
Sminaire Lotharingien de Combinatoire 57 (2008), Article B57dDISCRETE EXCURSIONSMIREILLE BOUSQUET-MÉLOUAbstrat. It is well known that the length generating funtion E(t) of Dykpaths (exursions with steps ±1) satis�es 1 − E + t2E2 = 0. The generatingfuntion E(k)(t) of Dyk paths of height at most k is E(k) = Fk/Fk+1, wherethe Fk are polynomials in t given by F0 = F1 = 1 and Fk+1 = Fk − t2Fk−1.This means that the generating funtion of these polynomials is ∑k≥0 Fkzk =

1/(1 − z + t2z2). We note that the denominator of this fration is the minimalpolynomial of the algebrai series E(t).This pattern persists for walks with general steps. For any �nite setof steps S, the generating funtion E(k)(t) of exursions (generalized Dykpaths) taking their steps in S and of height at most k is the ratio Fk/Fk+1of two polynomials. These polynomials satisfy a linear reurrene relationwith oe�ients in Q[t]. Their (rational) generating funtion an be written
∑

k≥0 Fkzk = N(t, z)/D(t, z). The exursion generating funtion E(t) is alge-brai and satis�es D(t, E(t)) = 0 (while N(t, E(t)) 6= 0).If maxS = a and minS = b, the polynomials D(t, z) and N(t, z) an be takento be respetively of degree da,b =
(

a+b

a

) and da,b −a− b in z. These degrees arein general optimal: for instane, when S = {a,−b} with a and b oprime, D(t, z)is irreduible, and is thus the minimal polynomial of the exursion generatingfuntion E(t).The proofs of these results involve a slightly unusual mixture of ombinato-rial and algebrai tools, among whih the kernel method (whih solves ertainfuntional equations), symmetri funtions, and a pinh of Galois theory.
1. IntrodutionOne of the most lassial ombinatorial inarnations of the famous Catalannumbers, Cn =

(

2n
n

)

/(n + 1), is the set of Dyk paths. These are one-dimensionalwalks that start and end at 0, take steps ±1, and always remain at a non-negativelevel (Figure 1, left). By fatoring suh walks at their �rst return to 0, one easilyproves that their length generating funtion E ≡ E(t) is algebrai, and satis�es
E = 1 + t2E2.This immediately yields:

E =
1 −

√
1 − 4t2

2t2
=
∑

n≥0

Cnt
2n.The author was supported by the frenh Agene Nationale de la Reherhe, via the projetSADA, ANR-05-NT05-3-41532.
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1Figure 1. Left: A Dyk path of length 16 and height 4. Right: Anexursion (generalized Dyk path) of length 8 and height 7, withsteps in S = {−3, 5}.The same fatorization gives a reurrene relation that de�nes the series E(k) ≡

E(k)(t) ounting Dyk paths of height at most k:
E(0) = 1 and for k ≥ 1, E(k) = 1 + t2E(k−1)E(k).This reursion an be used to prove that E(k) is rational, and more preisely, that

E(k) =
Fk

Fk+1
, where F0 = F1 = 1 and Fk+1 = Fk − t2Fk−1.The aim of this paper is to desribe what happens for generalized Dyk paths(also known as exursions) taking their steps in an arbitrary �nite set S ⊂ Z(see an example in Figure 1, right). Their length generating funtion E is knownto be algebrai. What is the degree of this series? How an one ompute itsminimal polynomial? Furthermore, it is easy to see that the generating funtion

E(k) an still be written Fk/Fk+1, for some polynomials Fk. Does the sequene
(Fk)k satisfy a linear reurrene relation? Of what order? How an one determinethis reursion? Note that any linear reursion of order d, of the form

d
∑

i=0

aiFk−i = 0 (1)with ai ∈ Q[t], gives a non-linear reursion of order d for the series E(k),
d
∑

i=0

aiE
(k−i+1) · · ·E(k) = 0, (2)and, by taking the limit k → ∞, an algebrai equation of degree d satis�ed by

E = limk E(k):
d
∑

i=0

aiE
i = 0.This establishes a lose link between the (still hypothetial) reursion for thesequene Fk and the algebraiity of E. The onnetion between (1) and (2) isentral in the reent paper [2℄ dealing with exursions with steps ±1,±2.A slightly surprising outome of this paper is that symmetri funtions arelosely related to the enumeration of exursions. This an be seen in the following



2 MIREILLE BOUSQUET-MÉLOUsummary of our answers to the above questions. Assume minS = −b and maxS =
a. Then the exursion generating funtion E is algebrai of degree at most da,b :=
(

a+b
a

). The degree is exatly da,b in the generi ase (to be de�ned), but alsowhen S = {−b, a} with a and b oprime. Computing a polynomial of degree da,bthat annihilates E boils down to omputing the elementary plethysms ek[ea] on analphabet with a + b letters, for 0 ≤ k ≤ da,b.The generating funtion E(k) ounting exursions of height at most k is rationaland an be written Fk/Fk+1 for some polynomials Fk. These polynomials satisfya linear reurrene relation of the form (1), of order da,b, whih is valid for k >
da,b−a− b. Moreover, Fk an be expressed as a determinant of varying size k, butalso as a retangular Shur funtion taking the form of a determinant of onstantsize a + b.These results are detailed in the next setion. Not all of them are new. Thegenerating funtion of exursions, given in Proposition 1, �rst appeared in [6℄,but an be derived from the earlier paper [17℄. An algorithm for omputing apolynomial of degree da,b that annihilates E was desribed in [5℄. Hene the �rstpart of the next setion, whih deals with unbounded exursions, is mostly asurvey (the results on the exat degree of E are however new). The seond part� exursions of bounded height � is new, although an attempt in the same veinappears in [3℄.Let us �nish with the plan of this paper. The kernel method has beome a stan-dard tool to solve ertain funtional equations arising in various ombinatorialproblems [4, 14, 26℄. We illustrate it in Setion 3 by ounting unbounded exur-sions. We use it again in Setion 4 to obtain the generating funtion of exursionsof bounded height. Remarkably, the same result an be obtained by ombining thetransfer-matrix method and the dual Jaobi�Trudi identity. In Setion 5, we deter-mine the reurrene relation satis�ed by the polynomials Fk. More preisely, weompute the rational series∑k Fkz

k. This is equivalent to omputing the generat-ing funtion of retangular Shur funtions ∑k skazk, where a = maxS. Finally,we disuss in Setion 6 the exat degree of the series E for ertain step sets S.This involves a bit of Galois theory.2. Statement of the resultsWe onsider one-dimensional walks that start from 0, take their steps in a �niteset S ⊂ Z, and always remain at a non-negative level. More formally, a (non-negative) walk of length n will be a sequene (s1, s2, . . . , sn) ∈ Sn suh that for all
i ≤ n, the partial sum s1 + · · ·+ si is non-negative. The �nal level of this walk is
s1+· · ·+sn, and its height is maxi s1+· · ·+si. An exursion is a non-negative walkending at level 0 (Figure 1). We are interested in the enumeration of exursions.The generating funtions we onsider are fairly general, in that every step s ∈ Sis weighted by an element ωs of some �eld K of harateristi 0. For instane,all the ωs may be 1. Or they may be independent indeterminates. In the latterase, K is the fration �eld Q(ωs, s ∈ S). The length of the walks is taken intoaount by an additional indeterminate t, transendental over K. In partiular,



