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Abstract. We give a generalisation of a conjecture by Propp on a summa-
tion formula for fully packed loop configurations. The original conjecture states
that the number of configurations in which each external edge is connected to
its neighbour is equal to the total number of configurations of size one less.
This conjecture was later generalised by Zuber to include more types of con-
figurations. Our conjecture further refines the counting and provides a general
framework for some other summation formulas observed by Zuber. It also im-
plies similar summation formulas for half-turn symmetric configurations.

1. Introduction

An alternating sign matrix of size n is an n × n matrix with entries in
{−1, 0, 1} where in each row and column, the −1 and 1 alternate and such that
all rows and columns sum to 1. Let the number of such matrices be An. Then,

An =
n−1
∏

k=0

(3k + 1)!

(n + k)!
, (1)

which was conjectured by Mills, Robbins and Rumsey [15] and finally settled by
Zeilberger [24]. The fascinating story behind this result is found in Bressoud’s
book, Proofs and Confirmations [2].

Shortly after Zeilberger’s proof, Kuperberg [13] presented a very different one.
This proof made connections to the six-vertex model. Here lies the connection
between alternating sign matrices and fully packed loop configurations. The latter
are also in bijection with configurations in the six-vertex model. In the fully
packed loop model one can find a natural refinement of these numbers, which is
non-obvious in the alternating sign matrix case. See Sections 2 and 2.1 for the
definitions of the fully packed loop model and the refined numbers, An(π).

In two papers, [19] and [22], Razumov and Stroganov made some interesting
remarks on the ground state vector of finite XXZ spin chains. They conjectured
that, if scaled so that the smallest entry was equal to 1, the entire vector was
integral and summed to the number of alternating sign matrices. Batchelor, de
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Gier and Nienhuis [1] expanded on this and stated the conjecture in the setting of
the O(1) loop model with both periodic and open boundaries. Following this line,
Razumov and Stroganov [20] found numerical evidence for an element by element
correspondence between the ground state vector of the periodic O(1) loop model
and refined numbers of fully packed loop configurations.

The Razumov–Stroganov conjecture for the sum of the entries of the ground
state vector of the O(1) loop model with periodic boundary boundaries was proven
in [8]. An alternative proof, due to Pasquier, can be found in [17]. Similar sum
rules for different models and boundary conditions can be found in [7, 25, 6, 11].
For the refined conjecture, on the individual ground state entries, Zinn-Justin has
given a proof for some infinite families in [26].

These remarkable observations sparked an interest for these numbers and led to
many conjectures on the entries of the ground state vectors and, via the Razumov–
Stroganov conjecture, also on particular families of the refined fully packed loop
numbers. In several subsequent papers, many of these conjectures were proven
(on the level of fully packed loop numbers) by different constellations of authors
[3, 4, 9, 10, 12].

An older conjecture due to Propp, also dealing with refined fully packed loop
numbers, states that the number of configurations in which each external edge is
connected to its neighbour is equal to the total number of configurations of size
one less. This was generalised by Zuber in [27] and in the same paper, Zuber
conjectured additional summation formulas for which he could find no apparent
pattern.

In this paper we use methods which were developed following the Razumov–
Stroganov conjecture to derive conjectures for some more refined summation for-
mulas which also, implicitly, provide the systematics behind some of the sums
observed by Zuber.

Section 2 deals with the definition of the fully packed loop model. In Section 2.1
we look at how to do a refined counting according to the matching pattern of the
configurations. The method we will use to do this counting is based on work by
de Gier [5] and is described in Section 2.2. In Section 3 we then develop our
main conjecture, Conjecture 3.5. This is done through Sections 3.1, 3.2 and 3.3.
After this, we briefly sidestep to present a conjecture on a related set of matrices
which could point in a direction to prove the main conjecture. In Section 3.5 the
aforementioned conjectures by Propp and Zuber are derived, in greater generality,
from Conjecture 3.5. We conclude the paper in Section 4 with some open problems
related to this conjecture.

2. Fully packed loop configurations

Let Qn be the square grid of n times n vertices in the plane, see Figure 1(a). On
this vertex set we take the graph in Figure 1(b). It has edges between horizontally
and vertically adjacent vertices as well as 4n external edges which are incident
to only one vertex on the boundary of Qn.

A configuration in the fully packed loop model, an FPL configuration for
short, is a subset of this graph such that each vertex has degree 2. In addition
to this condition one assumes some boundary conditions for the external edges.
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In combinatorial literature these are usually the domain wall boundary con-

ditions which are equivalent to including precisely every second external edge in
the configuration. We will always assume these boundary conditions.

An example of an FPL configuration with domain wall boundary conditions
is given in Figure 1(c). The reader should for now ignore the numbering of the
external edges. The connected components of a configuration are called loops,

(a) (b) (c)
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Figure 1. (a) Q10, (b) potential edges, (c) an FPL configuration

even though they are not always cycles in the graph, as can be seen in the example.
The FPL configurations on Qn are, as mentioned in the introduction, equinu-

merous to the alternating sign matrices of size n × n, see for example [23]. Other
enumerative problems arise if we impose various symmetries on the FPL config-
urations, or equivalently, on the alternating sign matrices. For example, we can
choose to count only those configurations which are left unchanged by a reflection
in the horizontal and/or the vertical axis. Such configurations are called hori-
zontally (and/or vertically) symmetric FPL configurations. Another possibility
is to count those that are invariant under a 180 degrees rotation of the graph.
These are called half-turn symmetric FPL configurations, or HTFPL configura-
tions for short, and they are of particular interest to us as it turns out that, for
our purposes, they can be treated in much the same way as the non-restricted
ones.

The total number of configurations being half-turn symmetric is

AHT
2n =

n−1
∏

j=0

3j + 2

3j + 1
A2

n (2)

AHT
2n+1 =

n!(3n)!

(2n)!2
AHT

2n (3)

The even case was proven by Kuperberg in [14] while the odd case was proven by
Razumov and Stroganov in [18].

2.1. Refined enumeration. We will now label the external edges with integers
from 1 to 2n starting at the top, on the left boundary, and proceeding counter-
clockwise around the square, see Figure 1(c). Then, every FPL configuration
induces, in the natural way, a matching on [2n]. In fact, it induces a perfect,

non-crossing matching, i.e, a perfect matching such that if a is matched to c
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and b is matched to d with a < c, b < d and a < b, then either a < c < b < d or
a < b < d < c. This is equivalent to saying that we can represent the matching as
in Figure 2 with non-crossing arches.

