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DISCRETE EXCURSIONS
MIREILLE BOUSQUET-MELOU

ABsTRACT. It is well known that the length generating function E(t) of Dyck
paths (excursions with steps +1) satisfies 1 — E + t?E? = 0. The generating
function E*)(t) of Dyck paths of height at most k is E*) = Fy,/Fj., 1, where
the Fy, are polynomials in ¢ given by Fy = F; = 1 and Fjyy = Fy — t?Fj_1.
This means that the generating function of these polynomials is >, Fpzk =
1/(1 — 2+ t?22). We note that the denominator of this fraction is the minimal
polynomial of the algebraic series E(t).

This pattern persists for walks with general steps. For any finite set
of steps S, the generating function E(*)(t) of excursions (generalized Dyck
paths) taking their steps in S and of height at most k is the ratio Fj/Fj41
of two polynomials. These polynomials satisfy a linear recurrence relation
with coefficients in Q[t]. Their (rational) generating function can be written
> oo Fez® = N(t,2)/D(t,z). The excursion generating function E(t) is alge-
braic and satisfies D(t, E(t)) = 0 (while N(t, E(t)) # 0).

If maxS = a and min § = b, the polynomials D(t, z) and N (¢, z) can be taken
to be respectively of degree d, ;, = (a:b) and d,, —a—bin z. These degrees are
in general optimal: for instance, when § = {a, —b} with a and b coprime, D(t, z)
is irreducible, and is thus the minimal polynomial of the excursion generating
function E(t).

The proofs of these results involve a slightly unusual mixture of combinato-
rial and algebraic tools, among which the kernel method (which solves certain
functional equations), symmetric functions, and a pinch of Galois theory.

1. INTRODUCTION

One of the most classical combinatorial incarnations of the famous Catalan
numbers, C,, = (*")/(n + 1), is the set of Dyck paths. These are one-dimensional
walks that start and end at 0, take steps +1, and always remain at a non-negative
level (Figure 1, left). By factoring such walks at their first return to 0, one easily
proves that their length generating function F' = E(t) is algebraic, and satisfies

E=1+¢E

This immediately yields:
1 — 1 —4¢? on
RS = e

n>0
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FIGURE 1. Left: A Dyck path of length 16 and height 4. Right: An
excursion (generalized Dyck path) of length 8 and height 7, with
steps in § = {—3,5}.

The same factorization gives a recurrence relation that defines the series E*) =
E®(t) counting Dyck paths of height at most k:

E® =1 and for k>1, EW® =14k VEpk,

This recursion can be used to prove that E*) is rational, and more precisely, that

E®) — i, where Fy=F =1 and Fyyq=F, —t*F_;.
k+1

The aim of this paper is to describe what happens for generalized Dyck paths
(also known as ezxcursions) taking their steps in an arbitrary finite set S C Z
(see an example in Figure 1, right). Their length generating function E is known
to be algebraic. What is the degree of this series? How can one compute its
minimal polynomial? Furthermore, it is easy to see that the generating function
E®) can still be written F}/F,1, for some polynomials Fj. Does the sequence
(F}y )y satisfy a linear recurrence relation? Of what order? How can one determine
this recursion? Note that any linear recursion of order d, of the form

d
ZaiFk_i =0 (1)
=0

with a; € Q[t], gives a non-linear recursion of order d for the series EW®),
d
Z a; EFHD gk — (2)
i=0

and, by taking the limit £ — oo, an algebraic equation of degree d satisfied by

E = lim;, E®):
d
Z a; B = 0.
=0

This establishes a close link between the (still hypothetical) recursion for the
sequence Fj and the algebraicity of E. The connection between (1) and (2) is
central in the recent paper [2] dealing with excursions with steps +1, +2.

A slightly surprising outcome of this paper is that symmetric functions are
closely related to the enumeration of excursions. This can be seen in the following
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summary of our answers to the above questions. Assume min S = —b and maxS =
a. Then the excursion generating function £ is algebraic of degree at most d, :=

“Zb). The degree is exactly d,, in the generic case (to be defined), but also
when & = {—b,a} with @ and b coprime. Computing a polynomial of degree d,
that annihilates £ boils down to computing the elementary plethysms ele,] on an
alphabet with a + b letters, for 0 < k < d,.

The generating function E*) counting excursions of height at most k is rational
and can be written Fj/Fj,; for some polynomials Fj. These polynomials satisfy
a linear recurrence relation of the form (1), of order d,;, which is valid for k& >
dqp —a—0b. Moreover, Fj, can be expressed as a determinant of varying size k, but
also as a rectangular Schur function taking the form of a determinant of constant
size a + b.

These results are detailed in the next section. Not all of them are new. The
generating function of excursions, given in Proposition 1, first appeared in |[6],
but can be derived from the earlier paper [17|. An algorithm for computing a
polynomial of degree d,; that annihilates £ was described in [5]. Hence the first
part of the next section, which deals with unbounded excursions, is mostly a
survey (the results on the exact degree of E are however new). The second part

excursions of bounded height  is new, although an attempt in the same vein
appears in |3|.

Let us finish with the plan of this paper. The kernel method has become a stan-
dard tool to solve certain functional equations arising in various combinatorial
problems [4, 14, 26|. We illustrate it in Section 3 by counting unbounded excur-
sions. We use it again in Section 4 to obtain the generating function of excursions
of bounded height. Remarkably, the same result can be obtained by combining the
transfer-matriz method and the dual Jacobi Trudi identity. In Section 5, we deter-
mine the recurrence relation satisfied by the polynomials F},. More precisely, we
compute the rational series >, F;2*. This is equivalent to computing the generat-
ing function of rectangular Schur functions ), sga2®, where a = max S. Finally,
we discuss in Section 6 the exact degree of the series F for certain step sets S.
This involves a bit of GGalois theory.

2. STATEMENT OF THE RESULTS

We consider one-dimensional walks that start from 0, take their steps in a finite
set S C Z, and always remain at a non-negative level. More formally, a (non-
negative) walk of length n will be a sequence (s1, s9,...,$,) € 8" such that for all
1 < n, the partial sum s; + --- 4+ s; is non-negative. The final level of this walk is
S1+- - -+8p, and its height is max; s;+- - -+5;. An excursion is a non-negative walk
ending at level 0 (Figure 1). We are interested in the enumeration of excursions.