DISCRETE EXCURSIONS 3the generating funtion of exursions is
E :=

∑

ωs1
· · ·ωsn

tn,where the sum runs over all exursions (s1, s2, . . . , sn). This is a power series in
t with oe�ients in K. In one oasion (Example 2), we will then speializethe indeterminates ωs into polynomials in t. The series E beomes a well-de�nedpower series in t.If minS = −b and maxS = a, we assume that ω−b and ωa are non-zero. If ddivides all the elements of S, the exursion generating funtion is unhanged ifwe replae eah s ∈ S by s/d (up to a renaming of the weights ωs). Thus we analways assume that the elements of S are relatively prime. Also, if (s1, s2, . . . , sn)is an exursion, (−sn, . . . ,−s2,−s1) is also an exursion, with steps in −S. Thusthe exursion series obtained for S and −S oinide, up to a renaming of theweights ωs.The weighting of the walks that we have de�ned depends on the list of steps thatare taken, but not on the positions of these steps in Z. For instane, we annotkeep trak of the number of visits to 0 with our weights, whereas this parameteris sometimes of interest [1, 8℄. However, the methods we present here are fairlyrobust and an often be adapted to solve variants of the two main questions studiedin this paper (inluding the number of visits to 0).In the expression of E given below (Proposition 1), an important role is playedby the following term, whih enodes the steps of S:

P (u) =
∑

s∈S

ωsu
s, (3)where u is a new indeterminate. This is a Laurent polynomial in u with oe�ientsin K. If minS = −b, we de�ne

K(u) = ub (1 − tP (u)) . (4)This is now a polynomial in u with oe�ients in K[t]. If maxS = a, this polyno-mial has degree a + b in u. It has a + b roots, whih are frational Laurent series(Puiseux series) in t with oe�ients in K, an algebrai losure of K. (We refer thereader to [30, Ch. 6℄ for generalities on the roots of a polynomial with oe�ientsin K[t].) Exatly b of these roots, say U1, . . . , Ub, are �nite at t = 0. These rootsare atually formal power series in t1/b, and the �rst term of Ui is ξi (tω−b)
1/b,where ξ is a bth root of unity. In partiular, these b series are distint, and vanishat t = 0. We all them the small roots of K. The a other roots, Ub+1, . . . , Ua+b,are the large roots of K. They are Laurent series in t1/a, and their �rst term is

ct−1/a, for some c 6= 0. Note that K(u) fators as
K(u) = ub(1 − tP (u)) = −tωa

a+b
∏

i=1

(u − Ui) ,so that the elementary symmetri funtions of the Ui's are:
ei(U) = (−1)i

(

ωa−i

ωa
− 1

tωa
χa=i

)

, (5)



4 MIREILLE BOUSQUET�MÉLOUwith U = (U1, . . . , Ua+b). We refer to [30, Ch. 7℄ or [23℄ for generalities on sym-metri funtions.2.1. Unbounded exursionsAt least three di�erent approahes have been used to ount exursions. The�rst one generalizes the fatorization of Dyk paths mentioned at the beginningof the introdution. It yields a system of algebrai equations de�ning E [1, 15, 21,22, 24℄. The fatorization di�ers from one paper to another. To our knowledge,the simplest, and most systemati one, appears in [15℄.A seond approah [17℄ relies on a fatorization of unonstrained walks takingtheir steps in S, and on a related fatorization of formal power series. The ex-pression of E that an be derived from [17℄ (by ombining Proposition 4.4 andthe proof of Proposition 5.1) oinides with the expression obtained by the thirdapproah, whih is based on a step by step onstrution of the walks [6, 5℄. Thisexpression of E is given in (6) below. We repeat in Setion 3 the proof of (6)published in [6℄, as it will be extended later to ount bounded exursions.Proposition 1. The generating funtion of exursions is algebrai over K(t) ofdegree at most da,b =
(

a+b
a

). It an be written as:
E =

(−1)b+1

tω−b

b
∏

i=1

Ui =
(−1)a+1

tωa

a+b
∏

i=b+1

1

Ui
, (6)where U1, . . . , Ub (respetively Ub+1, . . . , Ua+b) are the small (respetively large)roots of the polynomial K(u) given by (4). The quantity de�ned by

D(t, z) =
∏

I⊂Ja+bK, |I|=a

(1 + (−1)aztωaUI) , (7)with Ja + bK = {1, 2, . . . , a + b} and
UI =

∏

i∈I

Ui,is a polynomial in t and z with oe�ients in K, of degree da,b in z, satisfying
D(t, E) = 0.One the expression (6) is established, the other statements easily follow. In-deed, the seond expression of E shows that D(t, E) = 0. Moreover, the expressionof D(t, z) is symmetri in the roots U1, . . . , Ua+b, so that its oe�ients belong to
K(t). More preisely, the form (5) of the elementary symmetri funtions of the
Ui's shows that D(t, z) is a Laurent polynomial in t. But the valuation of Ui in tis at least −1/a, and this implies that D(t, z) is a polynomial in t.Clearly, the degree of D(t, z) in z is da,b =

(

a+b
a

). Thus the exursion generatingfuntion E has degree at most da,b. We prove in Setion 6 that D(t, z) is atuallyirreduible in the two following ases:
• S = J−b, aK = {−b, . . . , a − 1, a} and ω−b, . . . , ωa are independent indeter-minates (the generi ase),



DISCRETE EXCURSIONS 5
• S = {−b, a} with ω−b = ωa = 1 and a and b oprime (two-step exursions).As shown by Example 2 below, D(t, z) is not always irreduible.An algebrai equation for E. As argued above, D(t, z) is a polynomial in tand z that vanishes for z = E. However, its expression (7) involves the series Ui,while one would prefer to obtain an expliit polynomial in t and z. Reall thatthe series Ui are only known via their elementary symmetri funtions (5). Howan one ompute a polynomial expression of D(t, z)? The approahes based onresultants or Gröbner bases beome very quikly ine�etive.In the generi ase where S = J−b, aK and the weights ωs are indeterminates,

K(u) is the general polynomial of degree a + b in u, and the problem an berephrased as follows: Take n = a + b variables u1, . . . , un, and expand the polyno-mial
Q(z) =

∏

I⊂JnK, |I|=a

(1 − zuI) (8)in the basis of elementary symmetri funtions of u1, . . . , un. For instane, for
a = 2 and b = 1,
Q(z) = (1 − zu1u2)(1 − zu1u3)(1 − zu2u3)

