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Abstract

We survey three methods for proving that the characteristic polynomial of a finite
ranked lattice factors over the nonnegative integers and indicate how they have
evolved recently. The first technique uses geometric ideas and is is based on Za-
slavsky’s theory of signed graphs. The second approach is algebraic and employs
results of Saito and Terao about free hyperplane arrangements. Finally we con-
sider a purely combinatorial theorem of Stanley about supersolvable lattices and
its generalizations.



1 Introduction

If one chooses a random polynomial with real coefficients, the chances are very
small that it will have all its roots in Zx(, the nonnegative integers. However if one
considers the characteristic polynomials of various lattices that arise in practice,
a surprisingly large number of them do factor over Zs,. The natural question
to ask is: Why? In this survey, we provide three reasons with tools drawn from
three different areas of mathematics: graph theory/geometry, algebra, and pure
combinatorics. The first of these uses Zaslavsky’s lovely theory of signed graph
coloring [41, 42, 43] which can be generalized to counting points of Z" inside
a certain polytope [9]. The next technique is based on theorems of Saito [30]
and Terao [37] about free hyperplane arrangements. Work has also been done on
related concepts such as inductive freeness [36] and recursive freeness [44]. The
third method employs a theorem of Stanley [31] on semimodular supersolvable
lattices which has recently been generalized by Blass and myself [10] by relaxing
both restrictions on the lattice. Since this paper is expository, I will provide a fair
number of definitions and examples. However for the proofs of most theorems the
reader will have to see the articles cited.

A lattice, L, is a set with a partial order < such that every pair =,y € L has a
meet or greatest lower bound, x A y, and a join or least upper bound, z V y. All
our lattices will be finite and so have a unique minimal element 0 = A L and a
unique maximal element 1 = \/ L. Another set of important elements of L are its
atoms which are all elements a covering 0. (If x,y € L then x covers y if z > y
and there is no z with > z > y.) We let A(L) denote the atom set of L.

One of the fundamental invariants of a lattice, or indeed of any partially ordered
set, is its Mobius function of L, u: L — Z, defined recursively by

1 if 2 =0,
) = { — Zy@ w(y) if z > 0. (1)

The number-theoretic Mobius function is obtained as a special case by taking L to
be the lattice of divisors of an integer ordered by divisibility. Our main object of
study will be the generating function for u. Let L be ranked so that for any = € L
all maximal chains from 0 to = have the same length denoted p(z) and called the

rank of x. (A chain is a totally ordered subset of L.) The characteristic polynomial
of L is then )
X(L,t) = Z pu(z)trD e (2)
el

Note that we use the corank rather than the rank in the exponent on ¢ so that
x will be monic. The usual generating function by rank is the related Poincaré
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Figure 1: Some example lattices

polynomial of L

T(L,t)) =) |u(@)|t™.
zeL
Let us look at three simple examples of lattices and their characteristic poly-
nomials. The chain C,, consists of the integers {0,1,...,n} ordered in the usual
manner, see Figure 1 for a picture of (5. It is immediate directly from the defini-
tion (1) that in C,, we have

1 ifz=0
plr) =< —1 ifx=1
0 ifxz>2

and so
X(Cpyt) =t" —t" ="t - 1).

The Boolean algebra B, has as elements all subsets of [n] := {1,2,...,n} and C as
order relation, the case n = 3 being displayed in Figure 1. It is well known that for
x € B, we have u(z) = (—1)" were the absolute value signs denote cardinality. It

follows that
X(Bot) = Y2 (-1t = -1y
xC[n]

Finally consider the partition lattice I1,, which consists of all partitions of [n] or-
dered by refinement. Direct computation with II3 as shown in Figure 1 shows that



x(I3,t) =t* =3t +2= (¢t — 1)(t — 2). In general
X, t) =t -1t —=2)---(t—n+1).

Note that in all three cases x has only nonnegative integral roots.

