on S [18℄. This implies that the (normalized) heightof a dis
rete ex
ursion 
onverges in law to the height of the Brownian ex
ursion(des
ribed by a theta distribution [19℄). Is it possible to re-derive this limit lawfrom our enumerative results?Indeed, the average height of Dy
k paths � equivalently, of plane trees � wasderived in [13℄ from an expression of E(k) that is equivalent to our S
hur expressionof this series (Proposition 2). The same expression was then used in [16℄ to obtainthe limit law of the height. Is it possible, using the asymptoti
 tools developedin [5℄ for unbounded ex
ursions, to work out the law of the height of generalex
ursions by starting from our S
hur expression of E(k)?A
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