= 1 − z(u1u2 + u1u3 + u2u3) + z2(u2
1u2u3 + u1u

2
2u3 + u1u2u

2
3) − z3(u1u2u3)

2

= 1 − ze2 + z2e3,1 − z3e3,3,while for a = b = 2,
Q(z) = 1−ze2+z2(e3,1−e4)−z3(e3,3+e4,1,1−2e4,2)+z4e4(e3,1−e4)−z5e4,4,2+z6e4,4,4.(9)Using the standard notation for plethysm [30, Appendix 2℄, the polynomial Q(z)reads

Q(z) =

da,b
∑

k=0

(−z)kek[ea].This shows that, in the generi ase, the problem of expressing D(t, z) as a poly-nomial in t and z is equivalent to expanding the plethysms ek[ea] in the basis ofelementary symmetri funtions, for an alphabet of n = a + b variables. Unfortu-nately, there is no general expression for the expansion of ek[ea] in any standardbasis of symmetri funtions, and only algorithmi solutions exist [9, 10℄. Mostof them expand plethysms in the basis of Shur funtions. This is justi�ed bythe representation-theoreti meaning of plethysm. Still, in our walk problem, thenatural basis is that of elementary funtions. We have used for our alulationsthe simple platypus1 algorithm presented in [5℄, whih only exploits the onne-tions between power sums and elementary symmetri funtions. This algorithmtakes advantage automatially of simpli�ations ourring in non-generi ases.For instane, when only two steps are allowed, say −b and a, all the elementarysymmetri funtions of the Ui's vanish, apart from e0(U), ea(U) and ea+b(U). Itwould be a shame to ompute the general expansion of ek[ea] in the elementary1Don't ask me why it is alled so!



6 MIREILLE BOUSQUET�MÉLOUbasis, and then speialize most of the ei to 0. The platypus algorithm diretly givesthe expansion of ek[ea] modulo the ideal generated by the ei, for i 6= 0, a, a + b.For instane, when a = 2 and b = 1,
Q(z) ≡ 1 − ze2 − z3e2

3,while for a = 2 and b = 3,
Q(z) ≡ 1 − ze2 − 2z5e2

5 + z6e2e
2
5 − z7e2

2e
2
5 + z10e4

5.and for a = 5 and b = 2,
Q(z) ≡ 1 − ze5 − 3z7e5

7 + 2z8e5e
5
7 − 2z9e2

5e
5
7 + z10e3

5e
5
7 − z11e4

5e
5
7

+ 3z14e10
7 − z15e5e

10
7 + 2z16e2

5e
10
7 − z21e15

7 .From the above examples, one may suspet that, in the two-step ase, the oe�-ient of zk in Q(z) is always a monomial in the ei. Going bak to the polynomial
D(t, z), and given that

ea(U) =
(−1)a+1

tωa

and ea+b(U) = (−1)a+b ω−b

ωa

,this would mean that the oe�ient of zk in D(t, z) is always a monomial in t.This observation �rst gave us some hope to �nd (in the two-step ase) a simpledesription of D(t, z) and, why not, a diret ombinatorial proof of D(t, E) = 0.However, this nie pattern does not persist: for a = 3 and b = 5, the oe�ient of
z16 in Q(z) ontains e6

8 and e8
3e

3
8.For the sake of ompleteness, let us desribe this platypus algorithm. Take apolynomial L(z) of degree n with onstant term 1, and de�ne U1, . . . , Un impliitlyby

L(z) =

n
∏

k=1

(1 − zUk).The algorithm gives a polynomial expression of
Q(z) =

∏

|I|=a

(1 − zUI) =

d
∑

k=0

(−z)kek[ea](U)with d =
(

n
a

) and U = (U1, . . . , Un). The only general identity that is needed isthe expansion of ea in power sums. This an be obtained from a series expansionvia
ea = [za] exp

(

−
∑

i≥1

(−z)i

i
pi

)

= Φa(p1, . . . , pa) (10)for some polynomial Φa. The rest of the alulation also uses series expansions,and goes as follows:
• ompute pi(U) for 1 ≤ i ≤ ad using pi(U) = i[zi] log(1/L(z)),
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• ompute log Q(z) up to the oe�ient of zd using

log Q(z) = −
∑

i≥1

zi

i
Φa(pi(U), p2i(U), . . . , pai(U)), (11)

• ompute Q(z) up to the oe�ient of zd using Q(z) = exp(log Q(z)).Sine Q(z) has degree d, the alulation is omplete. The identity (11) followsfrom (10) and
log Q(z) = −

∑

i≥1

zi

i

∑

|I|=a

U i
I = −

∑

i≥1

zi

i
ea(U

i
1, . . . , U

i
n).Given a set of steps S, with maxS = a, one obtains a polynomial expression of

D(t, z) by applying the platypus algorithm to
L(z) =

∑

s∈S

ωs

ωa
za−s − za

tωa
.If the output of the algorithm is the polynomial Q(z), then D(t, z) =

Q((−1)a+1tωaz).Example 1: Two step exursions. The simplest walks we an onsider areobtained for S = {−b, a} and ωa = ω−b = 1. We always assume that a and b areoprime.If b = 1, Proposition 1 gives E = U/t, where U is the only power series satisfying
U = t(1+Ua+1). Equivalently, E = 1+ta+1Ea+1. This equation an be understoodombinatorially by looking at the �rst visit of the walk at levels a, a − 1, . . . , 1, 0,and fatoring the walk at these points. Of ourse, a similar result holds when
a = 1.If a, b > 1, it is still possible, but more di�ult, to write diretly a system ofpolynomial equations, based on fatorizations of the walks, that de�ne the series
E. See for instane [15, 21, 22, 24℄. It would be interesting to work out the preiselink between the omponents of these systems and the series Ui. To ompare bothtypes of results, take a = 3 and b = 2. On the one hand, it is shown in [15℄ that
E is the �rst omponent of the solution of







E = 1 + L1R1 + L2R2 L1 = L2R1 + L3R2

R1 = L1R2 L2 = L3R1

R2 = tE L3 = tE.On the other hand, Proposition 1 gives E = −U1U2/t, where U1, U2 are the smallroots of u2 = t(1 + u5). The platypus algorithm gives D(t, E) = 0 with
D(t, z) = 1 − z + t5z5(2 − z + z2) + t10z10. (12)This polynomial is irreduible. Similarly, for a = 4 and b = 3, D(t, E) = 0 with

D(t, z) = 1 − z + t7z7
(

5 − 4 z + z2 + 3 z3 − z5 + z6
)

+ t14z14
(

10 − 6 z + 3 z2 + 5 z3 − z4 + z5
)

+ t21z21
(

10 − 4 z + 3 z2 + z3 − z4
)