Many of our example lattices will arise as intersection lattices of subspace ar-
rangements. (See [3, 27] for details about the theory of arrangements.) A subspace
arrangement is a finite set

A:{Kl,KQ,...,Kl} (3)

of subspaces of real Euclidean space R™. If dim K; =n — 1 for 1 < i <[ then we
say that A is a hyperplane arrangement and will uses H’s in place of K’s. The
intersection lattice of A, L(A), has as elements all subspaces X of R™ that can
be written as an intersection of some of the elements of A. The partial order is
reverse inclusion, so that X < Y if and only if X O Y. So L(A) has minimal
element R", maximal element K7 N ---N K;, and join operation X VY = X NY.
The characteristic polynomial of A is defined by

XAt =Y p(Xx)em Y, (4)

XeL(A)

This is not necessarily the same as x(L(A), t) as defined in (2). If A is a hyperplane
arrangement then the two will be equal up to a factor of a power of ¢, so from the
point of view of having integral roots there is no difference. In the general subspace
case (2) and (4) may be quite dissimilar and often the latter turns out to factor
at least partially over Z>( while the former does not. In the arrangement case the
roots of (4) are called the exponents of A and denoted exp . A. In fact when A is a
the set of reflecting hyperplanes for a Weyl group W then these roots are just the
usual exponents of the W [37] which are always nonnegative integers.

All three of our previous example lattices can be realized as intersection lattices
of subspace arrangements. The n-chain is L(A) with A = {K, ..., K,,} where K;
is the set of all points having the first i coordinates zero. The Boolean algebra is
the intersection lattice of the arrangement of coordinate hyperplanes H; : z; = 0,
1 <4 < n. To get the partition lattice we use the Weyl arrangement of type A

Ay ={z;—2; =0 : 1<i<j<n}

To see why II, and L(A,) are the same, associate the hyperplane z; = z; with
the partition where ¢, j are in one subset and all other subsets are singletons. This
will then make the join operations in the two lattices correspond. Note that the



A p
A, [ tE—=1)(E—=2)---(t—n+1) 0,1,2
B, | (t—=1)(t—=3)---(t—2n+1) 1,3,5,...,2n — 1
D, |(t—-1{t—-3)---(t—2n+3)(t—n+1)|1,3,5

Table 1: Characteristic polynomials and exponents of some Weyl arrangements

characteristic polynomials defined by (2) and (4) are the same in the first two
examples while x(A,,t) = tx(I,,1).

We will also be concerned with the hyperplane arrangements associated with
other Weyl groups. The reader interested in more information about these groups
should consult the excellent text of Humphreys [21]. In particular, the other two
infinite families

B, = {z;itz;=0:1<i<j<n}U{xr;=0:1<i<n},
D, = {z;£2;=0: 1<i<j<n}

will play a role. The corresponding characteristic polynomials are listed in Table 1
along with x(A,,t) for completeness. (We do not consider the arrangement for the
group C,, because it is the same as for the group B,,.) We will show how to derive
the formulas for the characteristic polynomials of A,,, B,, and D,, using elementary
graph theory in the next section.

2 Signed graphs

Zaslavsky developed his theory of signed graphs [41, 42, 43] to study hyperplane
arrangements contained in the Weyl arrangement B,,. (Note that this includes A,
and D,,.) In particular his coloring arguments provide one of the simplest ways to
compute the corresponding characteristic polynomials.

A signed graph, G = (V, F), consists of a set V' of vertices which we will always
take to be {1,2,...,n}, and a set of edges E which can be of three possible types:

1. a positive edge between i, € V', denoted ij",
2. a negative edge between i,j € V', denoted 75,
3. and a half-edge which has only one endpoint i € V, denoted i".

One can have both the positive and negative edges between a given pair of vertices
in which case it is called a doubled edge and denoted ij*. The three types of edges
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Figure 2: Graphs for Weyl arrangements

correspond to the three types of hyperplanes in B, namely z; = z;, z; = —u;,
and x; = 0 for the positive, negative, and half-edges, respectively. So to every
hyperplane arrangement A C B, we have an associated signed graph G4 with a
hyperplane in A if and only if the corresponding edge is in G_4. Actually, the
possible edges in G 4 really correspond to the vectors in the root system of type
B,, perpendicular to the hyperplanes which are e; — e;, e; + ¢;, and e;. In the full
theory one also considers the root system C),, with roots 2e; which are modeled
by loops i in G. This is why the somewhat strange definition of a half-edge is
necessary. In picturing a signed graph I will draw an ordinary edge for i5%, an
edge with a slash through it for 45, an edge with a two slash through it for 57,
and an edge starting at a vertex and wandering off into space for i*. The graphs
G 44, Gp,, and Gp, are shown in Figure 2.

