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EXCEDANCE NUMBER FOR INVOLUTIONS IN
COMPLEX REFLECTION GROUPS

ELI BAGNO, DAVID GARBER, AND TOUFIK MANSOUR

Abstract. We define the excedance number on the complex re-
flection groups and compute its multidistribution with the number
of fixed points on the set of involutions in these groups. We use
some recurrences and generating functions manipulations to obtain
our results.

1. Introduction

Let V be a complex vector space of dimension n. A pseudo-reflection
on V is a linear transformation on V of finite order which fixes a hy-
perplane in V pointwise. A complex reflection group on V is a finite
subgroup W of GL(V ) generated by pseudo-reflections.

Irreducible finite complex reflection groups have been classified by
Shephard-Todd [3]. In particular, there is a single infinite family of
groups and exactly 34 other “exceptional” complex reflection groups.
The infinite family Gr,p,n, where r, p, n are positive integers with p | r,
consists of the groups of n× n matrices such that:

(1) The entries are either 0 or rth roots of unity;
(2) There is exactly one nonzero entry in each row and each column;
(3) The (r/p)th power of the product of the nonzero entries is 1.

The classical Weyl groups appear as special cases: G1,1,n = Sn the
symmetric group, G2,1,n = Bn the hyperoctahedral group, and G2,2,n =
Dn, the group of even-signed permutations.

In Sn one can define the following well-known parameters: given
σ ∈ Sn, i ∈ [n] is an excedance of σ if and only if σ(i) > i. The number
of excedances is denoted by exc(σ). Another natural parameter on Sn

is the number of fixed points, denoted by fix(σ).
We say that a permutation π ∈ Gr,p,n is an involution if π2 = 1. Let

Ir,p,n be the set of involutions in the complex reflection group Gr,p,n.
In this paper we are interested in computing the number of involu-

tions having specific numbers of fixed points and excedances. We do
this by producing recurrences, and computing them explicitly by the
corresponding generating functions.
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Here are our main results (the relevant definitions can be found in
Section 3).

Theorem 1.1. (See Corollaries 5.4, 5.5 and 5.6).

(1) The number of involutions π ∈ Gr,p,n where r is odd and p | r
with excClr(π) = m is

n∑
j=n

2

(n− j)!

(
n

n− j, n− j, j − k, k − n + j

)(r

2

)n−j

.

(2) The number of involutions π ∈ Gr,p,n where r is even and p | r
2

with excClr(π) = m is

k!

(
n

k, k, n− 2k

)(r

2

)k

,

where k = m
r
.

Theorem 1.2. (See Corollary 5.10).
The number of involutions π ∈ Gr,p,n (r is even, p - r

2
)

with excClr(π) = m is

(m
r
)!

2
m
r

(
n

m
r
, m

r
, n− 2m

r

)
(r + 1)

m
r .

This paper is organized as follows. In Section 2, we recall some
properties of Gr,p,n. In Section 3 we define some parameters on Gr,n

and hence also on Gr,p,n. In Section 4 we classify the involutions of
Gr,n and Gr,p,n, and finally in Section 5 we compute the corresponding
recurrences and explicit formulas.

2. Preliminaries

2.1. Complex reflection groups.

Definition 2.1. Let r and n be positive integers. The group of colored
permutations of n digits with r colors is the wreath product

Gr,n = Zr o Sn = Zn
r o Sn,

consisting of all the pairs (z, τ) where z is an n-tuple of integers between
0 and r− 1 and τ ∈ Sn. The multiplication is defined by the following
rule: for z = (z1, . . . , zn) and z′ = (z′1, . . . , z

′
n)

(z, τ) · (z′, τ ′) = ((z1 + z′τ−1(1), . . . , zn + z′τ−1(n)), τ ◦ τ ′)

(here + is taken modulo r).
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We use some conventions along this paper. For an element π =
(z, τ) ∈ Gr,n with z = (z1, . . . , zn) we write zi(π) = zi. For π = (z, τ),
we denote |π| = (0, τ), (0 ∈ Zn

r ).
A much more natural way to present Gr,n is the following: con-

sider the alphabet Σ = {1[0], . . . , n[0], 1[1], . . . , n[1], . . . , 1[r−1], . . . , n[r−1]}
as the set [n] = {1, . . . , n} colored by the colors 0, . . . , r − 1. Then, an
element of Gr,n is a colored permutation, i.e., a bijection π : Σ → Σ such
that if π(i) = k[t] then π(i[j]) = k[t+j] where 0 ≤ j ≤ r−1 and the addi-
tion is taken modulo r. Occasionally, we write j bars over a digit i in-
stead of i[j]. For example, an element (z, τ) = ((1, 0, 3, 2), (2, 1, 4, 3)) ∈
G3,4 will be written as (2̄1¯̄̄4¯̄3).