+ t28z28
(

5 − z + z2 − z3
)

+ z35t35. (13)



8 MIREILLE BOUSQUET�MÉLOUWe prove in Setion 6 that, in the ase of two step walks, D(t, z) is always irre-duible. That is, the degree of E is exatly (a+b
a

).Example 2: Playing basket-ball with A. and Z. In a reent paper [2℄, theauthors onsider exursions with steps in {±1,±2}, where the steps ±2 havelength 2 rather than 1. They use fatorizations of walks to ount exursions (morespei�ally, exursions of bounded height). This problem �ts in our framework byhoosing ω−2 = ω2 = ω and ω−1 = ω1 = 1, and then speializing ω = t. Observethat the small roots of u2 = t(ω+u+u3+ωu4), involved in Proposition 1, speializeinto the small roots U1 and U2 of u2 = t(t + u + u3 + tu4) when ω is set to t. Weobtain E = −U1U2/t
2. The platypus algorithm yields

D(t, z) = D̄(t, z)(1 + t2z)2, (14)where
D̄(t, z) = t8z4 − t4

(

1 + 2 t2
)

z3 + t2
(

3 + 2 t2
)

z2 −
(

1 + 2 t2
)

z + 1 (15)is the minimal polynomial of E. This fatorization is an interesting phenome-non, whih is not related to the unequal lengths of the steps. Indeed, the samephenomenon ours when S = {±1,±2} and all weights are 1. In this ase, one�nds:
D(t, z) = D̄(t, z)(1 + tz)2with D̄(t, z) = t4z4 − t2(2t + 1)z3 + t(3t + 2)z2 − (2t + 1)z + 1,so that the exursion generating funtion has degree 4 again.The fatorization of D(t, z) is due to the symmetry of the set of steps. For eahset S suh that S = −S and weights ωs suh that ωs = ω−s, the polynomial P (u)given by (3) is symmetri in u and 1/u. In partiular, a = b. This implies that thesmall and large roots of 1−tP (u) an be grouped by pairs: Ua+1 = 1/U1, . . . , U2a =

1/Ua. In partiular, if a is even, the polynomial D(t, z) given by (7) ontains thefator (1+ tωaz) at least ( a
a/2

) times. In the basket-ball ase (a = 2), this explainsthe fator (1 + tz)2 ourring in D(t, z). More generally, we prove in Setion 7that if S is symmetri, with symmetri weights, then the degree of E is at most
2a, where a = maxS.2.2. Exursions of bounded heightWe now turn our attention to the enumeration of exursions of height at most
k. These are walks on a �nite direted graph, so that the lassial transfer-matrixmethod applies2. The verties of the graph are 0, 1, . . . , k, and there is an edgefrom i to j if j − i ∈ S. The adjaeny matrix of this graph is A(k) = (Ai,j)0≤i,j≤kwith

Ai,j =

{

ωj−i if j − i ∈ S,
0 otherwise. (16)2In language theoreti terms, the words of S∗ that enode these bounded exursions arereognized by a �nite automaton.



DISCRETE EXCURSIONS 9By onsidering the nth power of A(k), it is easy to see [29, Ch. 4℄ that the series
E(k) ounting exursions of height at most k is the entry (0, 0) in (1 − tA(k))−1.The translational invariane of our step system gives

E(k) =
Fk

Fk+1where F0 = 1 and Fk+1 is the determinant of 1 − tA(k). The size of this matrix,
k + 1, grows with the height.As was already observed in [3℄, the series ounting walks on�ned in a strip of�xed height an also be expressed using determinants of size a+b, where a = maxSand −b = minS. However, the expressions given in the above referene are heavy.A di�erent route yields determinants that are Shur funtions in the series Ui(reall that these series are the roots of the polynomial K(u) given by (4)). Thiswas shown in [7℄ for the enumeration of ulminating walks. The ase of exursionsis even simpler, as it only involves retangular Shur funtions.Let us reall the de�nition of Shur funtions in n variables x1, . . . , xn. Let
δ = (n − 1, n − 2, . . . , 1, 0). For any integer partition λ with at most n parts,
λ = (λ1, . . . , λn) with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0,

sλ(x1, . . . , xn) =
aδ+λ

aδ
, with aµ = det

(

x
µj

i

)

1≤i,j≤n
. (17)Proposition 2. The generating funtion of exursions of height at most k is

E(k) =
Fk

Fk+1
=

(−1)a+1

tωa

ska(U)

s(k+1)a(U)where U = (U1, . . . , Ua+b) is the olletion of roots of the polynomial K(u) givenby (4), and Fk+1 = det(1 − tA(k)) where A(k) is the adjaeny matrix (16). Inpartiular,
Fk = (−1)k(a+1)(tωa)

kska(U). (18)This proposition is proved in Setion 4 in two di�erent ways. In Setion 5,we derive from the Shur expression of Fk that these polynomials satisfy a linearreurrene relation. Equivalently, the generating funtion ∑k Fkz
k is a rationalfuntion of t and z.Proposition 3. The generating funtion of the polynomials Fk is rational, andan be written as

∑

k≥0

Fkz
k =

N(t, z)

D(t, z)where D(t, z) is given by (7), and N(t, z) has degree (a+b
a

)

− a− b in z. Moreover,
D(t, E) = 0 and N(t, E) 6= 0.In other words, the sequene Fk satis�es a linear reurrene relation of theform (1), of order da,b =
(

a+b
a

), valid for k >
(

a+b
a

)

− a − b (with Fi = 0 for
i < 0). This proposition follows from Proposition 4 (Setion 5), whih deals with



10 MIREILLE BOUSQUET�MÉLOUthe generating funtion of retangular Shur funtions of height a: for symmetrifuntions in n variables,
∑

k

skazk =
P (z)

Q(z)
(19)where Q(z) is given by (8) and has degree (n

a

), while P (z) has degree (n
a

)

− n.Computational aspets. We have shown in Setion 2.1 that, given the stepset S, the polynomial D(t, z) an be omputed via the platypus algorithm. Oneway to determine the numerator N(t, z) is to ompute Fk expliitly (e.g. as thedeterminant of (1 − tA(k))) for k ≤ δ :=
(

a+b
a

)

− a − b, and then to ompute
N(t, z) = D(t, z)

∑

k Fkz
k up to the oe�ient of zδ.In the generi ase, omputing the generating funtion of the polynomials Fkboils down to omputing the generating funtion (19). As disussed above, theplatypus algorithm an be used to determine Q(z) in terms of the elementarysymmetri funtions. In order to determine P (z), we express the Shur funtions

ska , for k ≤ δ :=
(

n
a

)