Since we are using signed edges, we are also going to use signed colors for the
vertices. For s € Zsg let [—s,s] = {—s,—s+1,...,5s — 1,s}. A coloring of the
signed graph G is a function ¢ : V' — [—s, s]. The fact that the number of colors
t = |[—s,s]| =25+ 1 is always odd will be of significance later. A proper coloring
¢ of GG requires that for every edge e € E we have

1. if e = 5% then c(i) # c(j),
2. if e = ij~ then ¢(i) # —c(j),
3. if e = i" then c(i) # 0.

Note that the first of these three restrictions is the one associated with ordinary
graphs and the four-color theorem [14]. The chromatic polynomial of G is

P(G,t) = the number of proper colorings of G with ¢ colors.

It is not obvious from the definition that P(G,t) is actually a polynomial in ¢. In
fact even more is true as we see in the following theorem of Zaslavsky:.



Theorem 2.1 ([42]) Suppose A C B, has signed graph G 4. Then
X(At) = P(Gat). =

Theorem 2.1 trivializes the calculation of the characteristic polynomials for the
three infinite families of Weyl arrangements and in so doing explains why they
factor over Zso. For A, the graph G 4, consists of every possible positive edge. So
to properly color G4, we have t choices for vertex 1, then ¢t — 1 for vertex 2 since
¢(2) # ¢(1), and so forth yielding

XAy, t) =P(Gy,) =tt—1)---(t—n+1).

in agreement with Table 1. It will be convenient in a bit to have a shorthand for
this falling factorial, so let (t), = t(t —1)---(t —n + 1). In G, we also have
every negative edge and half-edge. This gives ¢ — 1 choices for vertex 1 since color
0 is not allowed, ¢t — 3 choices for vertex 2 since ¢(2) # £¢(1),0, and so on. These
are exactly the factors in the B, entry of Table 1. Finally consider Gp, which is
just G, with the half-edges removed. There are two cases depending on whether
the color 0 appears once or not at all. (It can’t appear two or more times because
G4, C Gp,.) If the color 0 is never used then we have the same number of colorings
as with B,,. If 0 is used once then there are n vertices that could receive it and the
rest are colored as in B,,_1. So

n n—1 n—1

XDnt) =t =20+ 1) +n]Jt-2i+1) =t —n+1)JJ(t—2i+1)

=1 =1 =1

which again agrees with the table.

Recently Blass and I have generalized Zaslavsky’s theorem from hyperplane
arrangements to subspace arrangements. If A and B are subspace arrangements
then we say that A is embedded in B if all subspaces of A are intersections of
subspaces of B, i.e., A C L(B). Now consider [—s, s]" as a cube of integer lattice
points in R"™ (not to be confused with our use of lattice as a type of partially
ordered set). Let [—s,s]" \ [J.A denote the set of points of the cube which lie on
none of the subspaces in A.

Theorem 2.2 ([9]) Let t = 2s + 1 where s € Zso and let A be any subspace
arrangement embedded in B,,. Then

X(A’ t) = |[_378]n \ UA| u



To see why our theorem implies Zaslavsky’s in the hyperplane case, note that a
point ¢ € [—s,s|" is just a coloring ¢ : V' — [—s,s] where the ith coordinate of
the point is the color of the vertex ¢. With this viewpoint, a coloring is proper if
and only if the corresponding point is not on any hyperplane of A. For example,
if ij* € E then the coloring must have ¢(i) # ¢(j) and so the point does not lie on
the hyperplane z; = x;.

As an application of Theorem 2.2, we consider a set of subspace arrangements
that has been arousing a lot of interest lately. The k-equal arrangement of type A
is

Anp =z, =z =...=x;, 1 1<iy3<izg<...<ip<n}

The A, ; arrangement were introduced in the work of Bjérner, Lovész and Yao [5]
motivated, surprisingly enough, by its relevance to a certain problem in com-
putational complexity. Its study has been continued by many people including
Linusson, Sundaram, Wachs and Welker [4, 8, 7, 25, 26, 34, 35]. Analogs of this
subspace arrangement for types B and D have also been studied by Bjorner and
myself [6].