For each p | r we define the complex reflection group

(2.1) Gr,p,n := {g ∈ Gr,n | csum(g) ≡ 0 mod p},

where

csum(σ) =
n∑

i=1

zi(σ).

3. Statistics on Gr,n and its subgroups

In this section we define some parameters on Gr,n. The complex
reflection group Gr,p,n inherits all of them. Given any ordered alphabet
Σ′, we recall the definition of the excedance set of a permutation π on
Σ′,

Exc(π) = {i ∈ Σ′ | π(i) > i},
and the excedance number is defined to be exc(π) = |Exc(π)|.

Definition 3.1. We define the color order on the set

Σ = {1, . . . , n, 1̄, . . . , n̄, . . . , 1[r−1], . . . , n[r−1]}

by

1[r−1] < · · · < n[r−1] < 1[r−2] < 2[r−2] < · · · < n[r−2] < · · ·
< 1[0] < · · · < n[0].

We note that there are some other possible ways of defining orders
on Σ, some of them lead to other versions of the excedance number,
see for example [1].

Example 3.2. Given the color order

¯̄1 < ¯̄2 < ¯̄3 < 1̄ < 2̄ < 3̄ < 1 < 2 < 3,
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we write σ = (31̄¯̄2) ∈ G3,3 in an extended form:(¯̄1 ¯̄2 ¯̄3 1̄ 2̄ 3̄ 1 2 3
¯̄3 1 2̄ 3̄ ¯̄1 2 3 1̄ ¯̄2.

)
We calculate: Exc(σ) = {¯̄1, ¯̄2, ¯̄3, 1̄, 3̄, 1} and exc(σ) = 6.

Let σ ∈ Gr,n. Recall the definition of the parameter csum from the
end of Section 2 as

csum(σ) =
n∑

i=1

zi(σ),

and define
ExcA(σ) = {i ∈ [n− 1] | σ(i) > i},

where the comparison is with respect to the color order.
Define also

excA(σ) = |ExcA(σ)|.

Example 3.3. Take σ = (1̄¯̄342̄) ∈ G3,4. Then csum(σ) = 4,
ExcA(σ) = {3} and hence excA(σ) = 1.

Let σ ∈ Gr,n. Recall that for σ = (z, τ) ∈ Gr,n, |σ| is the permutation

of [n] satisfying |σ|(i) = τ(i). For example, if σ = (2̄¯̄314̄) then |σ| =
(2314).

Now we can define the colored excedance number for Gr,n.

Definition 3.4. Define

excClr(σ) = r · excA(σ) + csum(σ).

One can view excClr(σ) in a different way (see [1]).

Lemma 3.5. Let σ ∈ Gr,n. Consider the set Σ ordered by the color
order. Then

exc(σ) = excClr(σ).

We say that i ∈ [n] is an absolute fixed point of σ ∈ Gr,n if |σ|(i) = i.

4. Involutions in Gr,p,n

As was already mentioned, we say that σ is an involution if σ2 = 1.
In this section we classify the involutions of Gr,p,n. Note that each

involution of Gr,p,n can be decomposed into a product of ‘atomic’ invo-
lutions of two types: absolute fixed points and 2-cycles.

