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COMBINATORIAL ASPECTS OF ELLIPTIC CURVES

GREGG MUSIKER

Abstract. Given an elliptic curve C, we study here Nk = #C(Fqk), the number of
points of C over the finite field Fqk . This sequence of numbers, as k runs over positive
integers, has numerous remarkable properties of a combinatorial flavor in addition
to the usual number theoretical interpretations. In particular, we prove that Nk =
−Wk(q,−N1), where Wk(q, t) is a (q, t)-analogue of the number of spanning trees
of the wheel graph. Additionally we develop a determinantal formula for Nk, where
the eigenvalues can be explicitly written in terms of q, N1, and roots of unity. We
also discuss here a new sequence of bivariate polynomials related to the factorization
of Nk, which we refer to as elliptic cyclotomic polynomials because of their various
properties.
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1. Introduction

An interesting problem at the cross-roads between combinatorics, number theory,
and algebraic geometry, is that of counting the number of points on an algebraic curve
over a finite field. Over a finite field, the locus of solutions of an algebraic equation is a
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discrete subset, but since they satisfy a certain type of algebraic equation this imposes
a lot of extra structure beneath the surface. One of the ways to detect this additional
structure is by looking at field extensions: the infinite sequence of cardinalities is
only dependent on a finite set of data. Specifically the number of points over Fq, Fq2 ,
. . . , and Fqg will be sufficient data to determine the number of points on a genus g
algebraic curve over any other algebraic field extension. This observation motivates
the question of how the points over higher field extensions correspond to points over
the first g extensions.

To see this more clearly, we specialize to the case of elliptic curves, where g = 1,
and examine the expressions for Nk, the number of points on C over Fqk , as functions
of q and N1. It follows from the well-known rationality of the zeta function that

(1) Nk(q, N1) = 1 + qk − αk
1 − αk

2,

where α1 and α2 are the two roots of the quadratic 1−(1+q−N1)T+qT 2. Additionally,
we observe, see Theorem 1, that

(2) Nk(q, N1) are integral polynomials whose coefficients alternate in sign.

In this paper, we use formulas arising from (1) and (2) to connect elliptic curves
to several different areas of combinatorics. Specifically, (1) implies that the family
of polynomials 1 + qk − Nk are Chebyshev polynomials of the first kind, a well-
studied example of orthogonal polynomials. In Section 4, we describe this perspective
in further detail. Alternatively, we can interpret statement (1) as the plethystic
expression Nk = pk[1+q−α1−α2], where the pk’s are the power symmetric functions.
In summary, we exploit both the fields of orthogonal polynomials and symmetric
functions to illustrate numerous identities involving the Nk’s.

Moreover, we find that the polynomial expressions for Nk due to (2) are related to a
(q, t)-deformation of the Lucas numbers (Theorem 2), and also lead to a combinatorial
interpretation involving spanning trees of the wheel graph (Theorem 3). Thus the
aforementioned identities also indicate properties of the Lucas numbers and spanning
trees as well.

Using these new combinatorial interpretations for Nk, we develop further properties
of this sequence, obtaining determinantal formulas (Theorem 5), as well as formulas
involving a certain bivariate version of the Fibonacci polynomials (Theorem 4). An-
other surprising by-product of our analysis is a factorization of Nk into a new sequence
of polynomials, which we refer to as elliptic cyclotomic polynomials. Both of these
families of polynomials are interesting in their own right and have numerous prop-
erties which justify their names. We give a geometric interpretation of the elliptic
cyclotomic polynomials as Theorem 7 and close with some combinatorial identities
involving this new family of expressions.



COMBINATORIAL ASPECTS OF ELLIPTIC CURVES 3

2. Nk as an alternating sum

The zeta function of a curve C is defined to be the exponential generating function

(3) Z(C, T ) = exp

( ∑
k≥1

Nk
T k

k

)
.

A result due to Weil [22] is that the zeta function of a curve is rational with specific
formula given as

(4) Z(C, T ) =
(1− α1T )(1− α2T ) · · · (1− α2gT )

(1− T )(1− qT )
.

Here g is the genus of curve C, and the numerator is sometimes written as L(C, T ), a
degree 2g polynomial with integer coefficients. Moreover when E is an elliptic curve,
Z(E, T ) can be expressed as

1− (α1 + α2)T + α1α2T
2

(1− T )(1− qT )
.

The zeta function of a curve also satisfies a functional equation which in the elliptic
case is simply equivalent to

α1α2 = q.

Among other things, (3) and (4) imply that Nk = 1+qk−αk
1−αk

2−· · ·−αk
2g, which

can be written in plethystic notation as pk[1 + q − α1 − α2]. We describe symmetric
functions and plethystic notation in more depth in Section 3. In the case that E is a
curve of genus one and k = 1 we get

α1 + α2 = 1 + q −N1.

Hence we can rewrite the zeta function Z(E, T ) totally in terms of q and N1 and as
a consequence, all the Nk’s are actually dependent on these two quantities. The first
few formulas are given below:

N2 = (2 + 2q)N1 −N2
1 ,

N3 = (3 + 3q + 3q2)N1 − (3 + 3q)N2
1 + N3

1 ,

N4 = (4 + 4q + 4q2 + 4q3)N1 − (6 + 8q + 6q2)N2
1 + (4 + 4q)N3

1 −N4
1 ,

N5 = (5 + 5q + 5q2 + 5q3 + 5q4)N1 − (10 + 15q + 15q2 + 10q3)N2
1

+ (10 + 15q + 10q2)N3
1 − (5 + 5q)N4

1 + N5
1 .

This data gives rise to the following observation of Adriano Garsia.

Theorem 1.

Nk =
k∑

i=1

(−1)i−1Pi,k(q)N
i
1,

where the Pi,k’s are polynomials with positive integer coefficients.
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This theorem is proved by Garsia using induction and the fact that the sequence of
Nk’s satisfy a simple recurrence. For the details, see [7, Chap. 7]. This result motivates
the combinatorial question: what are the objects that the family of polynomials,
{Pi,k}, enumerate? We answer this question in due course in multiple ways, thus
providing an alternate, combinatorial, proof of Theorem 1.

2.1. The Lucas numbers and a (q, t)-analogue.

Definition 1. Let S
(n)
1 be the circular shift of set S ⊆ {1, 2, . . . , n} modulo n, i.e.,

element x ∈ S
(n)
1 if and only if x − 1 ( mod n ) ∈ S. We define the (q, t)-Lucas

polynomials to be the sequence of polynomials in variables q and t

(5) Ln(q, t) =
∑

S⊆{1,2,...,n} : S∩S
(n)
1 =∅

q#even elements in S tb
n
2
c−#S.

Note that this sum is over subsets S with no two numbers circularly consecutive.

These polynomials are a generalization of the sequence of Lucas polynomials Ln

which have the initial conditions L1 = 1, L2 = 3 (or L0 = 2 and L1 = 1) and satisfy
the Fibonacci recurrence Ln = Ln−1 + Ln−2. The first few Lucas numbers are

1, 3, 4, 7, 11, 18, 29, 47, 76, 123, . . .

As described in numerous sources, e.g. [1], Ln is equal to the number of ways to color
an n-beaded necklace black and white so that no two black beads are consecutive.
You can also think of this as choosing a subset of {1, 2, . . . , n} with no consecutive
elements, nor the pair 1, n. (We call this circularly consecutive.) Thus letting q and
t both equal one, we get by definition that Ln(1, 1, ) = Ln.

We prove the following theorem, which relates our newly defined (q, t)-Lucas poly-
nomials to the polynomials of interest, namely the Nk’s.

Theorem 2. We have

(6) 1 + qk −Nk = L2k(q,−N1)

for all k ≥ 1.

To prove this result it suffices to prove that both sides are equal for k ∈ {1, 2}, and
that both sides satisfy the same three-term recurrence relation. Since

L2(q, t) = 1 + q + t

and
L4(q, t) = 1 + q2 + (2q + 2)t + t2,

we have proven that the initial conditions agree. Note that the sets of (5) yielding
the terms of these sums are respectively

{1}, {2}, { } and {1, 3}, {2, 4}, {1}, {2}, {3}, {4}, { }.
It remains to prove that both sides of (6) satisfy the recursion

Gk+1 = (1 + q −N1)Gk − qGk−1

for k ≥ 1.
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Proposition 1. For the (q, t)-Lucas polynomials Lk(q, t) defined as above,

(7) L2k+2(q, t) = (1 + q + t)L2k(q, t)− qL2k−2(q, t).

Proof. To prove this we actually define an auxiliary set of polynomials, {L̃2k}, such
that

L2k(q, t) = tkL̃2k(q, t
−1).