1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 2010

Figure 2. The matching associated to the configuration in Figure 1(c).

Let
∏

2n be the set of all such matching. We call π ∈
∏

2n the matching
associated to an FPL configuration if this configuration induces π.

This suggests that we may do a refined counting on the FPL configurations. Let
An(π) be the number of FPL configurations of size n×n with associated matching
π. Wieland showed in [23] that An(π) is invariant under the action of the dihedral
group. That is, it does not matter where we start the labelling of the external
edges, and furthermore, it does not matter in which direction we proceed around
the square.

Formally, the theorem is stated as follows.

Theorem 2.1 (Wieland 2000). Let d ∈ D2n be an element of the dihedral group
of order 2n. Then,

An(π) = An(dπ)

Theorem 2.1 shows that we may forget the exact labels and represent the match-
ings as chord diagrams, see Figure 3.

Figure 3. A chord diagram of the matching in Figure 2.

Now, let AHT
n (π) be the number of half-turn symmetric FPL configurations with

associated matching π. We show that, with minor additions, Wieland’s proof of
Theorem 2.1 goes through also for HTFPL configurations.

Corollary 2.2. For d ∈ D2n,

AHT
n (π) = AHT

n (dπ).

Proof. We refer to Wieland’s original paper [23] for details of the proof and present
only an outline, with the appropriate modifications.
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A square consists of the 4 edges or non-edges between the 4 vertices with
coordinates (i, j), (i + 1, j), (i, j + 1) and (i + 1, j + 1) in a configuration. For each
square S, we define a function GS on the set of FPL configurations as follows. If
S is not on the boundary and the edges and non-edges in S alternate, then GS

flips the edges of S, otherwise it leaves them unchanged. GS is local in the sense
that everything which is not a part of S is left unchanged.

Let G0 be the composition of all GS where S is an even square (i + j ≡2 0)
and G1 be the composition of all GS where S is an odd square. Note that the
GS commute (for even or odd squares) and therefore the order of the composition
is irrelevant. Wieland proves that the associated matching of the composition
G := G0 ◦ G1 is a single-step rotation of the original matching.

We need to show that for half-turn symmetric configurations, the image of G is
again half-turn symmetric. Let r be the rotation of a configuration by 180 degrees.
It sends even (odd) squares to even (odd) squares, so r ◦ Gk = Gk ◦ r for k = 0, 1
which implies r ◦ G = G ◦ r. Thus, for a half-turn symmetric configuration C,

r(G(C)) = G(r(C)) = G(C)

which proves that G(C) is indeed half-turn symmetric.
For the reflection part, let R be the function that takes the complement of the

configuration with respect to the graph in Figure 1(b). Introduce Hk = Gk ◦ R.
Now, R is an involution and it’s easy to see that R commutes with Gk and therefore
that H0 ◦H1 = G0 ◦G1 = G. Let d be the function that reflects the configuration
in the line y = x. This does not preserve the external edges, but Hk ◦ d does, for
k = 0, 1. Since d preserves the even and odd squares, it commutes with Hk so
Hk ◦d are involutions. Now, {Hk ◦d} generates D2n and again, since the half-turn
rotation r commutes with these two reflections we have, for a half-turn symmetric
configuration C,

r
(

(Hk ◦ d)(C)
)

= (Hk ◦ d)(r(C)) = (Hk ◦ d)(C)

which finishes the proof. �

Note. The corresponding statement for vertically or horizontally symmetric
FPL configurations is false. The part of the proof that fails is that when n is odd
the vertical and horizontal reflections send squares to squares of opposite parity.

In what follows, when we talk about matchings which describe the connectivities
of the external edges of FPL configurations, we will leave out perfect, non-crossing
and simply write matching.

We will find it convenient to present matchings using a parenthesis notation.
This is done in the obvious way in which every matching is represented by a well-
formed string of ( and ). In addition, we will use the following short notation from
[16] for certain constructions.

• For a matching π, let (π)m be the matching which has {m + 1, . . . , m + n}
matched as [n] in π and in addition i matched to n+2m+1− i for i ∈ [m],
that is (π)m = ((· · · (π)) · · · ).

• Let ()n denote the matching in which i is matched to i + 1 for odd values
of i in [2n], that is ()n = ()() · · · ().



6 JOHAN THAPPER

Example 2.1.
(()2)3 = (((()()))).

2.2. A method for determining An(π). As a consequence of the growing in-
terest in the ground state vector of the O(1) loop model many conjectures were
made on the values of its entries and also, explicitly or implicitly via the Razumov–
Stroganov conjecture on the numbers An(π), see for example [16, 27]. In [5], de
Gier provided a simple, but fruitful method for determining these numbers. In
this section we will present the tools involved in de Gier’s method.

We start by introducing the notion of fixed edges. These are edges that, given
a matching π and a placement of π on the external edges, have to be present in
every FPL configuration with associated matching π and the particular placement
chosen. For some classes of matchings and well-chosen placements of these the
problem then reduces, via a simple and nice bijection (see Proposition 2.5), to that
of calculating the number of rhombus tilings of a π-dependant triangulated region.
The problem of determining the number of rhombus tilings of different regions is
well-studied. In many cases this yields determinantal formulas with known closed
forms.

The basis for finding fixed edges is the following lemma due to de Gier [5].

Lemma 2.3. If an FPL configuration contains the edges a, b and c on the left-
hand side of Figure 4, where a and c belong to different loops and furthermore if
either of the following holds,

(1) b belongs to a third loop.
(2) b belongs to the same loop as a (c) and b is connected to a (c) by a vertical

edge.

then the implication in Figure 4 holds. That is, d must also be included in the
configuration.

⇒c

a
b

a
b

c
d

Figure 4. Implication for fixed edges.

If a and c are external edges, b is not in the configuration, but the condition that
a and c belong to different loops still forces d to be included in the configuration.

Proof. In the first case, the loop on which b lies has to pass between a and c. For
the second case, the following figure shows that d must be in the configuration
since the two connected components do not lie on the same loop.

a
b

c c
b

a

When a and c are external edges, then either d is in the configuration or a and c
are connected by two vertical edges. The latter is impossible due to the condition
on a and c. �
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By repeatedly applying Lemma 2.3 we get the following corollary which can be
used to identify large regions of fixed edges.