− n, in the elementary basis. This an be done using thedual Jaobi�Trudi identity (see Setion 5 for details). One �nally obtains P (z) byexpanding the produt Q(z)
∑

k skazk in the elementary basis up to order δ. Forinstane, for a = b = 2,
∑

k≥0

skazk =
1 − z2e4

Q(z)
,where Q(z) is given by (9). More values of P (z) are given in Setion 7.2. Let usnow revisit the examples of Setion 2.1.Example 1: Two step exursions. When S = {a,−1}, one has D(t, z) = 1−z+

ta+1za+1. The polynomials Fk satisfy the reursion Fk = Fk−1− ta+1Fk−a−1, whihan be understood ombinatorially using Viennot's theory of heaps of piees [33℄.Via this theory, Fk appears as the generating funtion of trivial heaps of segmentsof length a on the line J0, kK, eah segment being weighted by −ta+1. The reursionis valid for k ≥ 1, with F0 = 1 and Fi = 0 for i < 0. The generating funtion ofthe Fk's is
∑

k≥0

Fkz
k =

1

1 − z + ta+1za+1
.When a = 3 and b = 2, the minimal polynomial of the exursion series E is givenby (12) and the generating funtion of the polynomials Fk is found to be

∑

k≥0

Fkz
k =

1 + t5z5

1 − z + t5z5(2 − z + z2) + t10z10
.For a = 4 and b = 3, we refer to (13) for the minimal polynomial D(t, z) of E,and

∑

k≥0

Fkz
k =

1 + t7z7 (4 + z3 + z4) + t14z14 (6 + z3) + 4 t21z21 + t28z28

D(t, z)
.



DISCRETE EXCURSIONS 11Example 2: Basket-ball again. For S = {±1,±2} with ω−2 = ω2 = t, ω−1 =
ω1 = 1,
∑

k≥0

Fkz
k =

1 − t2z

(1 + t2z) (1 − z(1 + 2t2) + z2t2(3 + 2t2) − z3t4(1 + 2 t2) + z4t8)
.The denominator is not irreduible. Its seond fator is the minimal polynomialof E, see (15). Moreover, omparing to (14) shows that N(t, z) and D(t, z) have afator (1 + t2z) in ommon. A similar phenomenon ours for S = {±1,±2} with

ωs = 1 for all s. In this ase,
∑

k≥0

Fkz
k =

1 − tz

(1 + zt) (1 − z (1 + 2 t) + t (2 + 3 t) z2 − t2 (1 + 2 t) z3 + z4t4)
.Again, the minimal polynomial of E is the seond fator of the denominator, and

N(t, z) and D(t, z) have a fator (1 + tz) in ommon.3. Enumeration of unbounded exursionsHere we establish the expression (6) of the exursion generating funtion E. Theproof is based on a step-by step onstrution of non-negative walks with steps in
S, and on the so-alled kernel method. This type of argument is by no meansoriginal. The proof that we are going to present an be found in [6, Example 3℄,then in [5℄, and �nds its origin in [20, Ex. 2.2.1.4 and 2.2.1.11℄. The reason whywe repeat the proof is beause it will be adapted in Setion 4 to ount exursionsof bounded height.Let W be the set of walks that start from 0, take their steps in S, and alwaysremain at a non-negative level. Let W (t, u) be their generating funtion, wherethe variable t ounts the length, the variable u ounts the �nal height, and eahstep s ∈ S is weighted by ωs:

W (t, u) =
∑

(s1,s2,...,sn)∈W

ωs1
· · ·ωsn

tnus1+···+sn.We often denote W (t, u) ≡ W (u), and use the notation Wh for the generatingfuntion of walks of W ending at height h:
W (t, u) =

∑

h≥0

uhWh where Wh =
∑

(s1,s2,...,sn)∈W

s1+···+sn=h

ωs1
· · ·ωsn

tn.A non-empty walk of W is obtained by adding a step of S at the end of anotherwalk of W. However, we must avoid adding a step i to a walk ending at height j,if i + j < 0. This gives
W (u) = 1 + t

(

∑

s∈S

ωsu
s

)

W (u) − t
∑

i∈S,j≥0
i+j<0

ωiu
i+jWj .



12 MIREILLE BOUSQUET�MÉLOULet minS = −b. Rewrite the above equation so as to involve only non-negativepowers of u:
ub(1 − tP (u))W (u) = ub − t

b
∑

h=1

ub−h
∑

i∈S,j≥0

i+j=−h

ωiWj, (20)with P (u) =
∑

s∈S ωsu
s. The oe�ient of W (u) is the kernel K(u) of the equation,given in (4). As above, we denote by U1, . . . , Ub (respetively Ub+1, . . . , Ua+b) theroots of K(u) that are �nite (respetively in�nite) at t = 0. For 1 ≤ i ≤ b, theseries W (Ui) is well-de�ned (it is a formal power series in t1/b). The left-hand sideof (20) vanishes for u = Ui, with i ≤ b, and so the right-hand side vanishes too.But the right-hand side is a polynomial in u, of degree b, leading oe�ient 1, andit vanishes at u = U1, . . . , Ub. This gives
ub(1 − tP (u))W (u) =

b
∏

i=1

(u − Ui).As the oe�ient of u0 in the kernel is −tω−b, setting u = 0 in the above equationgives the generating funtion of exursions:
E = W (0) =

(−1)b+1

tω−b

b
∏

i=1

Ui.This is the �rst expression in (6). The seond follows using
U1 · · ·Ua+b = (−1)a+bω−b/ωa (21)(see (5)).Remark. There exists an alternative way to solve (20), whih does not exploitthe fat that the right-hand side of (20) has degree b in u. This variant will beuseful in the enumeration of bounded exursions. Write

Z−h =
∑

i∈S,j≥0

i+j=−h

ωiWj ,so that the right-hand side of (20) reads
ub − t

b
∑

h=1

ub−hZ−h.This term vanishes for u = U1, . . . , Ub. Hene the b series Z−1, . . . , Z−b satisfy thefollowing system of b linear equations: For U = Ui, with 1 ≤ i ≤ b,
b
∑

h=1

U b−hZ−h = U b/t.



DISCRETE EXCURSIONS 13In matrix form, we have MZ = C/t, where M is the square matrix of size b givenby
M =











U b−1
1 U b−2

1 · · · U1
1 1

U b−1
2 U b−2

2 · · · U1
2 1... ...