Thus recurrence (7) for the L2k’s translates into

(8) L̃2k+2(q, t) = (1 + t + qt)L̃2k(q, t)− qt2L̃2k−2(q, t)

for the L̃2k’s. The L̃2k’s happen to have a nice combinatorial interpretation also,
namely

L̃2k(q, t) =
∑

S⊆{1,2,...,2k} : S∩S
(2k)
1 =∅

q#even elements in S t#S.

Recall our slightly different description which considers these as the generating func-
tion of 2-colored, labeled necklaces. We find this terminology slightly easier to work
with. We can think of the beads labeled 1 through 2k + 2 to be constructed from a
pair of necklaces; one of length 2k with beads labeled 1 through 2k, and one of length
2 with beads labeled 2k + 1 and 2k + 2.

Almost all possible necklaces of length 2k + 2 can be decomposed in such a way
since the coloring requirements of the 2k + 2 necklace are more stringent than those
of the pairs. However not all necklaces can be decomposed this way, nor can all pairs
be pulled apart and reformed as a (2k + 2)-necklace. For example, if k = 2:

Decomposable

1 2

3

45

6

→

6

5 4

3

21

Not Decomposable

1 2

3

45

6

6→

6

5 4

3

21

In these figures, the first necklace is decomposable but the second one is not since
black beads 1 and 4 would be adjacent, thus violating the rule. It is clear enough



6 GREGG MUSIKER

that the number of pairs is L̃2(q, t)L̃2k(q, t) = (1 + t + qt)L̃2k(q, t). To get the third
term of the recurrence, i.e., qt2L̃2k−2, we must define linear analogues, F̃n(q, t)’s, of
the previous generating function. Just as the L̃n(1, 1)’s were Lucas numbers, the
F̃n(1, 1)’s are Fibonacci numbers.

Definition 2. The (twisted) (q, t)-Fibonacci polynomials, denoted as F̃n(q, t), are
defined as

F̃k(q, t) =
∑

S⊆{1,2,...,k−1} : S∩(S
(k−1)
1 −{1})=∅

q#even elements in S t#S.

The summands here are subsets of {1, 2, . . . , k − 1} such that no two elements are
linearly consecutive, i.e., we now allow a subset with both the first and last elements.
An alternate description of the objects involved are as (linear) chains of k − 1 beads
which are black or white with no two consecutive black beads. With these new
polynomials at our disposal, we can calculate the third term of the recurrence, which
is the difference between the number of pairs that cannot be recombined and the
number of necklaces that cannot be decomposed.

Lemma 1. The number of pairs that cannot be recombined into a longer necklace is
2qt2F̃2k−2(q, t).

Proof. We have two cases: either both 1 and 2k + 2 are black, or both 2k and 2k + 1
are black. These contribute a factor of qt2, and imply that beads 2, 2k, and 2k+1 are
white, or that 1, 2k− 1, and 2k + 2 are white, respectively. In either case, we are left
counting chains of length 2k− 3, which have no consecutive black beads. In one case
we start at an odd-labeled bead and go to an evenly labeled one, and the other case
is the reverse, thus summing over all possibilities yields the same generating function
in both cases. �

Lemma 2. The number of (2k + 2)-necklaces that cannot be decomposed into a 2-
necklace and a 2k-necklace is qt2F̃2k−3(q, t).

Proof. The only ones that cannot be decomposed are those which have beads 1 and
2k both black. Since such a necklace would have no consecutive black beads, this
implies that beads 2, 2k− 1, 2k +1, and 2k +2 are all white. Thus we are reduced to
looking at chains of length 2k − 4, starting at an odd, 3, which have no consecutive
black beads. �

Lemma 3. The difference of the quantity referred to in Lemma 2 from the quantity
in Lemma 1 is exactly qt2L̃2k−2(q, t).

Proof. It suffices to prove the relation

qt2L̃2k−2(q, t) = 2qt2F̃2k−2(q, t)− qt2F̃2k−3(q, t),

which is equivalent to

(9) qt2L̃2k−2(q, t) = qt2F̃2k−2(q, t) + q2t3F̃2k−4(q, t),

since

(10) F̃2k−2(q, t) = qtF̃2k−4(q, t) + F̃2k−3(q, t).
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Note that identity (10) simply comes from the fact that the (2k − 2)nd bead can be
black or white. Finally we prove (9) by dividing by qt2, and then breaking it into the
cases where bead 1 is white or black. If bead 1 is white, we remove that bead and cut
the necklace accordingly. If bead 1 is black, then beads 2 and 2k + 2 must be white,
and we remove all three of the beads. �

With this lemma proven, the recursion for the L̃2k’s, hence the L2k’s follows imme-
diately. �

Proposition 2. For an elliptic curve C with Nk points over Fqk we have that

1 + qk+1 −Nk+1 = (1 + q −N1)(1 + qk −Nk)− q(1 + qk−1 −Nk−1).

Proof. Recalling that for an elliptic curve C we have the identity

Nk = 1 + qk − αk
1 − αk

2,

we can rewrite the statement of this proposition as

(11) αk+1
1 + αk+1

2 = (α1 + α2)(α
k
1 + αk

2)− q(αk−1
1 + αk−1

2 ).

Noting that q = α1α2 we obtain this proposition after expanding out algebraically
the right-hand-side of (11). �

With the proof of Propositions 1 and 2, we have proven Theorem 2.

2.2. (q, t)-Wheel polynomials. Given that the Lucas numbers are related to the
polynomial formulas Nk(q, N1), a natural question concerns how alternative interpre-
tations of the Lucas numbers can help us better understand Nk. As noted in [1], [14],
and [18, Seq. A004146], the sequence {L2n − 2} counts the number of spanning trees
in the wheel graph Wn; a graph which consists of n + 1 vertices, n of which lie on a
circle and one vertex in the center, a hub, which is connected to all the other vertices.

We note that a spanning tree T of Wn consists of spokes and a collection of dis-
connected arcs on the rim. Further, since there are no cycles and T is connected,
each spoke intersects exactly one arc. (Since it will turn out to be convenient in the
subsequent considerations, we make the – somewhat counter-intuitive – convention
that an isolated vertex is considered to be an arc of length 1, and more generally, an
arc consisting of k vertices is considered as an arc of length k.) We imagine the circle
being oriented clockwise, and imagine the tail of each arc being the vertex which is
the sink for that arc. In the case of an isolated vertex, the lone vertex is the tail
of that arc. Since the spoke intersects each arc exactly once, if an arc has length k,
meaning that it contains k vertices, there are k choices of where the spoke and the arc
meet. We define the q-weight of an arc to be qnumber of edges between the spoke and the tail,
abbreviating this exponent as spoke − tail distance. We define the q-weight of the
tree to be the product of the q-weights for all arcs on the rim of the tree. This
combinatorial interpretation motivates the following definition.

Definition 3.

Wn(q, t) =
∑

T a spanning tree of Wn

qsum of spoke−tail distance in T t# spokes of T .
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Here the exponent of t counts the number of edges emanating from the central vertex,
and the exponent of q is as above.

q2t3

dist = 1

dist = 1

dist = 0

q3t3

dist = 0

dist = 1

dist = 2

This definition actually provides exactly the generating function that we desired.

Theorem 3.
Nk = −Wk(q,−N1)

for all k ≥ 1.

Notice that this yields an exact interpretation of the Pi,k polynomials as follows:

Pi,k(q) =
∑

T a spanning tree of Wn with exactly i spokes

qsum of spoke−tail distance in T .

We prove this theorem in two different ways. The first method utilizes Theorem 2
and an analogue of the bijection given in [1] which relates perfect and imperfect
matchings of the circle of length 2k and spanning trees of Wk. Our second proof
uses the observation that we can categorize the spanning trees based on the sizes
of the various connected arcs on the rims. Since this categorization corresponds to
partitions, this method exploits formulas for decomposing power symmetric function
pk into a linear combination of hλ’s, as described in Section 2.4.

2.3. First proof of Theorem 3: Bijective. There is a simple bijection between
subsets of {1, 2, . . . , 2n} with size at most n− 1 as well as no two elements circularly
consecutive and spanning trees of the wheel graph Wn. We use this bijection to give
our first proof of Theorem 3. The bijection is as follows:

Given a subset S of the set {1, 2, . . . , 2n − 1, 2n} with no circularly consecutive
elements, we define the corresponding spanning tree TS of Wn (with the correct q and
t weight) in the following way:

1) We use the convention that the vertices of the graph Wn are labeled so that the
vertices on the rim are w1 through wn, and the central vertex is w0.

2) We exclude the two subsets which consist of all the odds or all the evens from
this bijection. Thus we only look at subsets which contain n− 1 or fewer elements.