Corollary 2.4. Assume that we have a sequence of consecutive external edges
{e1, e2, . . . , ek} where e1 lies on the lower boundary and e2 is next to e1 following
the boundary in counter-clockwise order. Assume further that no pair of adjacent
edges ei, ei+1 are matched. Depending on k and on the position of e1 we will have
one of the cases in Figure 5.

e2 eke1 · · ·

e1 e2 · · ·

ek

e1 e2

ek

· · ·

Figure 5. Fixed edges in Corollary 2.4

Note. There can never be an unbroken sequence of more than n external edges
without two adjacent ones being matched. Thus k ≤ n in Corollary 2.4.



8 JOHAN THAPPER

Now assume that we have determined some fixed edges for a particular matching
π and a given placement. Call this graph of edges Gπ, the fixed edge graph. If
in Gπ, every vertex v is incident to at least one edge, then we can enumerate the
number of configurations by passing to a rhombus tiling enumeration problem.

Call a vertex fixed if it is incident to two fixed edges. Now create a triangulated
region, in a sense dual to Gπ, called P (Gπ) in the following way. For every non-
fixed vertex in Gπ, there is a triangle in P (Gπ). This triangle consists of three
edges, corresponding to the non-edges of Gπ. Edges in P (Gπ) which corresponds
to the same non-edges of Gπ are identified. Because of the special structure of
Gπ, determined by Lemma 2.3, P (Gπ) can be drawn on top of Gπ so that the
vertices of P (Gπ) are placed on edges of Gπ and the edges of P (Gπ) cross their
corresponding non-edge. See Figure 6 for an example of a fixed edge graph and
its corresponding triangulated region.

(b)(a)

Figure 6. (a) Gπ with π from Figure 2. (b) P (Gπ).

We will now make the connection to rhombus tilings, which are defined as
follows.

Definition 2.1. A rhombus tiling of a triangulated region P is a perfect match-
ing of the triangles in P such that two matched triangles share a common edge.

The following proposition can be seen as the formal statement of de Gier’s
method.

Proposition 2.5. Let Gπ be a fixed edge graph corresponding to a matching π and
a given placement such that all vertices in Gπ are incident to at least one fixed
edge.

Then, the number of completions of Gπ to an FPL configuration equals the
number of rhombus tilings of the region P (Gπ).

Proof. This is a simple observation. Choosing an edge between two vertices corre-
sponds to choosing the rhombus consisting of those two triangles and each vertex
(triangle) must be connected to exactly one other vertex (triangle). �

Thus, in order to determine An(π), one can use the methods developed for
enumerating such rhombus tilings, most notably the enumeration of non-crossing
lattice paths.

Note. Although each FPL configuration with associated matching π neces-
sarily includes every edge of Gπ, in general not all completions of Gπ yield an
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FPL configuration with associated matching π. There may be some overcounting
involved which must be taken into account.

3. Sums of FPL configurations

In this section we will generalise and study a conjecture which can be traced
back, via Wieland’s paper [23], to Jim Propp. For future convenience, let

0n = ()n 1n = ()n.

That is, 0n is the pattern with n arches nested on top of each other and 1n is the
pattern with n small arches next to each other. The notation is explained by the
fact that we will later partially order the matchings, with 0n and 1n being the
bottom and top elements, respectively, of that partial order.

The conjecture is stated as follows.

Conjecture 3.1. For n > 1

An(1n) =
∑

π∈
Q

2(n−1)

An−1(π).

In words, the number of FPL configurations where each external edge is matched
to its neighbour is equal to the total number of FPL configurations of size one
less.

In [27, Conjecture 8], Zuber conjectures the same to be true for some more
general cases where a fixed number of arches are nested around each pattern
involved in Conjecture 3.1.

Conjecture 3.2 (Zuber 2003). For n > 1 and m ≥ 1

Am+n

(

(1n)m

)

=
∑

π∈
Q

2n

Am+n−1

(

(π)m−1

)

.

Furthermore, he conjectured some additional summation formulas involving
FPL configuration numbers, some of which turn out to be consequences of our
generalisation (Conjecture 3.5). Note that Conjecture 3.1 follows from Conjec-
ture 3.2 with m = 1 since 1n is obtained from (1n−1) by a single rotation.

Let π ∈
∏

2n and m ≥ 3n. We apply the method described in Section 2.2 to
the matching (π)m. Again, according to Theorem 2.1 we may choose a placement
for the matching on the external edges. Here we do so by placing the part of the
matching which corresponds to π on the lower boundary. Assuming we orient the
matching counter-clockwise, the remaining choice to make is from which external
edge on the lower boundary we will place π. Let k denote this position, with k = 1
meaning π starts on the first external edge from the left. Since π is arbitrary, we
can in general not expect to have all vertices of Gπ fixed. Therefore we disregard
everything that may be fixed by π and look only at those edges which are fixed
by the part of the matching that corresponds to the m nested arches around π.
This fixed edge graph is shown in Figure 7.

To enumerate the configurations on this fixed edge graph we now divide the
non-fixed vertices into three regions. Let Tn denote the triangular shaped region
in the middle, shown in Figure 8.
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| {z }

π

Figure 7. The fixed edge graph when n = 3, m = 17 and k = 1.

On the left and the right side of Tn there are 2n−2 possible positions for vertical
edges. Let E = {e1, e2, . . . , e2n−2} be the set of these edges on the left-hand side
and E ′ = {e′1, e

′
2 . . . , e′2n−2} be the set of edges on the right-hand side as indicated

in Figure 8.

e1

e2

e3

e4 e′4
e′3

e′1

e′2

Figure 8. The triangular region T3. The potential vertical edges
are dotted.

For convenience we will identify a subset of E (or E ′) with a subset of [2n−2] =
{1, 2, . . . , 2n−2} in the obvious way. We choose two subsets σ, τ ⊆ [2n−2] where
σ is the edges chosen on the left-hand side and τ the edges chosen on the right-
hand side. This separates the problem of enumerating configurations on Tn from
the problem of enumerating the configurations on the two non-fixed regions to the
left and to the right of Tn.

3.1. Patterns. The edge sets σ and τ of Tn are not arbitrary. Given a matching
π there are only certain possible σ and τ that can occur in an FPL configuration.
Let E ⊆ 2E be the set of edge sets that occur in at least one configuration. We will
now look at some bijections between E and other combinatorial objects. First, we
observe that in any FPL configuration,

|σ| = |τ | = n − 1.