The generating functions we consider are fairly general, in that every step s € S
is weighted by an element wy of some field K of characteristic 0. For instance,
all the ws may be 1. Or they may be independent indeterminates. In the latter
case, K is the fraction field Q(ws, s € ). The length of the walks is taken into
account by an additional indeterminate ¢, transcendental over K. In particular,
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the generating function of excursions is

E = Zwsl cewg

where the sum runs over all excursions (sy, S2,...,5,). This is a power series in
t with coefficients in K. In one occasion (Example 2), we will then specialize
the indeterminates wy into polynomials in ¢. The series £ becomes a well-defined
power series in t.

If minS = —b and maxS = a, we assume that w_;, and w, are non-zero. If d
divides all the elements of S, the excursion generating function is unchanged if
we replace each s € S by s/d (up to a renaming of the weights w;). Thus we can
always assume that the elements of S are relatively prime. Also, if (s1, s2,. .., Sp)
is an excursion, (—S$,, ..., —S, —s1) is also an excursion, with steps in —S. Thus
the excursion series obtained for S and —S& coincide, up to a renaming of the
weights ws.

The weighting of the walks that we have defined depends on the list of steps that
are taken, but not on the positions of these steps in Z. For instance, we cannot
keep track of the number of visits to 0 with our weights, whereas this parameter
is sometimes of interest |1, 8]. However, the methods we present here are fairly
robust and can often be adapted to solve variants of the two main questions studied
in this paper (including the number of visits to 0).

In the expression of E given below (Proposition 1), an important role is played
by the following term, which encodes the steps of S:

P(u) = wau’, (3)
seS
where u is a new indeterminate. This is a Laurent polynomial in v with coefficients
in K. If min$S = —b, we define

K(u) =u’ (1 —tP(u)). (4)

This is now a polynomial in u with coefficients in K[t|. If maxS = a, this polyno-
mial has degree a + b in u. It has a + b roots, which are fractional Laurent series
(Puiseux series) in ¢ with coefficients in K, an algebraic closure of K. (We refer the
reader to [30, Ch. 6] for generalities on the roots of a polynomial with coefficients
in K[t].) Exactly b of these roots, say Uy, ..., Uy, are finite at t = 0. These roots
are actually formal power series in t'/, and the first term of U; is & (tw_y)"/?,
where £ is a bth root of unity. In particular, these b series are distinct, and vanish
at t = 0. We call them the small roots of K. The a other roots, Uyyq, ..., Usrp,
are the large roots of K. They are Laurent series in /¢, and their first term is
ct=/, for some ¢ # 0. Note that K (u) factors as

a+b
K(u) = u’(1 = tP(u)) = —tw, [ [ (u— U) .
i=1
so that the elementary symmetric functions of the U;’s are:

ei(U) = (—1) (“‘H’ ! xa:z-) : (5)

We tw,
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with U = (Uy, ..., Ussp). We refer to [30, Ch. 7] or |23] for generalities on sym-
metric functions.

2.1. UNBOUNDED EXCURSIONS

At least three different approaches have been used to count excursions. The
first one generalizes the factorization of Dyck paths mentioned at the beginning
of the introduction. It yields a system of algebraic equations defining E [1, 15, 21,
22, 24]. The factorization differs from one paper to another. To our knowledge,
the simplest, and most systematic one, appears in [15].

A second approach [17] relies on a factorization of unconstrained walks taking
their steps in S, and on a related factorization of formal power series. The ex-
pression of E that can be derived from [17| (by combining Proposition 4.4 and
the proof of Proposition 5.1) coincides with the expression obtained by the third
approach, which is based on a step by step construction of the walks |6, 5|. This
expression of F is given in (6) below. We repeat in Section 3 the proof of (6)
published in [6], as it will be extended later to count bounded excursions.

Proposition 1. The generating function of excursions is algebraic over K(t) of
degree at most d,p = (“:b). It can be written as:

b+1
H U, =

where Uy, ..., U, (respectively Upyq,...,Uswp) are the small (respectively large)
roots of the polynomial K(u) given by (4). The quantity defined by

Dit.2)= [ (+(=1)"%twl), (7)
IC[a4b], |T]=a
with Ja+ 0] ={1,2,...,a+ b} and

)a—l—l a+b 1

Wa i=b+1

= 11v
iel
is a polynomial in t and z with coefficients in K, of degree dqyp in z, satisfying

D(t,E) = 0.

Once the expression (6) is established, the other statements easily follow. In-
deed, the second expression of £ shows that D(¢, £) = 0. Moreover, the expression
of D(t, z) is symmetric in the roots Uy, ..., Uy, so that its coefficients belong to
K(t). More precisely, the form (5) of the elementary symmetric functions of the
U;’s shows that D(¢, z) is a Laurent polynomial in ¢. But the valuation of U; in ¢
is at least —1/a, and this implies that D(t, z) is a polynomial in ¢.

Clearly, the degree of D(t, z) in z is dop = (“:b). Thus the excursion generating
function E has degree at most d, ;. We prove in Section 6 that D(t, ) is actually
irreducible in the two following cases:

e S=[-ba]={-b,...,a—1,a} and w_y, ..., w, are independent indeter-
minates (the generic case),
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o §={-b,a} withw_; = w, = 1 and a and b coprime (two-step excursions).
As shown by Example 2 below, D(t, z) is not always irreducible.

An algebraic equation for E. As argued above, D(t,z) is a polynomial in ¢
and z that vanishes for z = E. However, its expression (7) involves the series Uj,
while one would prefer to obtain an ezplicit polynomial in ¢ and z. Recall that
the series U; are only known via their elementary symmetric functions (5). How
can one compute a polynomial expression of D(t,z)? The approaches based on
resultants or Grobner bases become very quickly ineffective.