We start with the absolute fixed points. In the case p = 1, i.e.,
Zr o Sn = Gr,n, we distinguish between two subcases according to the
parity of r. In the case of even r, an absolute fixed point can be one of
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the following two kinds: π(i) = i or π(i) = i[
r
2 ]. If r is odd, an absolute

fixed point can be only of the first kind.
If p > 1 and r is odd, we have the same absolute fixed points as in the

case p = 1. On the other hand, if r is even, then we have to distinguish
again between two subcases. If p | r

2
, then the absolute fixed points in

Ir,p,n are exactly as those of Ir,1,n. If p - r
2
, then an element of Gr,p,n with

an odd number of fixed points of the form π(i) = i[
r
2 ] is not an element

of Ir,p,n and thus the only absolute fixed points are of the form π(i) = i

or pairs of absolute fixed points of the form π(i) = i[
r
2 ]; π(j) = j[

r
2 ].

In all cases, the 2-cycles have the form π(i) = j[k]; π(j) = i[r−k] where
0 ≤ k ≤ r − 1.

We conclude this section with an example.

Example 4.1. Let r = 18, p = 6, n = 7 and let

π =

(
1 2 3 4 5 6 7

7[2] 3 2 4[9] 5[9] 6 1[16]

)
∈ I18,6,7.

Then π can be decomposed into the absolute fixed points

(
6
6

)
, the pair

of absolute fixed points

(
4 5

4[9] 5[9]

)
and the following two 2-cycles:(

1 7
7[2] 1[16]

)
and

(
2 3
3 2

)
.

5. Recurrences and explicit formulas

In this section, we compute recurrences and explicit formulas for

fr,p,n(u, v, w) =
∑

π∈Ir,p,n

ufix(π)vexcA(π)wcsum(π)

for all r and p where p | r.

5.1. Recurrences for Gr,n = Gr,1,n. Let π be any colored involution
in Ir,n = Ir,1,n. Then we have either π(n) = n[j] or π(n) = k[j] with
k < n.

If π(n) = n[j], then we distinguish between two subcases according
to the parity of r, as we have seen in Section 4. If r is even we have
j = 0 or j = r

2
. If r is odd then j = 0.

For π ∈ Ir,1,n such that π(n) = n[j], define π′ ∈ Ir,1,n−1 by ignoring
the last digit of π. For π ∈ Ir,1,n with π(n) = k[j] and π(k) = n[r−j],
define π′′ ∈ Ir,1,n−2 in the following way: write π in its complete nota-
tion, i.e., as a matrix of two rows, as in Example 4.1. The first row of
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π′′ is (1, 2, . . . , n− 2) while the second row is obtained from the second
row of π by ignoring the digits n and k and the other digits are placed
in an order preserving way with respect to the second row of π. Here
is an explicit formula for the map π 7→ π′′:

π′′(i) =


π(i) if 1 ≤ i < k and π(i) < k,

π(i)− 1 if 1 ≤ i < k and π(i) > k,

π(i− 1) if k ≤ i < n and π(i) < k,

π(i− 1)− 1 if k ≤ i < n and π(i) > k.

Note that the map π 7→ π′ is a bijection from the set

{π ∈ Ir,1,n | π(n) = n[j]} (j fixed)

to Ir,1,n−1, while π 7→ π′′ is a bijection from the set

{π ∈ Ir,1,n | π(n) = k[j]} (j fixed)

to Ir,1,n−2.
For any r, if π(n) = n[j] then

fix(π) = fix(π′) + 1,

excA(π) = excA(π′),

csum(π) = csum(π′) + j.

If π(n) = t[j], then the parameters satisfy

fix(π) = fix(π′′),

excA(π) = excA(π′′) + δj,0,

csum(π) = csum(π′′) + r(1− δj,0),

where δi,j is the Kronecker delta defined by

δi,j =

{
1 if i = j,

0 if i 6= j.

The above consideration gives the following recurrences, where we
define µr = 1 + w

r
2 for even r, and µr = 1 otherwise:

fr,1,n(u, v, w) = uµrfr,1,n−1(u, v, w)

+ (n− 1)(v + (r − 1)wr)fr,1,n−2(u, v, w), n ≥ 1.
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5.2. Explicit formulas for Gr,n = Gr,1,n. We turn now to the explicit
formula. Define

Fr,p(x; u, v, w) =
∑
n≥0

fr,p,n(u, v, w)
xn

n!

=
∑
n≥0

∑
π∈Ir,p,n

(
ufix(π)vexcA(π)wcsum(π)

) xn

n!
.