To see this, remember that there are m nested arches around π. In Figure 7, we
see that m − n + 1 of the loops corresponding to these arches will pass above
Tn. The remaining n − 1 passes through Tn. Since n − 1 loops pass through the
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left boundary of Tn side we must have precisely 2n − 2 − (n − 1) edges from E
in the configuration. The same argument applies to the right boundary and E ′.
Therefore the cardinalities of σ and τ are as stated.

A Dyck path of length 2n is a path made up of north-east (NE) and south-east
(SE) steps, starting from (0, 0) and ending on (2n, 0) without ever going below
the line y = 0. It is well-known that the number of such paths equals Cn, the
Catalan number.

Lemma 3.1. There is a bijection ∆ : E → {Dyck paths of length 2n}.

Proof. The path ∆(σ) is constructed from σ as follows. First, there is an NE step.
Then, the i:th step is an NE step if 2n−1− i 6∈ σ and an SE step otherwise. After
the 2n − 2:nd and last step, there is an SE step. This is obviously a path in the
integer lattice which ends on (2n, 0) (since |σ| = n − 1). Caselli, Krattenthaler,
Lass and Nadeau [4] shows that unless ∆(σ) is a Dyck path, there are no possible
ways to complete the FPL configuration. See Lemma 3.6(a) for this result. �

A Ferrers diagram is a graphical representation of a partition. Given a par-
tition λ = (λ1, λ2, . . . , λp), such that λi ∈ Z

+ and λ1 ≥ λ2 ≥ . . . ≥ λp, the Ferrers
diagram is constructed by drawing λi boxes in the i:th row, keeping all rows left
justified. The lower part of Figure 9 shows an example.

Lemma 3.2. There is a bijection λ between E and Ferrers diagrams which fit
inside the diagram (n − 1, n − 2, . . . , 1).

Proof. Take the path ∆(σ) and rotate it 45 degrees counter-clockwise. Align the
left border of (n−1, n−2, . . . , 1) with the first NE step and the upper border with
the last SE step. Removing the first and the last step of the path and interpreting
the remaining path as the contour of a diagram λ(σ) yields the bijection. �

Finally, from Dyck paths there is an obvious bijection to (non-crossing) perfect
matchings. An NE step corresponds to an opening, left, parenthesis and an SE step
corresponds to a closing parenthesis. Figure 9 shows an example of the presented
bijections.

Using these bijections, we may interchangeably use edge sets, Dyck paths, Fer-
rers diagrams or matchings when we describe the configurations on the sides of
Tn. We will use the common term pattern for all of these. Since there is also
a matching associated with the lower side of Tn, we may think of the triangle as
labelled by three patterns.

For Ferrers diagrams, we have a natural partial order, namely inclusion of dia-
grams. This extends to the other objects as well. Specifically, for Dyck paths, the
partial order becomes that of one path being weakly below another.

3.2. Rhombus tilings. Given σ and τ we will now look at the remaining two re-
gions of non-fixed vertices on each side Tn. In these regions, each vertex is incident
to at least one fixed edge. The counting of these configurations can therefore be
turned into a rhombus tiling enumeration problem. The two triangulated regions
are shown in Figure 10. The shaded triangles belong to the left (or right) region
if and only if the corresponding vertical edge is not in σ (or τ).
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e2

e3

e5

e7

()(()()())

λ(σ) = (3, 2, 1, 1)

∆

λ

σ = {2, 3, 5, 7}
(2n, 0)(0, 0)

Figure 9. The images of {2, 3, 5, 7} ∈ E under the presented bijections.

m − 3n − 2k + 4

n − 1

n − 1

2k − 1

n − 1

n − 1

Figure 10. R(λ(σ), n − 1, 2k − 1) and R(λ(τ), n − 1, m − 3n − 2k + 4)

The enumeration of rhombus tilings of such pentagonal regions has been carried
out by Caselli, Krattenthaler, Lass and Nadeau in [4]. Following their notation,
we will call the left region R(λ(σ), n− 1, 2k − 1) and the right region R(λ(τ), n−
1, m − 3n − 2k + 4).

A semi-standard Young tableau (SSYT for short) is a Ferrers diagram in
which each box is labelled with an integer so that the rows of the diagram are
weakly increasing and the columns are strictly increasing. Let λ be a SSYT and
(i, j) ∈ λ be a box at position (i, j). Let SSY T (λ, N) denote the number of SSYT
with entries in [N ]. Let λ′ denote the transpose of λ. The hook length, hλ

i,j, is
defined to be λi + λ′

j − i − j + 1.
Caselli, Krattenthaler, Lass and Nadeau prove the following theorem.
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Theorem 3.3. The number of rhombus tilings of the region R(λ, d, h) is given by
SSY T (λ, d + h) where

SSY T (λ, N) =
∏

(i,j)∈λ

j − i + N

hλ
i,j

.

To see that there is no overcounting involved in these regions, consider Figure 11
which corresponds to the right triangulated region. It is clear that the pattern of
fixed edges forces 1′, 2′ and 3′ to be connected to vertices from the set {1, . . . , 15}
and i′ to be connected to vertices from the set {i− 2, . . . , 15} for i > 3. Since two
loops can’t cross and all vertices must be fixed we conclude that any completion
of Figure 11 must connect 1 to 1′, . . . , 11 to 11′ and the two free vertices of
{12, 13, 14, 15} (after fixing τ) to 12′ and 13′ respectively.

3’

4’
5’

6’
7’

8’
9’

10’
11’

12’
13’

1’
2’

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15

Figure 11. A part of the fixed edge graph of Figure 7.

Let a(σ, π, τ) be the number of configurations of the triangle Tn such that the
vertical edges on the sides are σ and τ and the matching on the external edges in
the triangle is π. After separating the problem into Tn and the triangulated regions
in Figure 10, using Theorem 3.3, we can express total number of configurations as

An+m

(

(π)m

)

=
∑

σ,τ∈
Q

2n

SSY T (λ(σ), n + 2k − 2)a(σ, π, τ)SSY T (λ(τ), m − 2n − 2k + 3). (4)

Here we have taken the liberty of summing over σ, τ ∈
∏

2n since a(σ, π, τ) = 0
unless the edge sets σ and τ both correspond to matchings.

Thus, what remains to study in expression (4) are the numbers a(σ, π, τ). We
will see that Conjecture 3.1 generalises to the triangular domain Tn and that in
this setting we get more general conjectures of the type observed by Zuber in [27].
This will include a conjecture for the case of HTFPL configurations.