In the generic case where & = [—b,a] and the weights w, are indeterminates,
K(u) is the general polynomial of degree a + b in w, and the problem can be

rephrased as follows: Take n = a + b variables uq, ..., u,, and expand the polyno-
mial
Q)= [ (1-zu) (8)
IC[n], |I|=a
in the basis of elementary symmetric functions of uq,...,u,. For instance, for

a=2and b=1,

Q(2) = (1 — zugug) (1 — zuquz) (1 — zugus)
=1 — z(uyug + uyus + ugus) + 2% (uugus + uguius + ugugul) — 23 (urusus)?
=1—zey+ 2263,1 — 236373,

while for a = b = 2,

Q(Z) = 1—Z€2+Z2(€371—64)—23(63,34‘6471,1—264,2)4‘2464(63’1—64)—2564,4724—266474’4.
(9)
Using the standard notation for plethysm [30, Appendix 2|, the polynomial Q(z)

reads
da,b

Q) = Y () erled]
k=0
This shows that, in the generic case, the problem of expressing D(t, z) as a poly-
nomial in ¢ and z is equivalent to expanding the plethysms eg|e,] in the basis of
elementary symmetric functions, for an alphabet of n = a + b variables. Unfortu-
nately, there is no general expression for the expansion of egle,] in any standard
basis of symmetric functions, and only algorithmic solutions exist [9, 10]. Most
of them expand plethysms in the basis of Schur functions. This is justified by
the representation-theoretic meaning of plethysm. Still, in our walk problem, the
natural basis is that of elementary functions. We have used for our calculations
the simple platypus' algorithm presented in [5], which only exploits the connec-
tions between power sums and elementary symmetric functions. This algorithm
takes advantage automatically of simplifications occurring in non-generic cases.
For instance, when only two steps are allowed, say —b and a, all the elementary
symmetric functions of the U;’s vanish, apart from eg(U), e,(U) and e, p(U). It
would be a shame to compute the general expansion of egle,| in the elementary

Don’t ask me why it is called so!
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basis, and then specialize most of the e; to 0. The platypus algorithm directly gives
the expansion of exle,] modulo the ideal generated by the e;, for ¢ # 0,a,a + b.
For instance, when a = 2 and b =1,

Q(2) =1 — zey — e,

while for a = 2 and b = 3,

Q(2) =1 — zey — 22°¢2 + 2%eqse? — 27edez + 2'0;.

and for a =5 and b = 2,

Q(2) =1 — zes — 32"€d + 22%esed — 227265 + zloe§e§ Meged
+32Mel? — 2Pz’ 4 22'0e2er? — 2*el.

From the above examples, one may suspect that, in the two-step case, the coeffi-
cient of 2* in Q(2) is always a monomial in the e;. Going back to the polynomial
D(t, z), and given that
(_1)a+1 b W_bp

eo(U) = ——— and e p(U) = (—1)"T" =,

() =2 ) = (<17
this would mean that the coefficient of z* in D(t, z) is always a monomial in ¢.
This observation first gave us some hope to find (in the two-step case) a simple
description of D(t, z) and, why not, a direct combinatorial proof of D(t, E) = 0.
However, this nice pattern does not persist: for a = 3 and b = 5, the coefficient of
2'% in Q(2) contains €5 and ees.

For the sake of completeness, let us describe this platypus algorithm. Take a
polynomial L(z) of degree n with constant term 1, and define Uy, . .., U, implicitly
by

n

L(z) = [J(@ = 2U).

k=1
The algorithm gives a polynomial expression of

Q(z) = [ (= 2U1) = (=2 exle )

[Il=a k=0

with d = (Z) and U = (Uy,...,U,). The only general identity that is needed is
the expansion of e, in power sums. This can be obtained from a series expansion

€a = [Za] exXp <_ Z (_Z'z>i pi) = (I)a(pla oo >pa) (10)

i>1

for some polynomial ®,. The rest of the calculation also uses series expansions,
and goes as follows:

e compute p;(U) for 1 < i < ad using p;(U) = i[z"] log(1/L(z)),
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e compute log Q(2) up to the coefficient of z¢ using
i
log Q(2) = = Y = Cu(pi®), pu(), ... pus(U)), (11)

i>1
e compute Q(2) up to the coefficient of 2¢ using Q(z) = exp(log Q(2)).

Since Q(z) has degree d, the calculation is complete. The identity (11) follows
from (10) and

logQ(2) == = > Uj==> = e(l7,....Uy).
i>1 I|=a i>1
Given a set of steps S, with max S = a, one obtains a polynomial expression of
D(t, z) by applying the platypus algorithm to

a

Ws . _ z
L(z) = — 24— —
(Z) Zwaz tw,

If the output of the algorithm is the polynomial Q(z), then D(t,z) =
Q((—1)"tw,2).

Example 1: Two step excursions. The simplest walks we can consider are
obtained for & = {—b,a} and w, = w_, = 1. We always assume that a and b are
coprime.

If b = 1, Proposition 1 gives £ = U/t, where U is the only power series satisfying
U = t(1+U*). Equivalently, E = 1+t*™! E4T1, This equation can be understood
combinatorially by looking at the first visit of the walk at levels a,a — 1,...,1,0,
and factoring the walk at these points. Of course, a similar result holds when
a=1.

If a,b > 1, it is still possible, but more difficult, to write directly a system of
polynomial equations, based on factorizations of the walks, that define the series
E. See for instance [15, 21, 22, 24|. Tt would be interesting to work out the precise
link between the components of these systems and the series U;. To compare both
types of results, take a = 3 and b = 2. On the one hand, it is shown in |15| that
E is the first component of the solution of

E = 1+LiRi+ LRy Ly = LyR;+ L3Ry
Rl = L1R2 L2 = LgRl
R2 = tk L3 = tE.

On the other hand, Proposition 1 gives £ = —U,U,/t, where Uy, U, are the small
roots of u? = t(1 + u’). The platypus algorithm gives D(¢, F) = 0 with

D(t,z) =1—2+1t°2°(2 — 2+ 2%) + 19210, (12)
This polynomial is irreducible. Similarly, for a = 4 and b = 3, D(¢, E') = 0 with
D(t,2) =1—z+t"2" (5—dz+2"+32° -2+ 2°)
+ M2 (10 -62432°+52° — 2* 4 2°)
72 (10— 424327+ 2% = 2%) + 6720 (5— 2+ 22 — 2%) + 2%, (13)
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We prove in Section 6 that, in the case of two step walks, D(t, z) is always irre-
ducible. That is, the degree of F is exactly (“;rb).