U b−1
b U b−2

b · · · U1
b 1











,

Z is the olumn vetor (Z−1, . . . , Z−b), and C is the olumn vetor (U b
1 , . . . , U

b
b ).The determinant of M is the Vandermonde in U1, . . . , Ub, and it is non-zero be-ause the Ui are distint. We are espeially interested in the unknown Z−b = ω−bE.Applying Cramer's rule to solve the above system yields

Z−b =
(−1)b+1

t

det(U b−j+1
i )1≤i,j≤b

det(U b−j
i )1≤i,j≤b

.The two determinants oinide, up to a fator U1 . . . Ub, and we �nally obtain
E =

Z−b

ω−b
=

(−1)b+1

tω−b
U1 · · ·Ub.4. Enumeration of bounded exursionsAs argued in Setion 2.2, the generating funtion of exursions of height at most

k is
E(k) =

Fk

Fk+1
, (22)where Fk+1 = det(1 − tA(k)) and A(k) is the adjaeny matrix (16) desribingthe allowed steps in the interval J0, kK. In order to prove Proposition 2, it re-mains to establish the expression (18) of the polynomial Fk as a Shur funtionof U1, . . . , Ua+b. We give two proofs. The �rst one uses the dual Jaobi�Trudiidentity to identify Fk as a Shur funtion. The seond determines E(k) in termsof Shur funtions via the kernel method, and the Shur expression of Fk thenfollows from (22) by indution on k (given that F0 = 1).First proof via the Jaobi�Trudi identity. The dual Jaobi�Trudi identityexpresses Shur funtions as a determinant in the elementary symmetri funtions

ei [30, Cor. 7.16.2℄: for any partition λ,
sλ = det

(

eλ′

j+i−j

)

1≤i,j≤λ1

,where λ′ is the onjugate of λ. Apply this identity to λ = (k+1)a. Then λ′ = ak+1and
s(k+1)a = det J (k) with J (k) = (ea+i−j)1≤i,j≤k+1.Now, speialize this to symmetri funtions in the a+b variables V = (V1, . . . , Va+b)where Vi = −Ui for all i. By (5), the elementary symmetri funtions of the Vi are

ei(V) =
ωa−i

ωa
− 1

tωa
χi=a = − 1

tωa
(χi=a − tωa−i) .



14 MIREILLE BOUSQUET�MÉLOUThis shows that the matrix J (k) oinides with −(1 − tA(k))/(tωa), so that
sλ(V) = (−tωa)

−(k+1)Fk+1 = (−1)a(k+1)sλ(U),sine sλ is homogeneous of degree a(k + 1). This gives the Shur expression of
Fk+1.Seond proof via the kernel method. We adapt the step by step approahof Setion 3 to ount exursions of height at most k. Let W (k)(t, u) ≡ W (k)(u)be the generating funtion of non-negative walks of height at most k. As before,we ount them by their length (variable t) and �nal height (u) with multipliativeweights ωs on the steps. We use notations similar to those of Setion 3. Whenonstruting walks step by step, we must still avoid going below level 0, but alsoabove level k. This yields:

W (k)(u) = 1 + t

(

∑

s∈S

ωsu
s

)

W (k)(u) − t
∑

i∈S,j≥0

i+j>k or i+j<0

ωiu
i+jW

(k)
j ,or, with minS = −b,

ub(1 − tP (u))W (k)(u) = ub − t
k+a
∑

h=k+1

ub+hZ
(k)
h − t

b
∑

h=1

ub−hZ
(k)
−h , (23)where

Z
(k)
h =

∑

i∈S,j≥0

i+j=h

ωiW
(k)
j .The series W (k)(u) is now a polynomial in u (with oe�ients in the ring of powerseries in t). This implies that any root Ui of the kernel K(u) = ub(1− tP (u)) anbe legally substituted for u in (23). The right-hand side and the left-hand sidethen vanish, and provide a system of a + b linear equations satis�ed by the Zh:For U = Ui, with 1 ≤ i ≤ a + b,

k+a
∑

h=k+1

U b+hZ
(k)
h +

b
∑

h=1

U b−hZ
(k)
−h = U b/t.In matrix form, we have M(k)Z(k) = C/t, where M(k) is the square matrix of size

a + b given by
M(k) =











Ua+b+k
1 Ua+b+k−1

1 · · · U b+k+1
1 U b−1

1 U b−2
1 · · · 1

Ua+b+k
2 · · · · · · 1... ...

Ua+b+k
a+b Ua+b+k−1

a+b · · · U b+k+1
a+b U b−1

a+b U b−2
a+b · · · 1











,

Z(k) is the olumn vetor (Z
(k)
k+a, . . . , Z

(k)
k+1, Z

(k)
−1 , . . . , Z

(k)
−b ), and C is the olumnvetor (U b

1 , . . . , U
b
a+b). We are espeially interested in the series Z

(k)
−b = ω−bE

(k).



DISCRETE EXCURSIONS 15Cramer's rule now gives
Z

(k)
−b =

(−1)b+1

t

det(Ua+b+k
i , . . . , U b+k+1

i , U b
i , U

b−1
i , . . . , Ui)1≤i≤a+b

detM(k)
, (24)provided detM(k) 6= 0. In view of the de�nition (17) of Shur funtions, thisyields:

E(k) =
Z

(k)
−b

ω−b
=

(−1)b+1

tω−b
U1 · · ·Ua+b

ska(U)

s(k+1)a(U)
.Thanks to (21), the generating funtion of exursions of height at most k an�nally be rewritten

E(k) =
(−1)a+1

tωa

ska(U)

s(k+1)a(U)
.Using (22), we �nally express the polynomial Fk in terms of Shur funtions:

Fk =
1

E(0) · · ·E(k−1)
= (−1)k(a+1)(tωa)

kska(U).We still have to prove that the determinant of M(k) is non-zero. Whether M(k)is singular or not, the following variant of (24) remains valid:
detM(k)Z

(k)
−b =

(−1)b+1

t
det(Ua+b+k

i , . . . , U b+k+1
i , U b

i , U
b−1
i , . . . , Ui)1≤i≤a+b

=
(−1)b+1

t
V (U) ska(U)

a+b
∏

i=1

Ui,where V (U) denotes the Vandermonde in the Ui's. Sine these series are distintand non-zero, this shows that if detM(k) = 0, that is, s(k+1)a(U) = 0, then
ska(U) = 0 as well. But this would �nally imply s0(U) = 0, while s0(U) = 1. Thus
detM(k) 6= 0, and the seond proof of Proposition 2 is now omplete.5. Generating funtions of retangular Shur funtionsWe will now prove Proposition 3, whih onnets the (algebrai) exursion gen-erating funtion E to the polynomials Fk ourring in the (rational) generatingfuntion E(k) ounting exursions of height at most k. Now that we have expressed
Fk as a Shur funtion (18), Proposition 3 will be a onsequene of the followingresult.Proposition 4. Let 1 ≤ a ≤ n. The generating funtion of retangular Shurfuntions of length a in n variables u1, . . . , un is

∑

k≥0

skazk =
P (z)

Q(z)where
Q(z) =

∏

I⊂JnK, |I|=a

(1 − zuI) =
∑

k≥0

(−1)kzkek[ea] (25)



16 MIREILLE BOUSQUET�MÉLOUhas degree (n
a

) in z and P (z) has degree (n
a

)

− n. (We have used the notation
uI =

∏

i∈I ui.) Moreover, for all J of ardinality a,
P (1/uJ) =

∏

I:|I|=a,|I∆J |≥4

(1 − uI/uJ). (26)Proof. Let us write n = a + b. By de�nition of Shur funtions,
ska =