Rewriting the recurrence in terms of generating functions, we obtain
that

x
∂

∂x
Fr,1(x; u, v, w) =

∑
n≥1

fr,1,n(u, v, w)

(n− 1)!
xn

= uxµr

∑
n≥1

xn−1

(n− 1)!
fr,1,n−1(u, v, w)+

+ x2(v + (r − 1)wr)
∑
n≥2

xn−2

(n− 2)!
fr,1,n−2(u, v, w)

= uxµrFr,1(x; u, v, w)+

+ x2(v + (r − 1)wr)Fr,1(x; u, v, w).

Thus, the generating function Fr,1(x; u, v, w) satisfies

∂
∂x

Fr,1(x; u, v, w)

Fr,1(x; u, v, w)
= uµr + x(v + (r − 1)wr).

Integrating with respect to x on both sides of the above differential
equation, using the fact that Fr,1(0; u, v, w) = 1, we obtain the following
proposition.

Proposition 5.1. Let r ≥ 1. The generating function Fr,1(x; u, v, w)
is given by

euxµr+ 1
2
x2(v+(r−1)wr).

We are looking for an explicit expression for the polynomial

fr,1,n(u, v, w). From the definitions we have that fr,1,n(u,v,w)

n!
is the coef-

ficient of xn in Fr,1(x; u, v, w), namely [xn]Fr,1(x; u, v, w). Computing
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the coefficient of xn in the Maclaurin series of Fr,1(x; u, v, w) one gets

fr,1,n(u, v, w) = n![xn]
∑
j≥0

1

j!

(
uxµr +

1

2
x2(v + (r − 1)wr)

)j

= n![xn]
∑
j≥0

j∑
i=0

(
j

i

)
xi+juj−i(v + (r − 1)wr)i

j!2i
µj−i

r

= n!
n∑

j=n/2

(
j

n− j

)
u2j−n(v + (r − 1)wr)n−j

j!2n−j
µ2j−n

r .

Hence, we have the following corollary.

Corollary 5.2. The polynomial fr,1,n(u, v, w) is given by
(5.1)

n∑
j=n/2

(n− j)!

(
n

n− j, n− j, 2j − n

)
u2j−n(v + (r − 1)wr)n−j

2n−j
µ2j−n

r .

If we substitute w = 1 and compute the coefficient of umv` in For-
mula (5.1), we get the following result.

Corollary 5.3. Let r ≥ 1. The number of colored involutions in Gr,n

with exactly m absolute fixed points and excA(π) = ` is given by

(
n−m

2
)!(r − 1)

n−m
2

−`

(
n

n−m
2

, m, n−m
2

− `, `

)
2

m(3−2k)−n
2 ,

where k ∈ {0, 1} and k ≡ r (mod 2).

It is easy to see that if r = 1, then 2excA(π)+fix(π) = n for each invo-
lution π of Sn. From the above corollary we have then that the number
of involutions in Sn with exactly ` excedances is given by l!

2l

(
n

l,l,n−2l

)
.

We turn now to the computation of the number of involutions with
a fixed number of excedances. We do this by substituting u = 1 and
v = wr in Formula (5.1).

Corollary 5.4. The number of involutions π ∈ Gr,n with excClr(π) = m
is 

k!

(
n

k, k, n− 2k

)(r

2

)k

if r ≡ 1 (mod 2),

n∑
j=n

2

(n− j)!

(
n

n− j, n− j, j − k, k − n + j

)(r

2

)n−j

if r ≡ 0 (mod 2),

where k = m
r
.
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Note that k is an integer, since excClr(π) is an integral multiplicity
of r, for π ∈ Ir,n.

5.3. Recurrences and explicit formulas for Gr,p,n where r is odd,
p > 1. As we have seen in Section 4, the involutions in this case coincide
with the involutions of Gr,1,n where r is odd and thus we have the
following corollary.

Corollary 5.5. The recurrence for fr,p,n(u, v, w) for odd r is

fr,p,n(u, v, w) = ufr,p,n−1(u, v, w)

+ (n− 1)(v + (r − 1)wr)fr,p,n−2(u, v, w), n ≥ 1,

and thus its explicit formula is

fr,p,n(u, v, w)

=
n∑

j=n/2

(n− j)!