Example 2: Playing basket-ball with A. and Z. In a recent paper [2|, the
authors consider excursions with steps in {£1, £2}, where the steps £2 have
length 2 rather than 1. They use factorizations of walks to count excursions (more
specifically, excursions of bounded height). This problem fits in our framework by
choosing w_9 = wy = w and w_; = w; = 1, and then specializing w = t. Observe
that the small roots of u? = t(w+u+u®+wu?), involved in Proposition 1, specialize
into the small roots U; and Uy of u? = ¢(t + u + u® 4 tu?) when w is set to t. We
obtain E = —U,U,/t*. The platypus algorithm yields

D(t,z) = D(t,z)(1 + t°2)*, (14)
where
D(t,z) = %2 —t" (14+28%) 2° + £ (3+21%) 2 — (1+28%) 2+ 1 (15)

is the minimal polynomial of E. This factorization is an interesting phenome-
non, which is not related to the unequal lengths of the steps. Indeed, the same
phenomenon occurs when § = {1, £2} and all weights are 1. In this case, one
finds:

D(t,z) = D(t,2)(1 4 tz)?
with  D(t,2) = t*2* —2(2t + 1)2° + (3t +2)2* — (2t + 1)z + 1,

so that the excursion generating function has degree 4 again.

The factorization of D(t, z) is due to the symmetry of the set of steps. For each
set S such that S = —S§ and weights w, such that ws = w_g, the polynomial P(u)
given by (3) is symmetric in u and 1/u. In particular, @ = b. This implies that the
small and large roots of 1 —¢P(u) can be grouped by pairs: U, = 1/Uy, ..., Uz =
1/U,. In particular, if a is even, the polynomial D(t, z) given by (7) contains the
factor (1 +tw,z) at least (;}2) times. In the basket-ball case (@ = 2), this explains
the factor (1 + ¢2)* occurring in D(t,z). More generally, we prove in Section 7
that if S is symmetric, with symmetric weights, then the degree of E is at most
2%, where a = max §.

2.2. EXCURSIONS OF BOUNDED HEIGHT

We now turn our attention to the enumeration of excursions of height at most
k. These are walks on a finite directed graph, so that the classical transfer-matrix
method applies®. The vertices of the graph are 0,1,...,k, and there is an edge
from i to j if j —i € S. The adjacency matrix of this graph is A®) = (A;;)o<ij<k

with
o Wj—i lfj—ZGS,
Aij = { 0 otherwise. (16)

In language theoretic terms, the words of &* that encode these bounded excursions are
recognized by a finite automaton.
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By considering the nth power of A%®) | it is easy to see [29, Ch. 4] that the series
E® counting excursions of height at most & is the entry (0,0) in (1 — tA®)~1,
The translational invariance of our step system gives

Fr

where Fy = 1 and Fjyq is the determinant of 1 — tA®) . The size of this matrix,
k + 1, grows with the height.

As was already observed in |3], the series counting walks confined in a strip of
fixed height can also be expressed using determinants of size a+b, where a = max S
and —b = min S. However, the expressions given in the above reference are heavy.
A different route yields determinants that are Schur functions in the series U;
(recall that these series are the roots of the polynomial K (u) given by (4)). This
was shown in |7] for the enumeration of culminating walks. The case of excursions
is even simpler, as it only involves rectangular Schur functions.

Let us recall the definition of Schur functions in n variables zq,...,x,. Let
d=(n—-1n-2,...,1,0). For any integer partition A\ with at most n parts,

E®)

sa(@1,e o w) = T2 with a, = det («1)

" (17)

1<ij<n

Proposition 2. The generating function of excursions of height at most k is
Fk o (_1)a+1 Ska(u)

Ek) — —
Fiq Wa  S(k41)e (Z/{)

where U = (Uy, ..., Uqyyp) is the collection of roots of the polynomial K(u) given
by (4), and Fj1, = det(1 — tA®) where A®) is the adjacency matriz (16). In
particular,

Fp = (=1)* @D (1w s e (U). (18)

This proposition is proved in Section 4 in two different ways. In Section 5,
we derive from the Schur expression of Fj that these polynomials satisfy a linear
recurrence relation. Equivalently, the generating function ), F.2* is a rational
function of ¢ and z.

Proposition 3. The generating function of the polynomials Fy, is rational, and
can be written as

N(t, z)
E F.2r = ’
" T D, 2)
k>0

where D(t, z) is given by (7), and N(t,z) has degree (azb) —a—>bin z. Moreover,
D(t,E)=0 and N(t,E)#O0.

In other words, the sequence Fj satisfies a linear recurrence relation of the
form (1), of order d,;, = (a:b), valid for k£ > (“:b) —a — b (with F; = 0 for
i < 0). This proposition follows from Proposition 4 (Section 5), which deals with
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the generating function of rectangular Schur functions of height a: for symmetric
z
: (19)

functions in n variables,
P(
k
SkaZ =
2 =g

where Q(z) is given by (8) and has degree ("), while P(z) has degree (") — n.

Computational aspects. We have shown in Section 2.1 that, given the step
set S, the polynomial D(t, z) can be computed via the platypus algorithm. One
way to determine the numerator N(t,z) is to compute Fj explicitly (e.g. as the
determinant of (1 — tA®)) for k < § := (“:b) — a — b, and then to compute
N(t,z) = D(t,2) >, Fi2" up to the coefficient of 2°.

In the generic case, computing the generating function of the polynomials Fj,
boils down to computing the generating function (19). As discussed above, the
platypus algorithm can be used to determine ((z) in terms of the elementary
symmetric functions. In order to determine P(z), we express the Schur functions
Sga, for k < 9 := (Z) — n, in the elementary basis. This can be done using the
dual Jacobi Trudi identity (see Section 5 for details). One finally obtains P(z) by
expanding the product Q(z) >, srez” in the elementary basis up to order ¢. For

instance, for a = b = 2,
D spedt = 1=
= Q(2)

where Q(z) is given by (9). More values of P(z) are given in Section 7.2. Let us
now revisit the examples of Section 2.1.