1

Vn
det
(

(un+k−1
i , · · · , ub+k

i , ub−1
i , · · · , 1)1≤i≤n

)

, (27)where Vn =
∏

1≤i<j≤n(ui − uj). Thus
∑

k≥0

skazk =
1

Vn

∑

k≥0

zk
∑

σ∈Sn

ε(σ) σ
(

un+k−1
1 · · ·ub+k

a ub−1
a+1 · · ·u1

n−1u
0
n

) (28)
=

1

Vn

∑

σ∈Sn

ε(σ) σ

(

un−1
1 · · ·ub

au
b−1
a+1 · · ·u1

n−1u
0
n

1 − zu1 · · ·ua

)

,where σ ats on funtions of u1, . . . , un by permuting the variables:
σF (u1, . . . , un) = F (uσ(1), . . . , uσ(n)).Equivalently,

∑

k≥0

skazk =
P (z)

Q(z)where Q(z) is given by (25) and
P (z) =

1

Vn

∑

σ∈Sn

ε(σ) σ



un−1
1 · · ·u0

n

∏

|I|=a,I 6=JaK

(1 − zuI)



 . (29)The above expression suggests that the degree of P (z) ould be as large as (n
a

)

−1,while we laim it is only (n
a

)

−n. To explain this gap, it su�es to notie that thedeterminant (27) vanishes for k ∈ {−n + 1,−n + 2, . . . ,−1}. Thus the sum over
k in the right-hand side of (28) ould just as well start at k = −n + 1, giving:

zn−1
∑

k≥0

skazk =
1

Vn

∑

σ∈Sn

ε(σ) σ

(

u0
1u

−1
2 · · ·u−a+1

a ub−1
a+1 · · ·u1

n−1u
0
n

1 − zu1 · · ·ua

)

.This provides the following alternative expression of P (z):
zn−1P (z) =

1

Vn

∑

σ∈Sn

ε(σ) σ



u0
1u

−1
2 · · ·u−a+1

a ub−1
a+1 · · ·u1

n−1u
0
n

∏

|I|=a,I 6=JaK

(1 − zuI)



 .(30)The right-hand side is a polynomial in z of degree (at most) (n
a

)

− 1, and thispolynomial is the produt of P (z) and zn−1. This shows that P (z) has degree



DISCRETE EXCURSIONS 17at most (n
a

)

− n. Moreover, by extrating the oe�ient of z(n

a)−1 in the aboveidentity, one �nds:
[z(n

a)−n]P (z) =
1

Vn

∑

σ∈Sn

ε(σ) σ



u0
1u

−1
2 · · ·u−a+1

a ub−1
a+1 · · ·u1

n−1u
0
n

∏

|I|=a,I 6=JaK

(−uI)



 .Up to a sign and a power of u1 · · ·un, the sum over σ is the Vandermonde in the
ui's. Finally,

[z(n

a)−n]P (z) = (−1)(
n

a)+ab−1 (u1 · · ·un)
(n−1

a−1
)−a , (31)so that P (z) has degree (n

a

)

− n exatly.It remains to determine P (1/uJ), for |J | = a. We speialize the expression (29)of P (z) to the ase z = 1/uJ . The only permutations σ having a non-zero ontri-bution are those suh that σ(JaK) = J . Every suh permutation σ an be writtenin a unique way σ = πτσJ , where σJ is the shortest permutation sending JaKto J , and τ (respetively π) is any permutation on J (respetively cJ). Thus, if
J = {j1, . . . , ja} with j1 < . . . < ja and cJ = {k1, . . . , kb} with k1 < . . . < kb, wehave

P (1/uJ) =
∏

|I|=a,I 6=J

(1 − uI/uJ)
ε(σJ)

Vn

×
∑

τ∈S(J)

ε(τ)τ
(

un−1
j1

· · ·ub
ja

)

∑

π∈S(cJ)

ε(π)π
(

ub−1
k1

· · ·u0
kb

)

=
∏

|I|=a,I 6=J

(1 − uI/uJ)
ε(σJ)

Vn

ub
J V (J) V (cJ),where V (J) denotes the Vandermonde in the variables uj, j ∈ J . This is easilyseen to be equivalent to (26).We an now omplete the proof of Proposition 3. We ombine the Shur ex-pression of Fk given in Proposition 2 with Proposition 4. Set n = a + b. Theindeterminates u1, . . . , ua+b are speialized to U1, . . . , Ua+b, and we obtain:

∑

k≥0

Fkz
k =

P ((−1)a+1tωaz)

Q((−1)a+1tωaz)
=

N(t, z)

D(t, z)where D(t, z) = Q((−1)a+1tωaz) is exatly the polynomial (7). The dominantoe�ient of P (z), given by (31), does not vanish when speializing ui to Ui. Thus
N(t, z) = P ((−1)a+1tωaz) has degree (n

a

)

− n exatly. We have already seen thatthe exursion generating funtion E given in Proposition 1 satis�es D(t, E) = 0.Now, sine E = (−1)a+1/(tωaUJ), with J = {b + 1, . . . , a + b},
N(t, E) = P (1/UJ) =

∏

|I|=a,|I∆J |≥4

(1 − UI/UJ)



18 MIREILLE BOUSQUET�MÉLOUby (26). Reall that Ub+1, . . . , Ua+b are the roots of K(u) with valuation −1/a,while the b other roots have valuation 1/b. This implies that UI 6= UJ for I 6= J ,so that N(t, E) 6= 0.6. The degree of the exursion generating funtionWe onlude this paper by proving that the results stated in Setion 2 are, in asense, optimal. We have de�ned in (7) a polynomial D(t, z), of degree da,b =
(

a+b
a

),whih satis�es D(t, E) = 0 and is the denominator of the rational series∑k Fkz
k.We prove that D(t, z) is irreduible in the following two ases:

• S = J−b, aK and ω−b, . . . , ωa are independent indeterminates,
• S = {−b, a} with ω−b = ωa = 1 and a and b oprime.In the �rst ase, the kernel K(u) is essentially the general algebrai equation ofdegree a + b, so that the result may be preditable. The idea is that there are nonon-trivial relations between the series Ui. The seond ase is less obvious.Proposition 5. In the above two ases, the generating funtion of exursionswith steps in S is algebrai of degree da,b =

(

a+b
a

). Its minimal polynomial is givenby (7).Reall, from Example 2 in Setion 2.1, that E has sometimes degree less than
da,b (for instane when S = {±1,±2} with weights 1).The key tool is the study of the Galois group of the polynomial K(u). We beginwith a ondition implying the irreduibility of D(t, z).Lemma 6. Let S be a �nite set of steps with weights ωs ∈ K. Let a = maxS,
−b = minS and n = a + b. Let K(u) be the polynomial in u, with oe�ients in
K(t), de�ned by (4).If the Galois group of K(u) over K(t), seen as a permutation group of the U ′

is,is the full symmetri group Sn, then the produt U1 . . . Ub of the small roots of
K(u) has degree da,b =