3) For 1 ≤ i ≤ n, an edge exists from w0 to wi if and only if neither 2i − 2 nor
2i− 1 (element 0 is identified with element 2n) is contained in S.

4) For 1 ≤ i ≤ n, an edge exists from wi to wi+1 (wn+1 is identified with w1) if and
only if element 2i− 1 or element 2i is contained in S.
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 Or 
Elt  6

Elt  5

Elt  4
 Or 

Elt  3

Elt  2

Elt  1
 Or 

Not   5

Not   4

Not   3

Not   2

And 
Not   6

Not   1

And 

And 

{ }
←→

{
3

}
←→

{
2, 5

}
←→

Proposition 3. Given this construction, TS is in fact a spanning tree of Wn and
further, tree TS has the same q-weights and t-weights as set S.

Proof. Suppose that set S contains k elements. From our above restriction, we have
that 0 ≤ k ≤ n−1. Since S is a k-subset of a 2n element set with no circularly consec-
utive elements, there are (n− k) pairs {2i− 2, 2i− 1} with neither element in set S,
and k pairs {2i − 1, 2i} with one element in set S. Consequently, subgraph TS con-
sists of exactly (n − k) + k = n edges. Since n = (# vertices of Wn) − 1, to prove
TS is a spanning tree, it suffices to show that each vertex of Wn is included. For
every oddly-labeled element of {1, 2, . . . , 2n}, i.e., 2i − 1 for 1 ≤ i ≤ n, we have the
following rubric:

1) If (2i− 1) ∈ S then the subgraph TS contains the edge from wi to wi+1.
2) If (2i − 1) 6∈ S and additionally (2i − 2) 6∈ S, then TS contains the spoke from

w0 to wi.
3) If (2i − 1) 6∈ S and additionally (2i − 2) ∈ S, then TS contains the edge from

wi−1 to wi.
Since one of these three cases happens for all 1 ≤ i ≤ n, vertex wi is incident to an
edge in TS. Also, the central vertex, w0, has to be included since by our restriction,
0 ≤ k ≤ n− 1, there are (n− k) ≥ 1 pairs {2i− 2, 2i− 1} which contain no elements
of S.

The number of spokes in TS is (n − k) which agrees with the t-weight of a set S
with k elements. Finally, we prove that the q-weight is preserved, by induction on
the number of elements in the set S. If set S has no elements, the q-weight should
be q0, and spanning tree TS will consist of n spokes which also has q-weight q0.
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Now given a k element subset S (0 ≤ k ≤ n − 2), it is only possible to adjoin an
odd number if there is a sequence of three consecutive numbers starting with an even,
i.e., {2i − 2, 2i − 1, 2i}, which is disjoint from S. Such a sequence of S corresponds
to a segment of TS where a spoke and tail of an arc intersect. (Note this includes the
case of vertex wi being an isolated vertex.)

In this case, subset S ′ = S ∪ {2i − 1} corresponds to TS′ , which is equivalent to
spanning tree TS except that one of the spokes w0 to wi has been deleted and replaced
with an edge from wi to wi+1. The arc corresponding to the spoke from wi will now
be connected to the next arc, clockwise. Thus the distance between the spoke and
the tail of this arc will not have changed, hence the q-weight of TS′ will be the same
as the q-weight of TS.

Alternatively, it is only possible to adjoin an even number to S if there is a sequence
{2i − 1, 2i, 2i + 1} which is disjoint from S. Such a sequence of S corresponds to a
segment of TS where a spoke meets the end of an arc. (Note this includes the case of
vertex wi being an isolated vertex.)

Here, subset S ′′ = S ∪ {2i} corresponds to TS′′ , which is equivalent to spanning
tree TS except that one of the spokes w0 to wi+1 has been deleted and replaced with
an edge from wi to wi+1. The arc corresponding to the spoke from wi+1 will now be
connected to the previous arc, clockwise. Thus the cumulative change to the total
distance between spokes and the tails of arcs will be an increase of one, hence the
q-weight of TS′′ will be q1 times the q-weight of TS.

Since any subset S can be built up this way from the empty set, our proof is
complete via this induction. �

Since the two sets we excluded, of size k had (q, t)-weights q0t0 and qkt0 respectively,
we have proven Theorem 3.

2.4. Second proof of Theorem 3: Via generating function identities. For
our second proof of Theorem 3, we consider writing the zeta function as an ordinary
generating function instead, i.e.,

(12) Z(C, T ) = 1 +
∑
k≥1

HkT
k.

In such a form, the Hk’s are positive integers which enumerate the number of effective
C(Fq)-divisors of degree k, as noted in several places, such as [13].

Proposition 4.

(13) Nk =
∑
λ`k

(−1)l(λ)−1 k

l(λ)

(
l(λ)

d1, d2, . . . dm

) l(λ)∏
i=1

Hλi
.

Proof. Comparing formulas (3) and (12) for Z(C, T ) and taking logarithms, we obtain

Nk

k
= log Z(C, T )

∣∣∣∣
T k

= log

(
1 +

∑
n≥1

HnT
n

)∣∣∣∣
T k
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=
∑
m≥1

(−1)m−1

( ∑k
n=1 HnT

n

)m

m

∣∣∣∣
T k

.

To obtain the coefficient of T k in

(14)

(
H1T + H2T

2 + · · ·+ HkT
k

)m

,

we first select a partition of k with length `(λ) = m. In other words, λ is a vector
of positive integers satisfying λ1 ≥ λ2 ≥ · · · ≥ λm. Each occurrence of λi = j in this
partition corresponds to choosing summand HjT

j in the ith term in product (14).
Secondly, since the order of these terms does not matter, we include multinomial
coefficients. Finally, multiplying through by k yields formula (13) for Nk. �

Remark 1. The same manipulations done above for the generating functions are anal-
ogous to identities which relate the power symmetric functions and homogeneous
symmetric functions. See for example [5], [12], or [20, pg. 21]. This is no coincidence,
and in particular the terminology of plethysm provides a rigorous connection between
symmetric functions and the enumeration of points on curves. See Section 3 below,
[7], or [15] for more details on plethysm and this connection.

Remark 2. The above algebraic reasoning can also be translated into a combinatorial
description of how points on C over Fqk can be enumerated using inclusion-exclusion,
and points over smaller extension fields. See [15, Chap. 4] for more details.

We now specialize to the case of g = 1. Here we can write Hk in terms of N1 and
q. We expand the series

(15) Z(E, T ) =
1− (1 + q −N1)T + qT 2

(1− T )(1− qT )
= 1 +

N1T

(1− T )(1− qT )

with respect to T , and obtain H0 = 1 and Hk = N1(1 + q + q2 + · · ·+ qk−1) for k ≥ 1.
Plugging these into formula (13), we get polynomial formulas for Nk in terms of q
and N1

Nk =
∑
λ`k

(−1)l(λ)−1 k

l(λ)

(
l(λ)

d1, d2, . . . dk

)( l(λ)∏
i=1

(1 + q + q2 + · · ·+ qλi−1)

)
N

l(λ)
1 .

Consequently, Theorem 3 is true if and only if we can replace N1 with −t and then
multiply by (−1) and get a true expression for Wk, the (q, t)-weighted number of
spanning trees on the wheel graph Wk. We thus provide the following combinatorial
argument for the required formula.

Proposition 5.

(16) Wk =
∑
λ`k

k

l(λ)

(
l(λ)

d1, d2, . . . dk

)( l(λ)∏
i=1

(1 + q + q2 + · · ·+ qλi−1)

)
tl(λ).
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Proof. We construct a spanning tree of Wk from the following choices: First we choose
a partition λ = 1d12d2 · · · kdm of k. We let this dictate how many arcs of each length
occur, i.e., we have d1 isolated vertices, d2 arcs of length 2, etc. Note that this choice
also dictates the number of spokes, which is equal to the number of arcs, i.e., the
length of the partition.

Second, we pick an arrangement of the l(λ) arcs on the circle. After picking one
arc to start with, without loss of generality since we are on a circle, we have

1

l(λ)

(
l(λ)

d1, d2, . . . dm

)
choices for such an arrangement. Third, we pick which vertex wi of the rim to start
with. There are k such choices. Fourth, we pick where the l(λ) spokes actually
intersect the arcs. There are |arc| choices for each arc, and the q-weight of this sum
is (1 + q + q2 + · · ·+ q|arc|) for each arc. Summing up all the possibilities yields (16)
as desired. �

Thus we have given a second proof of Theorem 3.

3. More on bivariate Fibonacci polynomials via duality

In this section we explore further properties of various sequences of coefficients
arising from the zeta function of a curve, and also more properties regarding bivariate
Fibonacci polynomials. Our tools for such investigations consists of two different
manifestations of duality.