The condition m ≥ 3n may look like a restriction, but the next two results,
conjectured by Zuber in [27], and partially proven by Caselli, Krattenthaler, Lass
and Nadeau in [4] indicates that this is likely to be an artificial restriction. Let
λ = λ(π), λ′ = λ(π′) and let |λ(π)| denote the number of boxes in the Ferrers
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diagram associated to the matching π. Let dim λ denote the dimension of the
representation of the symmetric group S|λ| labelled by λ.

Theorem 3.4 (Caselli, Krattenthaler, Lass and Nadeau). For m ≥ 0,

An+m

(

(π)m

)

=
1

|λ|!
Pλ(m)

where Pλ(m) is a polynomial of degree |λ| with coefficients in Z and its highest
degree coefficient is equal to dim λ.

Thus, if we know an expression, polynomial in m, for An+m

(

(π)m

)

, m ≥ 3n,
then we can draw the conclusion that this expression holds for all m ≥ 0.

The second theorem concerns the situation when the pattern is composed of two
patterns, π ∈

∏

2n and π′ ∈
∏

2n′ separated by m arches. In this case, however,
the restriction to large m has not yet been successfully removed.

Theorem 3.5 (Caselli, Krattenthaler, Lass and Nadeau). For m ≥
3n − n′,

An+n′+m

(

(π)mπ′
)

=
1

|λ|!

1

|λ′|!
Pλ,λ′(m)

where Pλ,λ′(m) is a polynomial of degree |λ| + |λ′| with coefficients in Z and its
highest degree coefficient is equal to dim λ dim λ′

Conjecture 3.3. Theorem 3.5 is true for all m ≥ 0.

Note. Both Theorem 3.4 and Theorem 3.5 are given here in the form conjec-
tured in [27]. They were proven in a more explicit form, similar to our sum in (4).
Conjecture 3.3 was a part of Zuber’s original conjecture and is still open.

The following lemma was referred to when we were proving the bijection from
E to Dyck paths. It was also proven in [4, Lemma 4.1].

Lemma 3.6 (Caselli, Krattenthaler, Lass and Nadeau). Let π, τ ∈
∏

2n.

(a) If λ(τ) 6⊆ λ(π), then a(σ, π, τ) = 0 for all σ ∈
∏

2n.
(b) a(0n, π, π) = 1 and a(σ, π, π) = 0 for all σ 6= 0n.

Lemma 3.6 can of course be used on either side of the triangle by switching the
roles of σ and τ . An additional restriction on σ and τ is given by the following
lemma. We present and prove it here. It gives certain restrictions on the A-
matrices presented in Section 3.3, but we will not need it in the remainder of this
paper.

Lemma 3.7. Let π, σ, τ ∈
∏

2n. If |λ(σ)| + |λ(τ)| > |λ(π)|, then a(σ, π, τ) = 0.

Proof. Assume 4|m and let k = m/4. As polynomials in m, the leading terms
of X(σ, m) := SSY T (λ(σ), n + m/2 − 2) and Y (τ, m) := SSY T (λ(τ), m − 2n −
m/2 + 3) have positive coefficients and degrees |λ(σ)| and |λ(τ)| respectively.
For a given π ∈

∏

2n choose σ, τ ∈
∏

2n for which a(σ, π, τ) 6= 0 and such that
M := |λ(σ)| + |λ(τ)| is maximal. Since a(σ, π, τ) > 0 we have

[mM ]
∑

σ,τ∈
Q

2n
,|λ(σ)|+|λ(τ)|=M

X(σ, m)a(σ, π, τ)Y (τ, m) > 0.
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Since M was maximal, deg(An+m

(

(π)m

)

) = M , and according to Theorem 3.4 we
have M = λ(π). We conclude that if we choose σ and τ so that |λ(σ)| + |λ(τ)| >
|λ(π)| = M , then a(σ, π, τ) = 0. �

3.3. The matrices A, B and C. To continue the study of the numbers a(σ, π, τ)
we will find it convenient to arrange these in matrices. Define the two C(n)×C(n)
matrices A = A(σ) = {a(σ, β, α)}α,β and Ā = Ā(π) = {a(α, π, β)}α,β where C(n)
are the Catalan numbers. To do this we need to fix an order on the rows and
columns. We have a partial order ≤ on the patterns (inclusion with respect to
the Ferrers diagram) in which 0n ≤ π ≤ 1n for all π. Now choose any of the
extensions of this partial order to a linear order and denote this linear order by
≤p. We will order the rows of A top-down and the columns from left to right by
≤p. The rows and columns of Ā are ordered in the same way.

The numbers An+m

(

(π)m

)

are expressed in (4) in terms of three regions. Now,
instead of Tn, we choose the region in Figure 12 as the middle part. We call

Figure 12. The extended region T ′
3

this extended region T ′
n. The triangulated regions in Figure 10 will remain the

same, except that in the right part the length m− 3n− 2k +4 will be replaced by
m− 3n− 2k + 3 to compensate for the larger T ′

n. Let a′(α, π, β) be the number of
configurations on T ′

n with pattern σ on the left, π on the lower and τ on the right,
extended border. We define matrices A′ and Ā′ analogously to A and Ā above,
with the same order on the rows and columns.

We will show that the operation of extending Tn to T ′
n is a linear operation on

the matrices A and Ā and we will describe the matrix of this operation explicitly.
For this we introduce the following annotated Dyck path.

Definition 3.1. A marked Dyck path is a pair (P, i) where P is a Dyck path
and 1 ≤ i ≤ n − 1 is an integer.

Intuitively, the additional integer indicates a position on the Dyck path. More
precisely, it indicates the i:th descending edge from the right. There are two types
of simple moves that can be performed on (P, i), see Figure 13(a) and (b). The
first is to simply increase the position by one, i.e, (P, i) 7→ (P, i + 1). The other is
to remove a peak of P which is located at position i, (P, i) 7→ (P ′, i). These two
simple moves determines a partial order on the marked Dyck paths.

Definition 3.2. (P, i) ≤ (Q, j) if and only if (Q, j) can be formed from (P, i) by
a sequence of simple moves.

Now define the matrix B as

B = {Bαβ} where Bαβ =

{

1 if (β, 1) ≤ (α, i) for some i,

0 otherwise.
(5)
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(a)

(b)

Figure 13. Simple moves on marked Dyck paths.