Example 1: Two step excursions. When § = {a, —1}, one has D(t,2) = 1—z+
tot1 20+l The polynomials Fj, satisfy the recursion F}, = Fj,_; —t*T'F}_,_1, which
can be understood combinatorially using Viennot’s theory of heaps of pieces [33].
Via this theory, F} appears as the generating function of trivial heaps of segments
of length a on the line [0, k], each segment being weighted by —¢™'. The recursion
is valid for £ > 1, with Fy = 1 and F; = 0 for ¢ < 0. The generating function of
the F}’s is

1
E Fka = .
_ a+1~a+1
= 1—z+totz

When a = 3 and b = 2, the minimal polynomial of the excursion series F is given
by (12) and the generating function of the polynomials F}, is found to be

k 1+t525
Zsz - 5.5 2 10,10
P 1— 2419252 — 2+ 22) + 102

For a = 4 and b = 3, we refer to (13) for the minimal polynomial D(t,z) of E,
and

S Rk 14+1727 (44 22 + 24) + #1421 (6 + 2°) + 4471220 4 1297
= .
g D(t, z)

k>0
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Example 2: Basket-ball again. For § = {£1,+2} with w9 = wy = t,w_; =
w1 = 1,

Z szk _ 1— t2Z

— (14 #22) (1 — 2(1 + 262) + 22t2(3 + 2t2) — 23t4(1 4 212) + 24¢8)
The denominator is not irreducible. Its second factor is the minimal polynomial
of E, see (15). Moreover, comparing to (14) shows that N(¢,z) and D(t, z) have a
factor (1 +¢?z) in common. A similar phenomenon occurs for § = {£1, +2} with
ws = 1 for all s. In this case,

11—tz
FpF = :
;O K (14+2t)(1—2(14+2t)+t(2+3t) 22 —t2 (1 + 21¢) 23 + 24t4)
Again, the minimal polynomial of E is the second factor of the denominator, and
N(t,z) and D(t, z) have a factor (1 + ¢z) in common.

3. ENUMERATION OF UNBOUNDED EXCURSIONS

Here we establish the expression (6) of the excursion generating function £. The
proof is based on a step-by step construction of non-negative walks with steps in
S, and on the so-called kernel method. This type of argument is by no means
original. The proof that we are going to present can be found in |6, Example 3],
then in |5, and finds its origin in |20, Ex. 2.2.1.4 and 2.2.1.11|. The reason why
we repeat the proof is because it will be adapted in Section 4 to count excursions
of bounded height.

Let W be the set of walks that start from 0, take their steps in S, and always
remain at a non-negative level. Let W (t,u) be their generating function, where
the variable ¢ counts the length, the variable u counts the final height, and each
step s € S is weighted by w,:

W(t, U) _ § Wy, * - - wsntnu81+...+sn.
(51782,...,871)61/\)

We often denote W (t,u) = W(u), and use the notation W), for the generating
function of walks of YV ending at height h:

W(t,u) = E u"Wy,  where W), = E W, » - ws, 1"
h>0 (51,52,...y8n)EW
51+“‘+5n:h

A non-empty walk of WV is obtained by adding a step of S at the end of another
walk of W. However, we must avoid adding a step i to a walk ending at height j,
if 1 + 7 < 0. This gives

W(u) =1+t ( E w8u5> W(u) —t E wiu W
seS 1€85,j>0
i+j<0
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Let minS = —b. Rewrite the above equation so as to involve only non-negative
powers of u:

b

uP (1= tP(u))W(u) =u’ =ty u™" Y w I, (20)

h=1 i€8,j>0

i+j=—h
with P(u) = > . gwsu’. The coefficient of W (u) is the kernel K (u) of the equation,
given in (4). As above, we denote by Uy, ..., U, (respectively Uy q,...,U,1p) the
roots of K (u) that are finite (respectively infinite) at t = 0. For 1 < i < b, the
series W (U;) is well-defined (it is a formal power series in t'/). The left-hand side
of (20) vanishes for u = U;, with ¢ < b, and so the right-hand side vanishes too.
But the right-hand side is a polynomial in u, of degree b, leading coefficient 1, and

it vanishes at u = Uy, ..., U,. This gives

uP(1 = tP(w))W(u) = [ [ (u - U3).

As the coefficient of 4° in the kernel is —tw_;, setting v = 0 in the above equation
gives the generating function of excursions:

B=wio = G T

This is the first expression in (6). The second follows using
Ul e Ua+b = (_1)a+bw—b/wa (21)
(see (5)). ;

Remark. There exists an alternative way to solve (20), which does not exploit
the fact that the right-hand side of (20) has degree b in w. This variant will be
useful in the enumeration of bounded excursions. Write

Z_h: Z win

i€8,j>0
itj=—h

so that the right-hand side of (20) reads

b
ub —t E ubhz .
h=1

This term vanishes for u = Uy, ..., U,. Hence the b series Z_4, ..., Z_, satisfy the
following system of b linear equations: For U = U;, with 1 <14 < b,

b
SN Utttz =Ut.
h=1
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In matrix form, we have MZ = C/t, where M is the square matrix of size b given
by

(S VR VE |
Ub—l Ub—2 L. Ul 1
M — 2: 2 2 e
O VN VA |
Z is the column vector (Z_1,...,Z ), and C is the column vector (U}, ..., Up).
The determinant of M is the Vandermonde in Uy, ..., U, and it is non-zero be-

cause the U; are distinct. We are especially interested in the unknown Z_, = w_, E.
Applying Cramer’s rule to solve the above system yields

(=D det(Uy " i<ij
t o det(U) )iz
The two determinants coincide, up to a factor Uy ... U,, and we finally obtain

7 -1 b+1
—= b = ( ) Ul st Ub
W_p tw_b

Z_p =

E

4. ENUMERATION OF BOUNDED EXCURSIONS

As argued in Section 2.2, the generating function of excursions of height at most
k is

g _ Lk
B’
where Fj,; = det(1 —tA®) and A® is the adjacency matrix (16) describing
the allowed steps in the interval [0,k]. In order to prove Proposition 2, it re-
mains to establish the expression (18) of the polynomial Fj as a Schur function
of Uy,...,Usrp. We give two proofs. The first one uses the dual Jacobi Trudi
identity to identify F}, as a Schur function. The second determines E®*) in terms
of Schur functions via the kernel method, and the Schur expression of Fj then

follows from (22) by induction on k (given that Fy = 1).