3.1. Duality between the symmetric functions hk and ek. Given the usefulness
of symmetric functions in discovering the identities described by Propositions 4 and
5, we now illustrate further applications of the plethystic view of the zeta function.

The symmetric functions that we utilize in this paper are the power symmetric
functions pk, the complete homogeneous symmetric functions hk, and the elementary
symmetric functions ek. Given the alphabet {x1, x2, . . . , xn}, each of these can be
written as

pk = xk
1 + xk

2 + · · ·+ xk
n,

hk =
∑

0≤i1,i2,...,in≤k

i1+i2+···+in=k

xi1
1 xi2

2 · · ·xin
n , and

ek =
∑

1≤i1<i2<···<ik≤n

xi1xi2 · · ·xik .

In general, a plethystic substitution of a formal power series F (t1, t2, . . . ) into a sym-
metric polynomial A(x), denoted as A[E], is obtained by setting

A[E] = QA(p1, p2, . . . )|pk→E(tk1 ,tk2 ,... ),

where QA(p1, p2, . . . ) gives the expansion of A in terms of the power sums basis {pα}α.
The main example of this technique that we use is Nk = pk[1+q−α1−α2−· · ·−α2g]
for a genus g curve.

To begin, we use the following well-known symmetric function identity
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∏
k∈I

1

1− tkT
= exp

( ∑
n≥1

pn
T n

n

)
=

∑
n≥0

hnT
n

=
1∑

n≥0(−1)nenT n
,

where hn, pn, and en are symmetric functions in the variables {tk}k∈I . [20, pgs. 21,
296] The zeta function Z(C, T ) is equal to all of these for a certain choice of {tk}k∈I
and consequently, we get that

(17) Z(C, T ) =
1∑

k≥0(−1)kEk · T k
,

where Ek = ek[1 + q − α1 − α2 − · · · − α2g].

Remark 3. Like the Nk’s and Hk’s, the Ek’s also have an algebraic geometric inter-
pretation, namely Ek equals the signed number of positive divisors D of degree k
on curve C such that no prime divisor appears more than once in D. This follows
from the reciprocity between hk and ek which is analogous to the reciprocity between
choose and multi-choose, i.e., choice with replacement.

Recall that in Section 2.1, we defined F̃k(q, t), i.e., the twisted (q, t)-Fibonacci poly-
nomials. Here we define Fk(q, t), an alternative bivariate analogue of the Fibonacci
numbers. The definition of Fk(q, t) is identical to that of F̃k(q, t) except for the
weighting of parameter t.

Definition 4. We define the (q, t)-Fibonacci polynomials to be the sequence of
polynomials in variables q and t given by

Fk(q, t) =
∑

S⊆{1,2,...,k−1} : S∩(S
(k−1)
1 −{1})=∅

q#even elements in S td
k
2
e−#S.

From this definition we obtain the following formulas for the Ek’s in the elliptic
case.

Theorem 4. If C is a genus one curve, and the Ek’s are as above, then for n ≥ 1,
E−n = 0, E0 = 1, and

En = (−1)nF2n−1(q,−N1),

where Ek and Fk(q, t) are as defined above.

The expansions for the first several Ek’s, i.e., F2k−1(q, t)’s, are given below.

E1 = N1,

E2 = −(1 + q)N1 + N2
1 ,

E3 = (1 + q + q2)N1 − (2 + 2q)N2
1 + N3

1 ,

E4 = −(1 + q + q2 + q3)N1 + (3 + 4q + 3q2)N2
1 − (3 + 3q)N3

1 + N4
1 ,
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E5 = (1 + q + q2 + q3 + q4)N1 − (4 + 6q + 6q2 + 4q3)N2
1 + (6 + 9q + 6q2)N3

1

− (4 + 4q)N4
1 + N5

1 .

Before proving Theorem 4 we develop two key propositions.

Proposition 6. F2n+1(q, t) = (1 + q + t)F2n−1(q, t)− qF2n−3(q, t) for n ≥ 2.

Proof. This follows the similar logic as the proof of Proposition 1 except we can use
a more direct method. (One can use the t-weighting of the twisted (q, t)-Fibonacci
polynomials instead to see this recursion more clearly, but we omit this detour.) The
polynomial F2n+1 is a (q, t)-enumeration of the number of chains of 2n beads, with
each bead either black or white, and no two consecutive beads both black. Similarly
(1 + q + t)F2n−1 enumerates the concatenation of such a chain of length 2n− 2 with
a chain of length 2. One can recover a legal chain of length 2n this way except in
the case where the (2n − 2)nd and (2n − 1)st beads are both black. Such cases are
enumerated by qF2n−3 and this completes the proof. �

Proposition 7. (−1)n+1En+1 = (1 + q −N1)(−1)nEn − q(−1)n−1En−1 for n ≥ 2.

Proof. One can prove this via plethysm, but it also follows directly from the generating
function for the En’s which is given by∑

n≥0

(−1)nEnT
n =

(1− T )(1− qT )

1− (1 + q −N1)T + qT 2
.

The denominator of this series, also known as the series’ characteristic polynomial,
yields the desired linear recurrence for the coefficients of T n+1, whenever n+1 exceeds
the degree of the numerator. �

With these two propositions verified, we can also now prove Theorem 4.

Proof of Theorem 4. It is clear that E1 = −F1(q,−N1), E2 = F3(q,−N1), and E3 =
−F5(q,−N1). Propositions 6 and 7 show that both satisfy the same recurrence rela-
tions. Thus we have verified that

En = (−1)nF2n−1(q,−N1).

�

Remark 4. We can utilize plethysm and obtain results of a similar flavor to Propo-
sition 7, for example see Lemma 4 below. With this result in mind, we obtain the
following table of symmetric function ek and hk in terms of various alphabets.

poly. \ alphabet 1 + q − α1 − α2 1 + q α1 + α2

ek Ek e1 = 1 + q, e2 = q e1 = 1 + q −N1, e2 = q

hk Hk 1 + q + · · ·+ qk (−1)kEk+1/N1
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Notice that the formulas for ek[1 + q] and hk[1 + q] are precisely the N1 = 0 cases of
ek[α1 + α2] and hk[α1 + α2]. This should come at no surprise since 1 and q are the
two roots of T 2 − (1 + q)T + q.

Lemma 4. Letting Ek be defined as ek[1 + q − α1 − α2], where α1 and α2 are roots
of T 2 − (1 + q −N1)T + q, we obtain

hk[α1 + α2] = (−1)kEk+1/N1.

Proof. We have for n ≥ 2 that

N1En = En+1 + (1 + q)En + qEn−1

since (−1)n+1En+1 = (1+q−N1)(−1)nEn−q(−1)n−1En−1 by Proposition 7. However,
by

ek[A−B] =
k∑

i=0

ei[A](−1)k−ihk−i[B],

we get

En+1 = (−1)n+1

(
hn+1[α1 + α2]− (1 + q)hn[α1 + α2] + qhn−1[α1 + α2]

)
using A = 1 + q and B = α1 + α2. After verifying initial conditions and comparing
with

(−1)n+1En+1 = (−1)n+1En+2/N1 − (−1)n(1 + q)En+1/N1 + (−1)n−1qEn/N1,

we get

hn+1[α1 + α2] = (−1)n+1En+2/N1

by induction. �

We apply the above Hk–Ek (i.e., hk–ek) duality to obtain an exponential generating
function for the weighted number of spanning trees of the wheel graph,

W (q, N1, T ) = exp

( ∑
k≥1

Wk(q, N1)
T k

k

)
.

Using Wk = −Nk|N1→−N1 , and the fact this is an exponential, we use (15) to obtain

W (q, N1, T ) =
1

1− N1T
(1−qT )(1−T )

=
(1− qT )(1− T )

1− (1 + q + N1)T + qT 2
.

Also, rewriting W (q, t, T )as an ordinary generating function, we get

W (q, t, T ) =
∑
k≥0

Ek

∣∣∣∣
N1→−N1

(−T )k = 1 +
∑
k≥1

F2k−1(q, t)T
k.