B is by definition an upper-triangular 0/1-matrix with 1 on the main diagonal. It
is defined in terms of a partial order, but information is lost when the position is
forgotten so B itself does in general not describe a partial order. The following
proposition states that B is the matrix of our extension operation.

Proposition 3.8. A′(σ) = BA(σ) and Ā′(π) = BĀ(π) for all π and σ.

Proof. Figure 14(a) shows the extended part of a configuration. The pattern
τ = {e1, e2, e5, e7} is the pattern on the extended boundary and τ ′ is the pattern
on the boundary of T5.

(a) (b)

τ ′ e1

e7

e5

e2

τ

f1f2f3f4f5f6f7f8

f8

f7

f6

f5

f4

f3

f2
f1

e7 e5 e2 e1

τ ′

τ

Figure 14. The extended part of T ′
5.

To see if τ and τ ′ may be connected by valid edge configurations and in how
many ways this can be done, we pass once again to the rhombus tiling problem.
This region is shown in Figure 14(b). If we regard the dotted edges of τ ′ as part of
this graph, we see that the edges of τ separate the region into 2-connected blocks
with an additional edge to the right in case e1 ∈ τ . In order for these blocks to
be tilable, we need to remove one dotted edge in each of them. In terms of edge
sets this corresponds to including one edge in τ ′ for each block. Thus, for each
consecutive pair ei, ej ∈ τ we must have an edge fk ∈ τ ′ such i ≤ k < j and
additionally, for the highest edge el ∈ τ we must have fk ∈ τ ′ with l ≤ k < 2n−1.

Translated to simple moves on marked Dyck paths, moving the marker corre-
sponds to letting k = i (or k = l) in the aforementioned description while k > i
(or k > l) corresponds to removing a sequence of boxes followed by moving the
marker. �
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The extension of Tn to T ′
n can of course be made to the left instead of to the

right. This operation sends Ā(π) 7→ Ā(π)BT . In the case when π is symmetric,
it is obvious that extending to the right or to the left is equivalent, i.e, BĀ(π) =
Ā(π)BT . We conjecture that this is true in general.

Conjecture 3.4. For all π,

BĀ(π) = Ā(π)BT .

We are now ready to present our main conjecture.

Conjecture 3.5. Let C = A(0n)−1BA(0n). Then, C is integer valued, upper-
triangular and

(a) BA(σ) = A(σ)C, ∀σ ∈
∏

2n.
(b) Cα1n = 1, ∀α ∈

∏

2n.

Lemma 3.6(a) gives the upper-triangularity of A(0n) and Lemma 3.6(b) shows
that the main diagonal of A(0n) contains all ones. This implies that A(0n)−1 is
upper-triangular and integral and finally the same holds for C due to the upper-
triangularity and integrality of B. Conjecture 3.5 has been shown to be true for
n ≤ 5 by explicit calculation of the matrices involved.

Example 3.1. Let n = 3,

σ0 := ((())) = 03, σ1 := (()()), σ2 := ()(()), σ3 := (())(), σ4 := ()()() = 13

and order the patterns in
∏

6 by the rule σi ≤p σj when i ≤ j. Explicit calculations
give the matrices A(σ), B and C.

A(σ0) =













1 4 6 6 17
0 1 3 4 13
0 0 1 0 4
0 0 0 1 3
0 0 0 0 1













A(σ1) =













0 1 4 3 13
0 0 1 1 7
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0













A(σ2) =













0 0 0 1 4
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













A(σ3) =













0 0 1 0 3
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













A(σ4) =













0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













B =













1 1 1 0 0
0 1 1 1 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1













C =













1 1 0 0 1
0 1 1 1 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1













(6)

Matrices for n = 2 and n = 4 are given in Appendix A.
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3.4. A set of commuting matrices. Before we investigate the consequences of
Conjecture 3.5 we will take a look at the following set of matrices. Let

M(σ) := A(σ)A−1(0). (7)

We have observed that the multiplication of these M-matrices seems to have a
nice combinatorial description and that these matrices seem to commute.

Example 3.2. Figure 15 shows two M-matrix multiplications expressed as sums of
M-matrices. The first is for n = 4 and the second for n = 5. The patterns are
given as Ferrers diagrams. In particular, for all patterns α in the sums, we note
that |λ(α)| = |λ(σ)| + |λ(σ′)|. We also note that all terms occur with positive
coefficients.

M( )M( ) =M( ) + M( ) + M( ).

M( )M( ) = 2M( ) + M( ) + M( )

+M( ) + M( ).) + M(

Figure 15. Observed sum rules for M-matrices.

For i = 0, . . . , n − 1, let

σi := (()i())n−i. (8)

We conjecture the following basic rule for the decomposition of the multiplication.

Conjecture 3.6. Let σ ∈
∏

2n. Then,

M(σ)M(σi) =
∑

α:Bασ=1 and |α|−|σ|=i

M(α). (9)

In other words, the sum is taken over all patterns which can be reached from σ
by simple moves while removing a total of i peaks (or adding i boxes when seen
as Ferrers diagrams.)

We are interested in extending this decomposition, and in particular find integer
coefficients Dα

σσ′ such that

M(σ)M(σ′) =
∑

α∈
Q

2n

Dα
σσ′M(α). (10)

for all σ′ ∈
∏

2n. This can in fact be accomplished by the following inductive
argument. We will temporarily assume a partial order ≤t on

∏

2n where σ ≤t τ if

• σ = τ , or
• σ has strictly fewer columns than τ , or
• σ and τ have the same number of columns, but σ has fewer boxes in its

rightmost column.
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Let σ′ ∈
∏

2n be a diagram with more than one column and assume that we have
determined Dα

σβ for all α ∈
∏

2n and β <t σ′. Let σ′
∗ denote σ′ with its rightmost

column removed and let l denote the length of this column. Then we can use (9)
to decompose M(σ′

∗)M(σl) and have

M(σ′) = M(σ′
∗)M(σl) −

∑

β<tσ′

Dβ
σ′

∗
σl

M(β) (11)

Thus,

M(σ)M(σ′) =
(

M(σ)M(σ′
∗)

)

M(σl) −
∑

β<tσ′

Dβ
σ′

∗
σl

M(σ)M(β) =

∑

γ

Dγ
σσ′

∗

M(γ)M(σl) −
∑

β<tσ′,α

Dβ
σ′

∗
σl

Dα
σβM(α) =

∑

γ,δ

Dγ
σσ′

∗

Dδ
γσl

M(δ) −
∑

β<tσ′,α

Dβ
σ′

∗
σl

Dα
σβM(α) =

∑

α

(

∑

γ

Dγ
σσ′

∗

Dα
γσl

−
∑

β<tσ′

Dβ
σ′

∗
σl

Dα
σβ

)

M(α). (12)

Since σ′
∗, σl <t σ′, we have determined Dα

σσ′ in the last row of (12).
We note the close resemblance between Conjecture 3.6 and (a dual version of)

Pieri’s rule (see for example [21]), the difference being that we force containment
in the staircase diagram (n− 1, . . . , 2, 1). Starting from Pieri’s rule and extending
to all diagrams, one obtains the Littlewood–Richardson coefficients, Cα

σσ′ .
This immediately leads us to the following description of the D-coefficients.