First proof via the Jacobi-Trudi identity. The dual Jacobi-Trudi identity
expresses Schur functions as a determinant in the elementary symmetric functions
e; [30, Cor. 7.16.2|: for any partition A,

sy = det <6>\3_+i_j>

where )\ is the conjugate of \. Apply this identity to A = (k+1)% Then X = a**!
and

(22)

Y
1<i,j<M

S(k+1)a = det J(k) with J(k) = (€a+i—j)1§i,j§k+1~

Now, specialize this to symmetric functions in the a+b variables V = (Vi,..., Vo)
where V; = —U; for all 7. By (5), the elementary symmetric functions of the V; are
Wa—i 1 1
ei(V) = — —Xi=a = —7— (Xi=a — tWa—i) -

Wq tw, tw,
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This shows that the matrix J®* coincides with —(1 — tA®))/(tw,), so that
sx(V) = (—tw,) I Fpy = (1) s, (),

since s, is homogeneous of degree a(k + 1). This gives the Schur expression of
Friq. u

Second proof via the kernel method. We adapt the step by step approach
of Section 3 to count excursions of height at most k. Let W® (¢, u) = W) (u)
be the generating function of non-negative walks of height at most k. As before,
we count them by their length (variable t) and final height (u) with multiplicative
weights w, on the steps. We use notations similar to those of Section 3. When
constructing walks step by step, we must still avoid going below level 0, but also
above level k. This yields:

W (u) =1+t (Z Wl ) Wh@) -t > wautw®
s€S 1€85,5>0
i+j>k or i+35<0

or, with min$S = —b,
k+a
w1 = tP)WP(u) = u* —t > utthzP Z ub~hz*) (23)
h=k+1 h=1
where

29~ 3 ww®,
i€8,j>0
i+j=h
The series W®) () is now a polynomial in u (with coefficients in the ring of power
series in t). This implies that any root U; of the kernel K (u) = u®(1 — tP(u)) can
be legally substituted for u in (23). The right-hand side and the left-hand side
then vanish, and provide a system of a + b linear equations satisfied by the Zj:
For U =U;, with 1 <i <a+ b,

k+a

Z Ub-l—hZ _I_ZUI) hZ Ub/t

h=k+1

In matrix form, we have M® Z®) = C/t where M®*) is the square matrix of size
a + b given by

Ua+b+k Ua+b+k T, Ub+k+1 U{?—l U{)—2 e 1
Ua+b+’f e e 1
k)
M®) = . I
a+b+k a+b+k—1 b+k+1 b—1 b—2
Ua+b Ua+b e Ua+b Ua+b Ua+b e 1

bar Z,g’_?l, Z(_l, o Z(_kb), and C is the column

vector (U},..., UL, ). We are especially interested in the series Z(_kb) = w_,E®.

Z®) is the column vector (Z(k
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Cramer’s rule now gives
(=D det (U U U UPTY L U i<icass
t det M) ’

provided det M®*) 2 0. In view of the definition (17) of Schur functions, this
yields:

(k) _
Z_b —

(24)

Z%) (=1 (U
e~ 2o _ (1) Uy~ Uy _setd)
W_p tw_b S(].H_l)a(Z/{)

Thanks to (21), the generating function of excursions of height at most & can
finally be rewritten
(1) spe(U)

twa S(k+1)a (Z/{) '
Using (22), we finally express the polynomial Fj in terms of Schur functions:
B 1

EO) ... p(k-1)
We still have to prove that the determinant of M®) is non-zero. Whether M®)
is singular or not, the following variant of (24) remains valid:

(—1)b+1

EF) —

= (=1)MD (tw,) s (U).

det M® ZH) — det(USOTF UM U UMY U 1<icas

b+1 atb
= EU v e T

t

where V(U) denotes the Vandermonde in the U;’s. Since these series are distinct
and non-zero, this shows that if det M*) = 0, that is, S(e+1)e(U) = 0, then
ska(U) = 0 as well. But this would finally imply so(U) = 0, while so(U/) = 1. Thus
det M*) # 0, and the second proof of Proposition 2 is now complete. -

5. GENERATING FUNCTIONS OF RECTANGULAR SCHUR FUNCTIONS

We will now prove Proposition 3, which connects the (algebraic) excursion gen-
erating function E to the polynomials F) occurring in the (rational) generating
function E®*) counting excursions of height at most k. Now that we have expressed
F}, as a Schur function (18), Proposition 3 will be a consequence of the following
result.

Proposition 4. Let 1 < a < n. The generating function of rectangular Schur

functions of length a in n variables uy, ..., u, s
P(z
3 sk = 212
= Q(z)
where

Qlz) = [I (1 —zu) =Y (1) efed (25)

Iclnl, |fl=a k>0
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has degree (Z) in z and P(z) has degree (Z) —n. (We have used the notation
Uy = Hig w;.) Moreover, for all J of cardinality a,

P(juy) =[] (@ =uuy). (26)

I:|I|=a,|TIAJT|>4

Proof. Let us write n = a 4+ b. By definition of Schur functions,

1
Spa = A det ((u;”rk_l, e ,uf”“, ui’_l, cee 1)195”) , (27)

where V,, =[], <, <, (i —u;). Thus

St = e YA Y (o) o (k) 29

k>0 " E>0 0e6,
n—1 b, b—1 1,0
1 Uy o UUg gt Uy Uy,
A e(o) o 1 )
—_— Zu . e u
" eGn 1 a
where ¢ acts on functions of uq, ..., u, by permuting the variables:

aF(ul, .. .,un) = F(ug(l), e ,uo(n)).