We summarize our results as the following dictionary between elliptic curves and
spanning trees accordingly.
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Elliptic Curves Spanning Trees

Generating Function 1−(1+q−N1)T+qT 2

(1−qT )(1−T )
(1−qT )(1−T )

1−(1+q+N1)T+qT 2

Factors of 1− (1 + q ∓N1)T + qT 2 (1− α1T )(1− α2T ) (1− β1T )(1− β2T )

Nk (resp. Wk ) pk[1 + q − α1 − α2] pk[−1− q + β1 + β2]

Hk = N1(1 + q + · · ·+ qk−1) hk[1 + q − α1 − α2] (−1)k−1ek[−1− q + β1 + β2]

(−1)kEk = F2k−1(q,∓N1) (−1)kek[1 + q − α1 − α2] hk[−1− q + β1 + β2]

3.2. Duality between Lucas and Fibonacci numbers. In addition to the above
discussion of how Hk and Ek are dual, this dictionary also highlights a comparison
between elliptic curve–spanning tree duality and duality between Lucas numbers and
Fibonacci numbers. As an application, we obtain a formula for Ek, i.e., F2k−1(q, t),
in terms of the polynomial expansion for the L2k(q, t)’s. If we recall our definition

of Pi,k’s such that Nk =
∑k

i=1(−1)i+1Pi,k(q)N
i
1, or equivalently L2k(q, t) = 1 + qk +∑k

i=1 Pi,k(q)t
i, then we have the following identity.

Proposition 8. We have

Ek =
k∑

i=1

(−1)k+i · i

k
Pi,k(q)N

i
1.

Proof. We use the identities as above, and the fact that 1
Z(E,T )

=
∑

n≥0(−1)nEnT
n.

Thus we have

∑
n≥1

(−1)nEnT
n =

1

Z(E, T )
− 1 =

1

1 + N1T
(1−qT )(1−T )

− 1

=
∑
n≥1

(−1)n

(
N1T

(1− qT )(1− T )

)n

= −N1
∂

∂N1

∑
n≥1

(−1)n−1

n

(
N1T

(1− qT )(1− T )

)n

= −N1
∂

∂N1

(
log

(
1 +

N1T

(1− qT )(1− T )

))
= −N1

∂

∂N1

log

(
Z(E, T )

)
,
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which equals −N1
∂

∂N1

( ∑
k≥1

Nk

k
T k

)
. Rewriting the Nk’s using the polynomial for-

mulas of Theorem 1, we have

∑
n≥1

(−1)nEnT
n = −N1

∂

∂N1

( ∑
k≥1

1

k

k∑
i=1

(−1)i−1Pi,k(q)N
i
1T

k

)

=
∑
k≥1

k∑
i=1

i

k
(−1)iPi,k(q)N

i
1T

k.

Comparing the coefficients of T k on both sides completes the proof. �

Proposition 8 can also be given a combinatorial proof by the following lemma
which contrasts the circular nature of our combinatorial interpretation for the Lucas
numbers with the linear nature of the Fibonacci numbers.

Lemma 5. For 1 ≤ i ≤ k and 0 ≤ j ≤ i, we have the number, which we denote as
ci,j, of subsets S1 of {1, 2, . . . , 2k} with k − i− j odd elements, j even elements, and
no two elements circularly consecutive equals

k

i
·#

(
subsets S2 of {1, 2, . . . , 2k−2} with k−i−j odd elements, j even elements,

and no two elements consecutive

)
.

This notation might seem non-intuitive, but we use these indices so that the total
number of elements is k − i and the number of even elements is j. Thus the number
of subsets S1 (respectively S2) directly describes the coefficient of qjti in L2k(q, t)
(respectively F2k−1(q, t)).

Proof. To prove this result we note that there is a bijection between the number of
subsets of the first kind that do not contain 2k − 1 or 2k and those of the second
kind. Thus it suffices to show that the number of sets S1 which do contain element
2k − 1 or 2k is precisely fraction k−i

k
of all sets S1 satisfying the above hypotheses.

Circularly shifting every element of set S1 by an even amount r, i.e., ` 7→ ` +
r − 1 (mod 2k) + 1, does not affect the number of odd elements and even elements.
Furthermore, out of the k possible even shifts, (k− i) of the sets, i.e., the cardinality
of set S1, will contain 2k − 1 or 2k. This follows since for a given element ` there is
exactly one shift which makes it 2k−1 (or 2k) if ` is odd (or even), respectively. Since
elements cannot be consecutive, there is no shift that sends two different elements to
both 2k−1 and 2k simultaneously and thus we get the full (k− i) possible shifts. �

Using this relationship, we can derive formulas involving binomial coefficients for
Pi,k(q) using our combinatorial interpretation for the (q, t)-Lucas polynomials and
(q, t)-Fibonacci polynomials.
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Proposition 9. For k ≥ 1 and 1 ≤ i ≤ k, we have

Pi,k(q) =
i∑

j=0

k

i

(
k − 1− j

i− 1

)(
i + j − 1

j

)
qj.

Proof. See [23, Theorem 2.2] or [16, Theorem 3] which show by algebraic and com-
binatorial arguments, respectively, that the number of ways to choose a subset S ⊂
{1, 2, . . . , 2n} such that S contains q odd elements, r even elements, and no consecu-
tive elements is (

n− r

q

)(
n− q

r

)
.

Letting n = k − 1, q = k − i− j and r = j, we obtain

i

k
Pi,k(q) = F2k−1(q, N1)

∣∣∣∣
N i

1

=
i∑

j=0

(
k − 1− j

i− 1

)(
i + j − 1

j

)
qj.

�

Corollary 1. We have

Nk(q, N1) =
k∑

i=1

i∑
j=0

(−1)i+1 · k
i

(
k − 1− j

i− 1

)(
i + j − 1

j

)
N i

1 qj.

and

Ek =
k∑

i=1

i∑
j=0

(−1)k+i

(
k − 1− j

i− 1

)(
i + j − 1

j

)
N i

1 qj.

Remark 5. From the proof in Section 2.4, we have that

Wk(q, N1) =
∑
λ`k

k

l(λ)

(
l(λ)

d1, d2, . . . dr

)( l(λ)∏
i=1

(1 + q + q2 + · · ·+ qλi−1)

)
N

l(λ)
1

=
k∑

i=1

k

i

( ∑
λ`k

l(λ)=i

(
i

d1, d2, . . . dr

) i∏
j=1

(1 + q + q2 + · · ·+ qλj−1)

)
N i

1

which implies also that

Pi,k(q) =
k

i

∑
λ`k

l(λ)=i

(
i

d1, d2, . . . dr

) i∏
j=1

(1 + q + q2 + · · ·+ qλj−1).

Comparing the coefficients of this identity with the coefficients in Proposition 9 seems
to give a combinatorial identity that seems interesting in its own right.
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4. Factorizations of Nk

We now introduce a family of k-by-k matrices Mk which, for elliptic curves, yield
a determinantal formula for Nk in terms of q and N1.

Theorem 5. Let M1 = [−N1], M2 =

[
1 + q −N1 −1− q
−1− q 1 + q −N1

]
, and for k ≥ 3, let

Mk be the k-by-k “three-line” circulant matrix
1 + q −N1 −1 0 . . . 0 −q
−q 1 + q −N1 −1 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . −q 1 + q −N1 −1 0
0 . . . 0 −q 1 + q −N1 −1
−1 0 . . . 0 −q 1 + q −N1

 .

The sequence of integers Nk = #C(Fqk) satisfies the relation

Nk = − det Mk for all k ≥ 1.

We provide two proofs of this theorem, one which utilizes the three term recurrence
from Section 2.1, and one which introduces a new sequence of polynomials which are
interesting in their own right.

4.1. Connection to orthogonal polynomials. Recall from the zeta function of an
elliptic curve, Z(E, T ), we derived a three term recurrence relation for the sequence
{Gk = 1 + qk −Nk}:
(18) Gk+1 = (1 + q −N1)Gk − qGk−1.

Such a relation is indicative of an interpretation of the (1 + qk −Nk)’s as a sequence
of orthogonal polynomials. In particular, any sequence of orthogonal polynomials,
{Pk(x)}, satisfies

(19) Pk+1(x) = (akx + bk)Pk(x) + ckPk−1(x),

where ak, bk and ck are constants that depend on k ∈ N. Additionally, it is customary
to initialize P−k(x) = 0, P0(x) = 1, and P1(x) = a0x + b0.

Since we can think of the bivariate Nk(q, N1) as univariate polynomials in variable
N1 with constants from field Q(q), it follows that recurrence (18) is a special case
of recurrence (19), therefore {Pk(x)}∞k=1 = {(1 + qk − Nk)(N1)}∞k=1 are a family of
orthogonal polynomials. In particular, we plug in the following values for the ak, bk,
and ck’s:

ak = −1 for k ≥ 0

bk = 1 + q for k ≥ 0,

c1 = −2q and

ck = −q for k ≥ 2.

(Note that we take c1 to be −2q since G0 = 1+q0−N0 = 2, but we wish to normalize
so that P0(x) = 1.)
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In fact, the family {1+qk−Nk}∞k=1 can be described in terms of a classical sequence
of orthogonal polynomials. Namely Tk(x) denotes the kth Chebyshev (Tchebyshev)
polynomials of the first kind, which are defined as cos(kθ) written out in terms of x
such that θ = arccos x. Equivalently, we can define Tk(x) as the expansion of αk +βk

in terms of powers of cos θ, where

α = cos θ + i sin θ

β = cos θ − i sin θ.