Proposition 3.9. Conjecture 3.6 implies that for all σ, σ′, α ∈
∏

2n,

Dα
σσ′ = Cα

σσ′

The positivity of the D-coefficients follow from Proposition 3.9 (conditioned on
the truth of Conjecture 3.6). We also have the following.

Proposition 3.10. Conjecture 3.6 implies that for all σ, σ′ ∈
∏

2n,

M(σ)M(σ′) = M(σ′)M(σ). (13)

Proof. This can either be taken as a corollary of Proposition 3.9 and the symmetry
of the Littlewood–Richardson coefficients or by noting that Conjecture 3.6 imme-
diately gives M(σi)M(σj) = M(σj)M(σi) and extend this basic relation with an
argument similar to that which was used to produce the D-coefficients. �

The most interesting consequence of Conjecture 3.6 is the following.

Proposition 3.11. Conjecture 3.6 and Conjecture 3.4 implies Conjecture 3.5(a).

Proof. Note that Conjecture 3.4 implies

BA(0n) =

n−1
∑

i=0

A(σi)
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where σi are defined in (8). By right multiplication with A−1(0) we have

B =
n−1
∑

i=0

M(σi)

which, by Proposition 3.10 means that BM(σ) = M(σ)B. Finally, we multiply
this expression on the right by A(0) to obtain

BA(σ) = M(σ)BA(0) = A(σ)
(

A−1(0)BA(0)
)

.

�

3.5. Consequences of Conjecture 3.5. We will now derive some consequences
of the previous sections. They are given in Propositions 3.12, 3.13 and 3.14 and
are all conditioned on the truth of Conjecture 3.5.

Proposition 3.12. Conjecture 3.5(a) implies the following equality.

An+m

(

(π)m

)

=
∑

α∈
Q

2n

CαπAn+m−1

(

(α)m−1

)

. (14)

Proof. Note that a(σ, π, τ) = A(σ)τπ. To make the calculations clearer, let X(σ) :=
SSY T (λ(σ), n + 2k − 2) and Y (τ, m) := SSY T (λ(τ), m− 2n− 2k + 3). We then
have

An+m

(

(π)m

)

=
∑

σ,τ∈
Q

2n

X(σ)A(σ)τπY (τ, m) =

∑

σ,τ∈
Q

2n

X(σ)
(

BA(σ)
)

τπ
Y (τ, m − 1) =

∑

σ,τ∈
Q

2n

X(σ)
(

A(σ)C
)

τπ
Y (τ, m − 1) =

∑

α∈
Q

2n

∑

σ,τ∈
Q

2n

X(σ)A(σ)ταCαπY (τ, m − 1) =

∑

α∈
Q

2n

CαπAn+m−1

(

(α)m−1

)

.

�

Proposition 3.12 provides a summation formula for the configuration numbers
in terms of configurations of size one less. If we choose π = 1n and also assume
Conjecture 3.5(b), the relation (14) turns into Zuber’s Conjecture 3.2. In addition,
Proposition 3.12 provides conjectured sums for any π on the left-hand side.

Next, we will look at another type of pattern. Let π ∈
∏

2n and π′ ∈
∏

2n′.
Then (π)mπ′ consists of the patterns π and π′ separated by m arches. We can
follow the same reasoning as before except that we will not be able to remove the
bound on m.

Assume that n ≥ n′ and that m ≥ 3n − n′. We place the pattern so that π
is on the lower boundary (k = 1). The restriction on m forces π′ to be located
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on the upper boundary. The fixed edge graph for such a placement is shown in
Figure 16.

z }| {

π′

| {z }

π

Figure 16. The fixed edge graph when n = 3, n′ = 2, m = 15 and
k = 1.

We now have two triangular regions, Tn and Tn′ . The regions between these
two, on which can apply rhombus tilings are different from those in the previous
case. They are shown in Figure 17.

m + n′ − 3n − 2k + 4

2k − 1

n + n′ − 2

n + n′ − 2

m − n − n′ − 2k + 4

2(k + n − n′) − 1

Figure 17. Rhombus tiling regions for matchings (π)mπ′.

We get the following proposition.

Proposition 3.13. Let n, n′ > 0, m ≥ 3n − n′ and π, π′ ∈
∏

2n. Then, Conjec-
ture 3.5(a) implies the following equality.

An+n′+m

(

(π)mπ′
)

=
∑

α∈
Q

2n
,β∈

Q

2n′

CαπC ′
βπ′An+m−1

(

(α)m−1β
)

. (15)
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Proof. The enumeration of tilings of the regions in Figure 17 was carried out by
Caselli, Krattenthaler, Lass and Nadeau in [4]. Here, we simply write X(σ, τ, m)
for the number of tilings of the left region, where σ is the lower pattern, and τ
the upper one. We write similarly Y (σ, τ, m) for the number of tilings of the right
region. Let B′ and C ′ be the matrices of size n′×n′ corresponding to the matrices
B and C. The calculations follow the same pattern as those for Proposition 3.12.

An+n′+m

(

(π)mπ′
)

=
∑

σ,τ∈
Q

2n
,σ′,τ ′∈

Q

2n′

X(σ, τ ′, m)An(σ)τπY (τ, σ′, m)An′(σ′)τ ′π′ =

∑

σ,τ∈
Q

2n
,σ′,τ ′∈

Q

2n′

X(σ, τ ′, m − 1)
(

BAn(σ)
)

τπ
Y (τ, σ′, m − 1)

(

B′An′(σ′)
)

τ ′π′
=

∑

σ,τ∈
Q

2n
,σ′,τ ′∈

Q

2n′

X(σ, τ ′, m − 1)
(

An(σ)C
)

τπ
Y (τ, σ′, m − 1)

(

An′(σ′)C ′
)

τ ′π′
=

∑

α,σ,τ∈
Q

2n
,β,σ′,τ ′∈

Q

2n′

X(σ, τ ′, m − 1)An(σ)ταCαπY (τ, σ′, m − 1)An′(σ′)τ ′βC
′
βπ′ =

∑

α∈
Q

2n
,β∈

Q

2n′

CαπC ′
βπ′An+n′+m−1

(

(α)m−1β
)

.