Equivalently,
P

Z SkaZk = (Z)

= Q(2)
where ((z) is given by (25) and

1
P(z) = A doelo)o [up ey [ (02w |- (29)
ceSy, |I|:a7l7ﬁ|l—a]]

The above expression suggests that the degree of P(z) could be as large as (Z) —1,
while we claim it is only (Z) —n. To explain this gap, it suffices to notice that the
determinant (27) vanishes for k € {-n+1,—n +2,...,—1}. Thus the sum over
k in the right-hand side of (28) could just as well start at k = —n + 1, giving:

0,—1 —a+1,,b—1 1 0
n—1 kE 1 UglUg — * - Uy, ua—l—l Uy Uy
z Spaz’ = — e(o) o :
1—zuy---u,
ceS,

This provides the following alternative expression of P(z):

1
SPGE) = o Y (o) o [ uduyt el wad [T )
" oes, |I|=a,I#[d]

(30)
The right-hand side is a polynomial in z of degree (at most) (Z) — 1, and this
polynomial is the product of P(z) and z"~'. This shows that P(z) has degree
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at most (Z) — n. Moreover, by extracting the coefficient of 2071 in the above
identity, one finds:

n\ _p, ]_ _ —a _
[z(a) |P(2) = A Z e(o) o | Wuy ' g bl H (—uy)

" oes, |I|=a,T#[d]

Up to a sign and a power of u; - - - u,, the sum over ¢ is the Vandermonde in the
u;’s. Finally,

(D P(2) = (1)@=t (g ) (6 (31)

so that P(z) has degree () —n exactly.

[t remains to determine P(1/uy), for |J| = a. We specialize the expression (29)
of P(z) to the case z = 1/u;. The only permutations ¢ having a non-zero contri-
bution are those such that o(Ja]]) = J. Every such permutation o can be written
in a unique way o = wro;, where o; is the shortest permutation sending [a]
to J, and T (respectively 7) is any permutation on J (respectively ¢J). Thus, if
J={j1,. ., jay with j; < ... < j,and °J = {ky,... .k} with k; < ... < ky, we
have

PO/ = T (= urfun) =2
[I|=a,I#J] "
X Z e(r)T (u}‘l_l - u;’a) Z e(m)m (uZ:l > -ugb)
re6(J) me6(¢J)
=TI w22 s vy ven,
|I|=a,I#J "

where V(J) denotes the Vandermonde in the variables u;,j € J. This is easily
seen to be equivalent to (26).

We can now complete the proof of Proposition 3. We combine the Schur ex-
pression of Fj, given in Proposition 2 with Proposition 4. Set n = a + b. The
indeterminates wuq, ..., uq1p are specialized to Uy, ..., U,1s, and we obtain:

ZF . P((—1)"w,z)  N(t,2)
kz pr— pr—

= Q((—1)*tw,z)  D(t, 2)
where D(t,z) = Q((—1)*"'tw,z) is exactly the polynomial (7). The dominant
coefficient of P(z), given by (31), does not vanish when specializing u; to U;. Thus
N(t,z) = P((—=1)""tw,2) has degree (") — n exactly. We have already seen that
the excursion generating function E given in Proposition 1 satisfies D(¢, E) = 0.
Now, since E = (—1)*"!/(tw,Uy), with J = {b+1,...,a+ b},

Nt E)=P1/Uu)= [ Q-0 Uy

[I|=a,|TAT|>4
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by (26). Recall that Uy, ..., Uspp are the roots of K(u) with valuation —1/a,
while the b other roots have valuation 1/b. This implies that U; # U, for I # J,
so that N(t, E) # 0. -

6. THE DEGREE OF THE EXCURSION GENERATING FUNCTION

We conclude this paper by proving that the results stated in Section 2 are, in a
sense, optimal. We have defined in (7) a polynomial D(¢, z), of degree d,, = (“Zb),

which satisfies D(¢, E) = 0 and is the denominator of the rational series >, Fjz".
We prove that D(t, z) is irreducible in the following two cases:

e §=[-b,a] and w_y,...,w, are independent indeterminates,

e §={-ba} with w_, =w, =1 and a and b coprime.
In the first case, the kernel K(u) is essentially the general algebraic equation of
degree a + b, so that the result may be predictable. The idea is that there are no
non-trivial relations between the series U;. The second case is less obvious.

Proposition 5. In the above two cases, the generating function of excursions
with steps in S s algebraic of degree d,p, = (“:b). Its minimal polynomial is given

by (7).

Recall, from Example 2 in Section 2.1, that E has sometimes degree less than
dap (for instance when & = {1, £2} with weights 1).

The key tool is the study of the Galois group of the polynomial K (u). We begin
with a condition implying the irreducibility of D(t, z).

Lemma 6. Let S be a finite set of steps with weights wy € K. Let a = max S,
—b=minS and n = a+b. Let K(u) be the polynomial in u, with coefficients in
K(t), defined by (4).

If the Galois group of K(u) over K(t), seen as a permutation group of the Uls,
15 the full symmetric group S, then the product Uy ...U, of the small roots of
K (u) has degree dgp, = (“:b). In other words, the polynomial D(t,z) given by (7)
15 wrreducible.

Proof. The extension K(t, Uy, ..., U,) of K(¢) is normal by construction, and sep-
arable since we have assumed K to be of characteristic 0. Assume that the Galois
group of K(¢t,Uy,...,U,) over K(¢) is &,. By the main result of Galois the-
ory, the correspondence ® between subgroups G of &,, and sub-extensions IL of
K(t,Uy,...,U,) defined by

O(G)=L={zeK(tU,...,U,): o(x)=xforal o € G}
is bijective. Its inverse is given by
P L)=G={0€&,:0(x)=uazforall z € L}.