Theorem 6. Considering the (1 + qk − Nk)’s as univariate polynomials in N1 over
the field Q(q), we obtain

1 + qk −Nk = 2qk/2Tk

(
(1 + q −N1)/2q

1/2

)
.

Proof. We note that Chebyshev polynomials satisfy initial conditions T0(x) = 1, and
T1(x) = x and the three-term recurrence

Tk+1(x) = 2xTk(x)− Tk−1(x)

for k ≥ 1 since

Tk+1(x) = αk+1 + βk+1

= (α + β)(αk + βk)− αβ(αk−1 + βk−1)

= 2 cos θ Tk(x)− Tk−1(x)

= 2xTk(x)− Tk−1(x).

Let x = 1+q−N1

2

√
q. Clearly Theorem 6 holds for k = 1, and additionally, by Propo-

sition 1, the 1+qk−Nk

2qk/2 ’s satisfy the same recurrence as the Tk(x)’s. Namely

1 + qk+1 −Nk+1

2q(k+1)/2
=

(1 + q −N1)(1 + qk −Nk)− q(1 + qk−1 −Nk−1)

2q(k+1)/2

= 2

(
1 + q −N1

2q1/2

)(
1 + qk −Nk

2qk/2

)
−

(
1 + qk−1 −Nk−1

2q(k−1)/2

)
.

�

Another way to foresee the appearance of Chebyshev polynomials is by noting that
in the case that we plug in q = 0 or q = 1, we obtain a family of univariate polynomials
Ñk with the property Ñmk = Ñm(Ñk) = Ñk(Ñm). It is a fundamental theorem of
Chebyshev polynomials that families of univariate polynomials with such a property
are very restrictive. In particular, from [2] as described on page 33 of [4]: If {Ñk} is
a sequence of integral univariate polynomials of degree k with the property

Ñmn = Ñm(Ñn) = Ñn(Ñm)

for all positive integers m and n, then Ñk must either be a linear transformation of

(1) xk or
(2) Tk(x), the Chebyshev polynomial of the first kind,
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where a linear transformation of a polynomial f(x) is of the form

A · f
(

(x−B)/A

)
+ B or equivalently

(
f(Ax + B)−B

)/
A.

In particular, we get formulas forWk(0, N1) andWk(1, N1) (respectively Nk(0, N1)
and Nk(1, N1)) which are indeed linear transformations of xk and Tk(x) respectively.

Proposition 10. We have

Nk(0, N1) = −(1−N1)
k + 1,(20)

Nk(1, N1) = −2Tk(−N1/2 + 1) + 2.(21)

Proof. The coefficient of Nm
1 in Wk(0, N1) is the number of directed rooted spanning

trees of Wk with m spokes and arcs always directed counter-clockwise. In particular,
it is only the placement of the spokes that matter at this point since the placement
of the arcs is now forced. Thus the coefficient of Nm

1 in Wk(0, N1) is
(

k
m

)
for all

1 ≤ m ≤ k. Thus the generating function Wk(0, N1) satisfies

Wk(0, N1) = (1 + N1)
k − 1

since the constant term of Wk(0, N1) is zero. Use of the relation Nk(q, N1) =
−Wk(q,−N1) completes the proof in the q = 0 case. We also note that −(1−x)k + 1
is a linear transformation of xk via A = −1 and B = 1. The case for q = 1 is a
corollary of Theorem 6. �

4.2. First proof of Theorem 5: Using orthogonal polynomials. As an appli-
cation of Theorem 6, we use the theory of orthogonal polynomials to learn properties
of the (1 + qk−Nk)’s. For example, one of the properties of a sequence of orthogonal
polynomials is an interpretation as the determinants of a family of tridiagonal k-byk
matrices.

Proposition 11. We have

1 + qk −Nk

= det



1 + q −N1 −2q 0 0 0 0
−1 1 + q −N1 −q 0 0 0
0 −1 1 + q −N1 −q 0 0
...

...
...

. . . . . . 0
0 0 0 · · · 1 + q −N1 −q
0 0 0 · · · −1 1 + q −N1

 .

We denote this matrix as M ′
k.
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Proof. Given a sequence of orthogonal polynomials satisfying P0(x) = 1, P1(x) =
a0x + b0 and recurrence (19), we have the formula [10]

Pk(x) = det



a0x + b0 c1 0 0 0 0
−1 a1x + b1 c2 0 0 0
0 −1 a2x + b2 c3 0 0
...

...
...

. . . . . . 0
0 0 0 · · · ak−2x + bk−2 ck

0 0 0 · · · −1 ak−1x + bk−2

 .

Plugging in the ai, bi, and ci’s as in Section 4.1 yields the formula. �

Remark 6. Alternatively, we can use symmetric functions and the Newton Identities
[20] to obtain these determinant identities, as described in [7, Chap. 7] or [15, Chap. 5].

We can prove Theorem 5 via Proposition 11 followed by an algebraic manipulation
of matrix Mk. Namely, by using the multilinearity of the determinant, and expansions
about the first row followed by the first column, we obtain

det(Mk) = det(Ak) + det(Bk) + det(Ck) + det(Dk),

where Ak, Bk, Ck, and Dk are the following k-by-k matrices:

Ak =



1 + q −N1 −1 0 0 0 0
−q 1 + q −N1 −1 0 0 0
0 −q 1 + q −N1 −1 0 0
...

...
...

. . . . . . 0
0 0 0 · · · 1 + q −N1 −1
0 0 0 · · · −q 1 + q −N1

 ,

Bk =



0 0 0 0 0 −q
−q 1 + q −N1 −1 0 0 0
0 −q 1 + q −N1 −1 0 0
...

...
...

. . . . . . 0
0 0 0 · · · 1 + q −N1 −1
0 0 0 · · · −q 1 + q −N1

 ,

Ck =



0 −1 0 0 0 0
0 1 + q −N1 −1 0 0 0
0 −q 1 + q −N1 −1 0 0
...

...
...

. . . . . . 0
0 0 0 · · · 1 + q −N1 −1
−1 0 0 · · · −q 1 + q −N1

 ,

Dk =



0 0 0 0 0 −q
0 1 + q −N1 −1 0 0 0
0 −q 1 + q −N1 −1 0 0
...

...
...

. . . . . . 0
0 0 0 · · · 1 + q −N1 −1
−1 0 0 · · · −q 1 + q −N1

 .
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Cyclic permutation of the rows of Bk and the columns of Ck yield upper-triangular
matrices with −1’s (respectively −q)’s on the diagonal. Given that the sign of such a
cyclic permutation is (−1)k−1, we obtain det(Bk) + det(Ck) = −qk − 1. Additionally,
by expanding det(Dk) about the first row followed by the first column, we obtain
det(Dk) = −q det(Ak−2). In conclusion

1 + qk + det(Mk) = det(Ak)− q det(Ak−2).

After transposing M ′
k, by analogous methods we obtain

det M ′
k = det(Ak)− q det(Ak−2)

and thus the desired formula det Mk = −Nk.

4.3. Second proof of Theorem 5: Using the zeta function. Alternatively, we
note that we can factor

Nk = 1 + qk − αk
1 − αk

2

using the fact that q = α1α2. Consequently,

Nk = (1− αk
1)(1− αk

2)

and we can factor each of these two terms using cyclotomic polynomials. We recall
that (1− xk) factors as

1− xk =
∏
d|k

Cycd(x),

where Cycd(x) is a monic irreducible polynomial with integer coefficients. We can
similarly factor Nk as

Nk =
∏
d|k

Cycd(α1)Cycd(α2).

These factors are therefore bivariate analogues of the cyclotomic polynomials, and we
refer to them henceforth as elliptic cyclotomic polynomials, denoted as ECycd.

Definition 5. We define the elliptic cyclotomic polynomials to be a sequence of
polynomials in variables q and N1 such that for d ≥ 1,

ECycd = Cycd(α1)Cycd(α2),

where α1 and α2 are the two roots of

T 2 − (1 + q −N1)T + q.

We verify that they can be expressed in terms of q and N1 by the following proposition.

Proposition 12. Writing down ECycd in terms of q and N1 yields irreducible bi-
variate polynomials with integer coefficients.

Proof. Firstly we have

αj
1 + αj

2 = (1 + qj −Nj) ∈ Z
for all j ≥ 1 and expanding a polynomial in α1 multiplied by the same polynomial in
α2 yields terms of the form αi

1α
i
2(α

j
1 + αj

2). Secondly the quantity Nj is an integral
polynomial in terms of q and N1 by Theorem 1 and αi

1α
i
2 = qi. Putting these relations
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together, and the fact that Cycd is an integral polynomial itself, we obtain the desired
expressions for ECycd.