(
n

n− j, n− j, 2j − n

)
u2j−n(v + (r − 1)wr)n−j

2n−j
.

5.4. Recurrences and explicit formulas for Gr,p,n where r is even
and p > 1, p | r

2
. Also in this case, we have that the involutions

coincide with the involutions of Gr,1,n where r is even, and thus we
have the following corollary.

Corollary 5.6. The recurrence for fr,p,n(u, v, w) for even r and
p > 1, p | r

2
is

fr,p,n(u, v, w) = u(1 + w
r
2 )fr,p,n−1(u, v, w)

+ (n− 1)(v + (r − 1)wr)fr,p,n−2(u, v, w), n ≥ 1,

and thus its explicit formula is

fr,p,n(u, v, w) =
n∑

j=n/2

(n− j)!

(
n

n− j, n− j, 2j − n

)

· u2j−n(v + (r − 1)wr)n−j

2n−j
(1 + w

r
2 )2j−n.

5.5. Recurrences and explicit formulas for Gr,p,n where r is even
and p > 1, p - r

2
. Let π be any colored involution in Ir,p,n. Then,

according to Section 4, we have either π(n) = n[j] (where j = 0 or
j = r

2
) or π(n) = k[j] with k < n.

We start with the recurrence. Let π be any colored involution in
Ir,p,n. Then we have several cases:
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(1) π(n) = n. In this case define π′ ∈ Ir,p,n−1 by ignoring the
last digit of π. The map π 7→ π′ is a bijection from the set
{π ∈ Ir,p,n | π(n) = n} to Ir,p,n−1.

We have

fix(π) = fix(π′) + 1,

excA(π) = excA(π′),

csum(π) = csum(π′).

(2) π(n) = n[ r
2 ] and there exists some k < n such that π(k) = k[ r

2 ].
Define π′′ ∈ Ir,p,n−2 as in Section 5.1.

Note that π 7→ π′′ is a bijection from the set

{π ∈ Ir,p,n | π(n) = n[ r
2 ]}

to Ir,p,n−2.
We have

fix(π) = fix(π′′) + 2,

excA(π) = excA(π′′),

csum(π) = csum(π′′) + r.

(3) π(n) = k[j] with k < n and we have π(k) = n[r−j]. In this case,
we use π′′ ∈ Ir,p,n−2 as above. Note that in this case π 7→ π′′ is
a bijection from the set

{π ∈ Ir,p,n | π(n) = k[j]}
to Ir,p,n−2. We get in this case

fix(π) = fix(π′′),

excA(π) = excA(π′′) + δj,0,

csum(π) = csum(π′′) + r(1− δj,0).

The above consideration gives the following recurrence:

fr,p,n(u, v, w) = ufr,p,n−1(u, v, w)

+ (n− 1)(u2wr + (r − 1)wr + v)fr,p,n−2(u, v, w),

where n ≥ 1.
By similar arguments to the ones we have used in Section 5.2, we

get the following generating function and explicit formula.

Proposition 5.7. Let r ≥ 1. The generating function Fr,p(x; u, v, w)
is given by

eux+ 1
2
x2((u2+(r−1))wr+v).
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Corollary 5.8. The polynomial fr,p,n(u, v, w) is given by
(5.2)

n∑
j=n/2

(n− j)!

(
n

n− j, n− j, 2j − n

)
u2j−n(v + (u2 + (r − 1))wr)n−j

2n−j
.

If we substitute w = 1 and compute the coefficient of umv` in For-
mula (5.2), we get the following result.

Corollary 5.9. Let r ≥ 1. The number of colored involutions in Gr,p,n

(r is even, p - r
2
) with exactly m absolute fixed points and excA(π) = `

is given by
n∑

j=n
2

(n− j)!

2n−j

(
n

n− j, 2j − n, l, n−m
2

− l, m+n
2

− j

)
(r − 1)

n−m
2

−l.

For computing the number of involutions with a fixed number of
excedances, we substitute u = 1 and v = wr in Formula (5.2).

Corollary 5.10. The number of involutions π ∈ Gr,p,n (r is even,
p - r

2
) with excClr(π) = m is

(m
r
)!

2
m
r

(
n

m
r
, m

r
, n− 2m

r

)
(r + 1)

m
r .
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