�

The validity of Conjecture 3.5(a) and by that the validity of (15) would prove
some of the sums conjectured by Zuber in [27]. The second part of his Conjecture 9
would follow, using π = 1n, π′ = ()(()) and m = 1. Also, on page 12 of [27], the
three identities would follow using π = 1n, m = p and π′ = ()(), π′ = ()(()) or
π′ = ()()() respectively. The matrix C encodes the systematics of these sums,
which Zuber was asking for.

Example 3.3. For n ≤ 5, and π, π′ ∈
∏

2n we know that Conjecture 3.5(a) holds
and therefore also (15). An example of such a sum is given in Figure 18.

= + − +

+ − ++

m m − 1 m − 1 m − 1 m − 1

m − 1 m − 1 m − 1 m − 1

Figure 18. Sum rule for π = (())(()), π′ = ()(()).

We conclude this section with an application of Conjecture 3.5 to half-turn
symmetric configurations.
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Proposition 3.14. Let n > 0, m ≥ 3n−n′ and π ∈
∏

2n. Then, Conjecture 3.5(a)
implies the following equality.

AHT
n+m

(

(π)mπ
)

=
∑

α∈
Q

2n

CαπAHT
n+m−1

(

(α)m−1α
)

(16)

Proof. The matchings are of the form (π)mπ, similar to the previous case. But
here, due to the symmetry, there is only one pattern π and the two rhombus tiled
regions are identified, leading to simplified calculations.

AHT
n+m

(

(π)mπ
)

=
∑

σ,τ∈
Q

2n

X(σ, τ, m)A(σ)τπ

∑

σ,τ∈
Q

2n

X(σ, τ, m − 1)
(

BA(σ)
)

τπ

∑

σ,τ∈
Q

2n

X(σ, τ, m − 1)
(

A(σ)C
)

τπ

∑

α∈
Q

2n

∑

σ,τ∈
Q

2n

X(σ, τ, m − 1)A(σ)ταCαπ =

∑

α∈
Q

2n

CαπAHT
2n+m−1

(

(α)m−1α
)

�

4. Open problems

In this section we briefly present some of the many interesting open problems
related to Conjecture 3.5.

The matrix C is given explicitly in Section 3 for n = 3 and in Appendix A
for n = 2 and n = 4. Implicitly it’s given by A−1(0n)BA(0n) or, conditioned on
Conjecture 3.4, by A−1(0n)

∑n−1
i=0 A(σi).

Problem 1. Find a direct, combinatorial description of C, not involving the in-
verse of the A(0n) matrix.

The relations (14) and (15) involve one, respectively two patterns separated by
nested arches. A question one could ask is if something similar can be observed
for three or more patterns.

Problem 2. Find a relation between configurations with patterns of the form
(π)m(π′)m′(π′′)m′′ and sums of configurations of smaller sizes where the matrix C
from Conjecture 3.5 shows up.

The final open problem that we mention is the restriction to m ≥ 3n − n′ in
Propositions 3.13 and 3.14. As was mentioned, this comes from the still unresolved
Conjecture 3.3 by Zuber.

Problem 3. Prove Conjecture 3.3.
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Appendix A. Matrices

For n = 2, there is only one possible ordering of the 2 patterns. The matrices
are as follows.

A(02) =

(

1 2
0 1

)

A(12) =

(

0 1
0 0

)

B =

(

1 1
0 1

)

C =

(

1 1
0 1

)

For n = 4 we give the matrices A(04), B and C. We used the following order on
the patterns in

∏

8. (((()))) ≤ ((()())) ≤ (()(())) ≤ ()((())) ≤ ((())()) ≤ (()()()) ≤
()(()()) ≤ (())(()) ≤ ()()(()) ≤ ((()))() ≤ (()())() ≤ ()(())() ≤ (())()() ≤ ()()()().

A(04) =















































1 6 15 20 15 60 95 50 165 20 95 180 165 534
0 1 5 10 6 31 64 40 139 15 80 171 160 556
0 0 1 4 0 6 25 15 66 0 15 65 60 271
0 0 0 1 0 0 6 0 15 0 0 15 0 60
0 0 0 0 1 5 10 10 34 6 31 64 65 225
0 0 0 0 0 1 4 5 21 0 6 25 31 135
0 0 0 0 0 0 1 0 5 0 0 6 0 31
0 0 0 0 0 0 0 1 4 0 0 0 6 25
0 0 0 0 0 0 0 0 1 0 0 0 0 6
0 0 0 0 0 0 0 0 0 1 5 10 10 34
0 0 0 0 0 0 0 0 0 0 1 4 5 21
0 0 0 0 0 0 0 0 0 0 0 1 0 5
0 0 0 0 0 0 0 0 0 0 0 0 1 4
0 0 0 0 0 0 0 0 0 0 0 0 0 1















































B =















































1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 1 1 0 1 1 1 1 0 0 0 0 0
0 0 0 1 0 0 1 0 1 0 0 0 0 0
0 0 0 0 1 1 1 0 0 1 1 1 0 0
0 0 0 0 0 1 1 1 1 0 1 1 1 1
0 0 0 0 0 0 1 0 1 0 0 1 0 1
0 0 0 0 0 0 0 1 1 0 0 0 1 1
0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1














































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C =















































1 1 0 0 0 1 0 1 0 0 0 1 0 1
0 1 1 0 1 1 0 −1 0 0 0 0 0 1
0 0 1 1 0 1 1 0 0 0 0 0 1 1
0 0 0 1 0 0 1 0 0 0 0 0 0 1
0 0 0 0 1 1 0 0 1 1 1 0 0 1
0 0 0 0 0 1 1 1 1 0 1 1 1 1
0 0 0 0 0 0 1 0 1 0 0 1 0 1
0 0 0 0 0 0 0 1 1 0 0 0 1 1
0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1















































Explicit calculations of A(σ) for n = 4 and the case when n = 5 has also been
carried out and are available by request from the author.