Now let us assume that ECycd is factored as F (q, N1)G(q, N1). The polynomial
Cycd(x) factors over the complex numbers as

Cycd(x) =
d∏

j=1

gcd(j,d)=1

(1− ωjx),

where ω is a dth root of unity. Thus F (q, N1) =
∏

i∈S(1− ωiα1)
∏

j∈T (1− ωjα2) for
some nonempty subsets S, T of elements relatively prime to d. The only way F can
be integral is if F equals its complex conjugate F . However, α1 and α2 are complex
conjugates by the Riemann hypothesis for elliptic curves [9, 17] (Hasse’s Theorem),
and thus F = F implies that the sets S and T are equal. Since Cycd(x) is known
to be irreducible, the only possibility is S = T = {j : gcd(j, d) = 1}, and thus
F (q, N1) = ECycd, G(q, N1) = 1. �

Remark 7. Alternatively, the integrality of the ECycd’s also follows from the Fun-
damental Theorem of Symmetric Functions that states that a symmetric polynomial
with integer coefficients can be rewritten as an integral polynomial in e1, e2, . . . . In
this case, Cycd(α1)Cycd(α2) is a symmetric polynomial in two variables so e1 =
α1 + α2 = 1 + q − N1, e2 = α1α2 = q, and ek = 0 for all k ≥ 3. Thus we obtain an
expression for ECycd as a polynomial in q and N1 with integer coefficients.

We can factor Nk, i.e., the ECycd’s even further, if we no longer require our ex-
pressions to be integral.

Nk =
k∏

j=1

(1− α1ω
j
k)(1− α2ω

j
k)

=
k∏

j=1

(1− (α1 + α2)ω
j
k + (α1α2)ω

2j
k )

= (−1)
k∏

j=1

(−ωk−j
k )(1− (1 + q −N1)ω

j
k + (q)ω2j

k )

= −
k∏

j=1

(
(1 + q −N1)− qωj

k − ωk−j
k

)
.

Furthermore, the eigenvalues of a circulant matrix are well-known, and involve roots
of unity analogous to the expression precisely given by the second equation above.
(For example Loehr, Warrington, and Wilf [11] provide an analysis of a more general
family of three-line-circulant matrices from a combinatorial perspective. Using their
notation, our result can be stated as

Nk = Φk,2(1 + q −N1,−q),
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where Φp,q(x, y) =
∏p

j=1(1 − xωj − yωqj) and ω is a primitive pth root of unity. It
is unclear how our combinatorial interpretation of Nk, in terms of spanning trees,
relates to theirs, which involves permutation enumeration.) In particular, we prove
Theorem 5 since det Mk equals the product of Mk’s eigenvalues, which are precisely
given as the k factors of −Nk in second equation above.

4.4. Combinatorics of elliptic cyclotomic polynomials. In this subsection we
further explore properties of elliptic cyclotomic polynomials, noting that they are
more than auxiliary expressions that appear in the derivation of a proof. To start
with, by Möbius inversion, we can use the identity

(22) Nk =
∏
d|k

ECycd(q, N1)

to define elliptic cyclotomic polynomials directly as

(23) ECyck(q, N1) =
∏
d|k

N
µ(k/d)

d

in addition to the alternative definition

(24) ECyck(q, N1) =
k∏

j=1

gcd(j,d)=1

(
(1 + q −N1)− qωj

k − ωk−j
k

)
.

In particular, ECyc1 = N1 and ECycp = Np/N1 if p is prime. To get a handle on
ECyck for k composite, we provide the following table for small values of k:

ECyc4 = N2
1 − (2 + 2q)N1 + 2(1 + q2)

ECyc6 = N2
1 − (1 + q)N1 + (1− q + q2)

ECyc8 = N4
1 − (4 + 4q)N3

1 + (6 + 8q + 6q2)N2
1 − (4 + 4q + 4q2 + 4q3)N1 + 2(1 + q4)

ECyc9 = N6
1 − (6 + 6q)N5

1 + (15 + 24q + 15q2)N4
1 − (21 + 36q + 36q2 + 21q3)N3

1

+ (18 + 27q + 27q2 + 27q3 + 18q4)N2
1

− (9 + 9q + 9q2 + 9q3 + 9q4 + 9q5)N1 + 3(1 + q3 + q6)

ECyc10 = N4
1 − (3 + 3q)N3

1 + (4 + 3q + 4q2)N2
1

− (2 + q + q2 + 2q3)N1 + (1− q + q2 − q3 + q4)

ECyc12 = N4
1 − (4 + 4q)N3

1 + (5 + 8q + 5q2)N2
1

− (2 + 2q + 2q2 + 2q3)N1 + (1− q2 + q4)

We note several commonalities among these polynomials, as described in the fol-
lowing propositions. These properties are further rationale for our choice of name for
this family of polynomials.

Proposition 13. We have

ECycd|N1=0 = C(d)Cycd(q)(25)
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ECycd|N1=2q+2 = C ′(d)Cycd(−q),(26)

where C(d) and C ′(d) are the functions from Z>0 to Z≥0 such that

C(d) =


0 if d = 1

p if d = pk for p prime

1 otherwise

and

C ′(d) =


−2 if d = 1

0 if d = 2

p if d = 2pk for p prime (including 2)

1 otherwise

.

Proof. In the case that N1 = 0, the characteristic quadratic equation factors as

1− (1 + q −N1)T + qT 2 = (1− T )(1− qT ).

Consequently, α1 = 1 and α2 = q in this special case. (Note this is strictly formal since
N1 = 0 is impossible, and thus it is not contradictory that the Riemann Hypothesis
fails.) Nonetheless, we still have ECycd = Cycd(α1)Cycd(α2), and consequently,

ECycd|N1=0 = Cycd(1)Cycd(q).

Finally the value of Cycd(1) equals the function defined as C(d) above [18, Seq. A020500].
For the reader’s convenience we also provide a simple proof of this equality. It is

clear that Cyc1(q) = 1− q and Cycp(q) = 1 + q + q2 + · · ·+ qp−1 so by induction on
k ≥ 1, assume that Cycpk(1) = p.

1− qpk

1− q
= 1 + q + q2 + · · ·+ qpk−1 =

k∏
j=1

Cycpj(q).

Plugging in q = 1, and by induction we get pk = pk−1 · Cycpk(1), thus we have

Cycpk(1) = p. We now proceed to show Cycd(1) = 1 if d = pk1
1 pk2

2 · · · pkr
r for any

r ≥ 2. For this we use k such that d|k. We assume k = p
k′1
1 p

k′2
2 · · · p

k′r
r .

1− qk

1− q
= 1 + q + q2 + · · ·+ qk−1

=

( k′1∏
j1=1

Cyc
p

j1
1

(q)

)( k′2∏
j2=1

Cyc
p

j2
2

(q)

)
· · ·

( k′r∏
jr=1

Cycpjr
r

(q)

)
×

( ∏
d is another divisor of k

Cycd(q)

)
.

The expression 1−qk

1−q

∣∣∣∣
q=1

equals k, and the first r products on the right-hand-side

equal p
k′1
1 , p

k′2
2 , . . . , p

k′r
r respectively. Thus the last set of factors, i.e., the cyclotomic

polynomials of d with two or more prime factors, must all equal the value 1.



COMBINATORIAL ASPECTS OF ELLIPTIC CURVES 27

We prove (26) analogously. When N1 = 2q + 2 (again this is strictly formal), the
characteristic equation factors as

1− (1 + q −N1)T + qT 2 = (1 + T )(1 + qT )

implying α1 = −1 and α2 = −q. Additionally, C ′(d) = Cycd(−1) was observed by
Ola Veshta on Jun 01 2001, as cited on [18, Seq. A020513]. �

Proposition 14. For d ≥ 2,

degN1
ECycd = degq ECycd = φ(d),

where the Euler φ function which counts the number of integers between 1 and d− 1
which are relatively prime to d.

Proof. As noted in Remark 7, we can write ECycd as an integral polynomial in
e1 = α1 + α2 = 1 + q − N1 and e2 = α1α2 = q. The highest degree of N1 in ECycd

is therefore equal to the highest degree of e1 = α1 + α2, which is the same as the
largest m such that αm

1 α0
2 (respectively α0

1α
m
2 ) is a term in Cycd(α1)Cycd(α2). Thus

degN1
ECycd(q, N1) = degα1

Cycd(α1) = φ(d). Analogously, the degree of q comes
from the highest power of (α1α2)

m in Cycd(α1)Cycd(α2). Thus we have shown

degq ECycd ≤ φ(d).