Moreover, the degree of K(¢,Uy,...,U,) over L is |G].
In particular, let L. = K(¢, Uy - - - Uy) be the extension of K(¢) generated by the
product of the small roots. Given that Uy, ..., U, have valuation 1/b in ¢, while

Upi1, - -+, Ugyp have valuation —1/a, the only permutations o of &, that leave
Ui ...U, unchanged are those that fix the set [b]. That is, ®~}(L) ~ &, x G,.
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Thus K(¢,Uy,...,U,) has degree alb! over L, degree (a + b)! over K(¢), so that
L =K(t,U, - - - Uy) has degree (“Zb) over K(t). -

We now apply the above lemma to prove Proposition 5.

Proof of Proposition 5. In the first case, K(u) is the general equation of degree
n = a+ b. It is well-known that its Galois group is &,,. See for instance [31].

In the second case, we want to prove that the Galois group of K(u) = u® —
t(1 + u**?) over Q(t) is &,,, with n = a + b. This has been proved for trinomials
u + aub + B with two indeterminate coefficients o and 3 (see [28, 11]), and
for some trinomials with rational coefficients [25, 12]|. The latter results are of
course harder than the former. Given that we could not find any reference dealing
with trinomials involving exactly one indeterminate coefficient, we will rely on the
strong results obtained for trinomials of Q[u].

We first note that it suffices to prove that the trinomial u® — to(1 + u**?) has
Galois group &,, over QQ for some rational number ty. Since a and b are coprime,
Theorem 8 of [27] implies that there exist only finitely many a € Z such that
ut + au’ + 1 is reducible. Thus we can choose o € Z, coprime with n = a + b,
and such that the above trinomial is irreducible. Then by [25, Thm. 1], this
trinomial has Galois group &,, over Q. -

7. CONCLUDING REMARKS AND QUESTIONS

7.1. THE DEGREE OF THE EXCURSION GENERATING FUNCTION

3

We have shown in Section 6 that the degree of E is maximal, equal to (“Zb)

both in the generic case and in the two-step case. This can be extended to all set
steps such that K (u) has at least two (algebraically independent) indeterminate
coefficients, using the results of [11].

It would be interesting to study more cases, in particular those involving a
symmetry, which reduces the degree. Assume & = —S§, and w_; = w; for all
s € 8. In particular, @ = b. Then, as discussed in Example 2, the small and
large roots of K (u) are simply related by U,y = 1/Uy,...,Us, = 1/U,. This
implies that many products U, ---U;,, with ¢; < --- < 4., are actually of the
form U;, ---U;, ,, for some k > 0. The products that reduce in that way have a
minimal polynomial that strictly divides

Q(z) = [ (0= =U)).
[Il=a
The non-reducing products U;, - - - U;, are the 2% terms U; = U= - - U*!. Thus
Q) = [ (1-=07),
ee{£l}e

is a polynomial in z and ¢ that divides @(z), and vanishes at z = E. Hence in the
symmetric case, /' has degree at most 2°.

One could try to study systematically the cases S = [—a,a] or § = {1, £a},
with weights 1. When & = {£1,+2}, we have seen in Example 2 that E has
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degree 4. The Galois group G of K(u) = u? — (1 + u)*(1 — u + u?) over Q(¢) can
be seen to be isomorphic to the dihedral group D4. More precisely,

G = {id, (1,2,3,4), (1,4,3,2), (1, 3)(2,4), (1,2)(3,4), (1,4)(2,3), (1,3), (2, 4)}.

The subgroup that leaves U;U; invariant is the subgroup of index 4 generated by
(1,2)(3,4). This explains why E = —U,U,/t has degree 4.

7.2. THE GENERATING FUNCTION OF RECTANGULAR SCHUR FUNCTIONS

We proved in Section 5 that, for symmetric functions in n variables, the gener-
ating function of rectangular Schur functions of height a is rational:

Zskaz 3

where Q(z) is given by (25) and has degree (), while P(z) has degree (") —n. We
have given two expressions of P(z) in terms of the u;’s (see (29 30)), and proved
that P(1/uy) has a simple expression (26). However, we have no expansion of
P(z) in symmetric functions, other than

(2)-
Z Z 6] ea Ska,

=0 Jt+k=i

which comes directly from the fact that P(z) = Q(2) >, skez*. It would be
interesting to find a simpler expression for the coefficients of P(z). The term
(—1)?, in particular, leaves hope for possible simplifications, which may in turn
allow us to compute P(z) more efficiently. Let us give the expression of P for a
few values of a and n: for a =2 and n = 4,

P(2) =1 — e 2® =1 — s542°.
For a =2 and n = 5,
P(z)=1—es2® +e512° —e5?2" =1 — 5142° + 89 142° — 8952°.

For a = 3 and n = 6,

2 3 4 5
P(Z) =1- S9142° + (8241 -+ 83214) 27 — 83292122 — (835 + 8525) z
6_9 7 8
+ (853322 + S4393 + 842331) 25 — 4 S542329% + (85333 + S64332 + 852432) z
9 10 11 12 14
— (8552 + 5745) 27 — Se252422 " + (Set50 + S7651) 27 — Srea52 + Syo2
We have used the Schur basis rather than the elementary basis because it seems,
from these examples, that the coefficient of z* in P(z) is either Schur-positive

or Schur-negative. The conversions to Schur functions have been made with the
package ACE [32].
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7.3. THE HEIGHT OF RANDOM EXCURSIONS

Equip the set of excursions of length n with the uniform distribution. It is
known that the random excursion of length n thus obtained converges in law to
the Brownian excursion, after normalizing the length by n and the height by x+/n,
for some constant x depending on S [18]. This implies that the (normalized) height
of a discrete excursion converges in law to the height of the Brownian excursion
(described by a theta distribution [19]). Is it possible to re-derive this limit law
from our enumerative results?

Indeed, the average height of Dyck paths — equivalently, of plane trees — was
derived in [13| from an expression of E™) that is equivalent to our Schur expression
of this series (Proposition 2). The same expression was then used in [16] to obtain
the limit law of the height. Is it possible, using the asymptotic tools developed
in [5] for unbounded excursions, to work out the law of the height of general
excursions by starting from our Schur expression of E®*)?

Acknowledgements. | am indebted to Alain Lascoux and Christophe Carré for
providing efficient programs to compute plethysms. I also thank Alain Salinier for
interesting e-discussions about the Galois groups of trinomials, and for pointing
out Reference [27].
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