(

a+b
a

). In other words, the polynomial D(t, z) given by (7)is irreduible.Proof. The extension K(t, U1, . . . , Un) of K(t) is normal by onstrution, and sep-arable sine we have assumed K to be of harateristi 0. Assume that the Galoisgroup of K(t, U1, . . . , Un) over K(t) is Sn. By the main result of Galois the-ory, the orrespondene Φ between subgroups G of Sn and sub-extensions L of
K(t, U1, . . . , Un) de�ned by

Φ(G) = L = {x ∈ K(t, U1, . . . , Un) : σ(x) = x for all σ ∈ G}is bijetive. Its inverse is given by
Φ−1(L) = G = {σ ∈ Sn : σ(x) = x for all x ∈ L}.Moreover, the degree of K(t, U1, . . . , Un) over L is |G|.In partiular, let L = K(t, U1 · · ·Ub) be the extension of K(t) generated by theprodut of the small roots. Given that U1, . . . , Ub have valuation 1/b in t, while

Ub+1, . . . , Ua+b have valuation −1/a, the only permutations σ of Sn that leave
U1 . . . Ub unhanged are those that �x the set JbK. That is, Φ−1(L) ≃ Sb × Sa.



DISCRETE EXCURSIONS 19Thus K(t, U1, . . . , Un) has degree a!b! over L, degree (a + b)! over K(t), so that
L = K(t, U1 · · ·Ub) has degree (a+b

a

) over K(t).We now apply the above lemma to prove Proposition 5.Proof of Proposition 5. In the �rst ase, K(u) is the general equation of degree
n = a + b. It is well-known that its Galois group is Sn. See for instane [31℄.In the seond ase, we want to prove that the Galois group of K(u) = ub −
t(1 + ua+b) over Q(t) is Sn, with n = a + b. This has been proved for trinomials
ua+b + αub + β with two indeterminate oe�ients α and β (see [28, 11℄), andfor some trinomials with rational oe�ients [25, 12℄. The latter results are ofourse harder than the former. Given that we ould not �nd any referene dealingwith trinomials involving exatly one indeterminate oe�ient, we will rely on thestrong results obtained for trinomials of Q[u].We �rst note that it su�es to prove that the trinomial ub − t0(1 + ua+b) hasGalois group Sn over Q for some rational number t0. Sine a and b are oprime,Theorem 8 of [27℄ implies that there exist only �nitely many α ∈ Z suh that
ua+b + αub + 1 is reduible. Thus we an hoose α ∈ Z, oprime with n = a + b,and suh that the above trinomial is irreduible. Then by [25, Thm. 1℄, thistrinomial has Galois group Sn over Q.7. Conluding remarks and questions7.1. The degree of the exursion generating funtionWe have shown in Setion 6 that the degree of E is maximal, equal to (a+b

a

),both in the generi ase and in the two-step ase. This an be extended to all setsteps suh that K(u) has at least two (algebraially independent) indeterminateoe�ients, using the results of [11℄.It would be interesting to study more ases, in partiular those involving asymmetry, whih redues the degree. Assume S = −S, and ω−s = ωs for all
s ∈ S. In partiular, a = b. Then, as disussed in Example 2, the small andlarge roots of K(u) are simply related by Ua+1 = 1/U1, . . . , U2a = 1/Ua. Thisimplies that many produts Ui1 · · ·Uia , with i1 < · · · < ia, are atually of theform Uj1 · · ·Uja−2k

for some k > 0. The produts that redue in that way have aminimal polynomial that stritly divides
Q(z) =

∏

|I|=a

(1 − zUI).The non-reduing produts Ui1 · · ·Uia are the 2a terms UI = U±1
1 · · ·U±1

a . Thus
Q̄(z) =

∏

ε∈{±1}a

(1 − zUε),is a polynomial in z and t that divides Q(z), and vanishes at z = E. Hene in thesymmetri ase, E has degree at most 2a.One ould try to study systematially the ases S = J−a, aK or S = {±1,±a},with weights 1. When S = {±1,±2}, we have seen in Example 2 that E has



20 MIREILLE BOUSQUET�MÉLOUdegree 4. The Galois group G of K(u) = u2 − t(1 + u)2(1− u + u2) over Q(t) anbe seen to be isomorphi to the dihedral group D4. More preisely,
G = {id, (1, 2, 3, 4), (1, 4, 3, 2), (1, 3)(2, 4), (1, 2)(3, 4), (1, 4)(2, 3), (1, 3), (2, 4)}.The subgroup that leaves U1U2 invariant is the subgroup of index 4 generated by

(1, 2)(3, 4). This explains why E = −U1U2/t has degree 4.7.2. The generating funtion of retangular Shur funtionsWe proved in Setion 5 that, for symmetri funtions in n variables, the gener-ating funtion of retangular Shur funtions of height a is rational:
∑

k≥0

skazk =
P (z)

Q(z)
,where Q(z) is given by (25) and has degree (n

a

), while P (z) has degree (n
a

)

−n. Wehave given two expressions of P (z) in terms of the ui's (see (29�30)), and provedthat P (1/uJ) has a simple expression (26). However, we have no expansion of
P (z) in symmetri funtions, other than

P (z) =

(n

a)−n
∑

i=0

zi
∑

j+k=i

(−1)jej [ea] ska,whih omes diretly from the fat that P (z) = Q(z)
∑

k≥0 skazk. It would beinteresting to �nd a simpler expression for the oe�ients of P (z). The term
(−1)j , in partiular, leaves hope for possible simpli�ations, whih may in turnallow us to ompute P (z) more e�iently. Let us give the expression of P for afew values of a and n: for a = 2 and n = 4,

P (z) = 1 − e4z
2 = 1 − s4z

2.For a = 2 and n = 5,
P (z) = 1 − e4 z2 + e5,1 z3 − e5

2z5 = 1 − s14z2 + s2,14z3 − s25z5.For a = 3 and n = 6,
P (z) = 1 − s214z2 + (s241 + s3214) z3 − s322212z4 − (s35 + s525) z5

+ (s53322 + s4323 + s42331) z6 − 2 s542322z
7 + (s5333 + s64332 + s52432) z8

− (s552 + s745) z9 − s625242z10 + (s6454 + s7654) z11 − s7645z
12 + s76z14.We have used the Shur basis rather than the elementary basis beause it seems,from these examples, that the oe�ient of zi in P (z) is either Shur-positiveor Shur-negative. The onversions to Shur funtions have been made with thepakage ACE [32℄.



DISCRETE EXCURSIONS 217.3. The height of random exursionsEquip the set of exursions of length n with the uniform distribution. It isknown that the random exursion of length n thus obtained onverges in law tothe Brownian exursion, after normalizing the length by n and the height by κ
√
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