Equality follows from the first half of Proposition 13 when d ≥ 2 since the constant
term with respect to N1, which equals C(d)Cycd(q), has degree φ(d). �

Finally, if one examines the expressions for ECycd(q, N1), one notes that they
appear alternating in sign just as the polynomials for Nk, except for the constant
term which equals C(d)Cycd(q) by Proposition 13. More precisely, the author finds
the following empirical evidence for such a claim.

Proposition 15. For d between 2 and 104, we obtain

ECycd(q, N1) = Cycd(1) · Cycd(q) +

φ(d)∑
i=1

(−1)iQi,d(q)N
i
1,

where Qi,d is a univariate polynomial with positive integer coefficients.

However, the conjecture fails for d = 105. In particular, if we write

ECyc105(q, N1) = Cyc105(1) · Cyc105(q) +
48∑
i=1

(−1)iQi,105(q)N
i
1,

where the Qi,105(q)’s are univariate polynomials with integer coefficients, then Q2,105(q)
through Q48,105(q) indeed have positive integer coefficients as expected. However the
first univariate polynomial, i.e., the coefficient of −N1 is

Q1,105(q) = 24q47 + 47q46 + 69q45 + 69q44 + 69q43 + 50q42 + 32q41

− 2q40 − 18q39 − 33q38 − 33q37 − 33q36 − 21q35 − 10q34

+ 9q32 + 17q31 + 24q30 + 24q29 + 24q28 + 20q27 + 20q26 + 18q25 + 18q24

+ 18q23 + 18q22 + 20q21 + 20q20 + 24q19 + 24q18 + 24q17 + 17q16 + 9q15
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− 10q13 − 21q12 − 33q11 − 33q10 − 33q9 − 18q8 − 2q7

+ 32q6 + 50q5 + 69q4 + 69q3 + 69q2 + 47q + 24.

Note that there are 46 nonzero coefficients of Q1,105 in the expansion of ECyc105(q, N1),
14 of which have the incorrect sign.

The number 105 = 3·5·7 is significant and interesting from a number theoretic point
of view. This number is also the first d such that ordinary cyclotomic polynomial
Cycd has a coefficient other than −1, 0, or 1.

Cyc105 = 1 + x + x2 − x5 − x6 − 2x7 − x8 − x9 + x12 + x13 + x14

+ x15 + x16 + x17 − x20 − x22 − x24 − x26 − x28 + x31 + x32

+ x33 + x34 + x35 + x36 − x39 − x40 − 2x41 − x42 − x43

+ x46 + x47 + x48.

Despite this counter-example, we still can prove that the coefficients of the ECycd’s
alternate in sign for an infinite number of d’s. Specifically, we note that ECyc2m

resemble the coefficients of N2m−1 , and moreover the pattern we find is given by the
following proposition.

Proposition 16.

(27) ECyc2m = 2Cyc2m−1(q)−N2m−1 .

In particular, for i between 1 and φ(2m) = 2m−1, we get

(28) Qi,2m = Pi,2m−1 ,

where the Pi,k are the coefficients of Nk.

Note that in our proof we use the fact that ECycd can be written as

Cycd(1) · Cycd(q) +

φ(d)∑
i=1

(−1)iQi,d(q)N
i
1,

where the Qi,d’s are univariate polynomials with possibly negative coefficients. There-
fore, our proof of Proposition 16 actually extends Proposition 15 to the case where d
is a power of 2 since we previously showed that the Pi,d’s alternate.

Proof. We note that Cyc2m−1 = 1 + q2m−1
and that (28) follows from (27). Also,

ECyc2m = N2m/N2m−1 and thus it suffices to prove

N2m = (2 + 2q2m−1

)N2m−1 −N2
2m−1 .

However, this is a special case of

N2(q, N1) = (2 + 2q)N1(q, N1)−N1(q, N1)
2

where we plug in q2m−1
in the place of q. �
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Unfortunately, formulas for Qi,d’s in terms of Pi,k’s when d is not a power of 2 are
not as simple. On the other hand, the last part of this proof highlights a principle
that has the potential to open up a new direction. Namely, Nk(q, N1) is defined as
the number of points on C(Fqk) where q itself can also be a power of p. Consequently,

(29) Nm·k(q, N1) = #C(Fqm·k) = Nm(qk, Nk).

While this relation is immediate given our definition of Nk = #C(Fqk), when we
translate this relation in terms of spanning trees, the relation

(30) Wmk(q, t) =Wm

(
qk,Wk(q, t)

)
seems much more novel. Furthermore, in this case, this relation involves only positive
integer coefficients and thus motivates exploration for a bijective proof. As noted in
Section 4.1, such a compositional formula is indicative of the appearance of a linear
transformation of xk or Tk(x), which is also clear from the three-term recurrence
satisfied by the (1 + qk −Nk)’s.

4.5. Geometric interpretation of elliptic cyclotomic polynomials. Despite the
fact that the above expressions of elliptic cyclotomic polynomials do not have positive
coefficients nor coefficients with alternating signs, we can nonetheless describe a set
of geometric objects which the elliptic cyclotomic polynomials enumerate.

Theorem 7. We have

ECycd =
∣∣Ker

(
Cycd(π)

)
: C(Fq)→ C(Fq)

∣∣,
where π denotes the Frobenius map, and Cycd(π) is an element of End(C) =
End(C(Fq)).

Proof. One of the key properties of the Frobenius map is the fact that C(Fqk) =
Ker(1 − πk), where 1 − πk is an element of End(C). See [17] for example. The
map (1 − πk) factors into cyclotomic polynomials in End(C) since the endomor-
phism ring contains both integers and powers of π. Since the maps Cycd(π) are
each group homomorphisms, it follows that the cardinality of

∣∣Ker
(
Cycd1Cycd2(π)

)∣∣
equals

∣∣Ker Cycd1(π)
∣∣ · ∣∣Ker Cycd2(π)

∣∣ . Thus∏
d|k

ECycd = Nk =
∣∣Ker (1− πk)

∣∣ =
∣∣Ker

∏
d|k

Cycd(π)
∣∣ =

∏
d|k

∣∣Ker Cycd(π)
∣∣,

and since the last equation is true for all k ≥ 1, we must have the relations

(31) ECycd =
∣∣Ker Cycd(π)

∣∣
for all d ≥ 1. �

Since
Nk =

∏
d|k

ECycd(q, N1)

and Wk(q, t) = −Nk

∣∣
N1→−t

, it also makes sense to consider the decomposition

Wk(q, t) =
∏
d|k

WCycd(q, t),
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where WCycd(q, t) = −ECycd

∣∣
N1→−t

.

This motivates the analogous question, namely does there exist a combinatorial
or geometric interpretation of these polynomials? We in fact can answer this in the
affirmative and do so in [15, Chap. 6] as well as in a forthcoming paper.

Remark 8. The coefficients of the WCycd’s are always integers, but not necessar-
ily positive, as seen in the constant coefficient, as well as in the counter-example
WCyc105. Nonetheless, plugging in specific integers q ≥ 0 and t ≥ 1 do in fact result
in positive expressions, which factorWk(q, t). It is these values that we are interested
in understanding.

5. Conclusions and open problems

The new combinatorial formula for Nk presented in this write-up appears fruitful.
It leads one to ask how spanning trees of the wheel graph are related to points on
elliptic curves. For instance, is there a reciprocity that explains combinatorially why
the bivariate integral polynomial formulas for counting points on elliptic curves and
counting spanning trees of the wheel graph are equivalent except for the appearance
of alternating signs? Such reciprocities occur frequently in combinatorics. For ex-
ample given the chromatic polynomial χ(λ) of a graph G = (V, E), the expression
(−1)|V |χ(−1) provides a formula for the number of acyclic orientations of G [19].

The fact that the Fibonacci and Lucas numbers also enter the picture is also exciting
since these numbers have so many different combinatorial interpretations, and there is
such an extensive literature about them. Perhaps these combinatorial interpretations
will lend insight into why Nk depends only on the finite data of N1 and q for an
elliptic curve, and how we can associate points over higher extension fields to points
on C(Fq).

The elliptic cyclotomic polynomials provide an additional source of new questions.
What is the spanning tree interpretation of Wk(q, N1)’s factorization? Is there a
combinatorial interpretation of Wmk(q, t) = Wm(qk,Wk(q, t))? What is a combina-
torial interpretation of the integral polynomials Qi,d, and what does the fact their
coefficients are almost all positive mean? We will tackle some of these problems in
a forthcoming paper in which we compare more thoroughly the structures of elliptic
curves and spanning trees.
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