Now in general x (A, 1) does not factor completely over Zsq, but it does factor
partially. In fact it is divisible by the characteristic polynomial (t),, for a certain
hyperplane arrangement of type A. What’s more if one expands x(A, ) in the
basis (t),, n > 0, for the polynomial ring then the coefficients are nonnegative
integers with a simple combinatorial interpretation. In particular, let Sk(n,j)
denote the number of partitions of an n-element set into j subsets each of which
is of size at most k. Thus these are generalizations of the Stirling numbers of the
second kind. We now have the expansion, first derived by Sundaram [33]

X(An,ka t) = Zsk—1<n7j)<t>j' (5)

To see why this is true, consider an arbitrary point ¢ € [—s, s]" \ |J A, . So ¢ can
have at most k£ —1 of its coordinates equal. Consider the ¢’s with exactly j different
coordinates. Then there are Si_1(n, j) ways to distribute the j values among the
n coordinates with at most £ — 1 equal. Next we can choose which values to use in
(t); ways. Summing over all j gives the desired equation. From (5) we immediately
have the divisibility relation

(-1 | X(Anpst)

since Sx_1(n,j) =01if j < [n/(k—1)]. (Obviously j sets of at most k — 1 elements
can partition a set of size of at most n = j(k —1).)

Thinking about things in terms of lattice points also permits us to generalize
Zaslavsky’s theorem in another direction, namely to all Weyl hyperplane arrange-
ments (even the exceptional ones). Let & C R™ be a root system for a finite Weyl

7



group W and let W be the set of hyperplanes perpendicular to the roots. Let (-,-)
denote the standard inner product on R™. The role of the cube in Theorem 2.2
will be played by

P(®)={z eR" : (z,a) € Z for all a € &}

which is a set of points in the coweight lattice of ® closely associated with the
Weyl chambers of the corresponding affine Weyl group.
Consider a fixed a simple system

A={oy,...,0n}

in ®. Since A is a basis for R" any root @ € ® can be written as a linear

combination,
n

o= Z si(a@)o;.
i=1
In fact the coefficients s;(«) are always integers. Among all the roots, there is
a highest one, @&, characterized by the fact that for all roots a and all i € [n],
si(@) > s;(a). We will also need a weighting factor called the indez of connection,
f, which is the index of the lattice generated by the roots in the coweight lattice.
Our second generalization can now be stated.

Theorem 2.3 ([9]) Let ® be a root system for a finite Weyl group with associated
arrangement WW. Let t be a positive integer relatively prime to s;(&) for alli. Then
1
X(W7t) =7

Flp@nuw) . (6)

Note how the condition in the first two theorems that ¢ be odd has been replaced
by a relative primeness restriction. This is typical when dealing with Ehrhart
quasi-polynomials [32, page 235ff.] which enumerate the number of points of a
given lattice inside a polytope and its blowups. Unfortunately, the demonstration
of Theorem 2.3 is done case-by-case. It would be wonderful if someone could find
a proof that is as uniform as the statement of the result. Furthermore, we have
not been able to use (6) to explain the factorization of x(W,t) over Zx( as was
done with Theorem 2.1 for the three infinite families. It would be interesting if
this hole could be filled as well.

3 Free arrangements

In this section we consider a large class of hyperplane arrangements called free
arrangements which were introduced by Terao [37]. The characteristic polynomial

8



of such an arrangement factors over the Z>( because its roots are related to the
degrees of basis elements for a certain associated free module.

Our modules will be over the polynomial algebra A = Rzy,...,z,] = Rz]
graded by total degree A = @®;>0A;. The module of derivations, D, consists of all
R-linear maps # : A — A satisfying

0(fg) = f0(g) + g0(f)

for any f,g € A. This module can be graded by saying that 6 has degree d,
degl =d,if 0(A;) C A;iqforalli > 0. Also, D is free with basis 0/0x, . ..,0/0x,.
It is simplest to display a derivation as a column vector with entries being its
components with respect to this basis. So if 0 = py(2)0/0z1 + - -+ + pu(2)0/0z,
then we write

p(x) 0(x1)
0 = : = :
Two operators that we will find useful are
x{
X? = 210/0xy + -+ + 280/0x, = |
,
and
T
X = #0/0x) + -+ £00/0z, = |
Ty,

where Z; = z129 - - - 2, /x;. Note that deg X4 =d—1 and degf( =n-—2.

To see the connection with hyperplane arrangements, notice that any hyper-
plane H is defined by a linear equation ag(z1,...,x,) = 0. So an arrangement A
is determined by the homogeneous polynomial

Q=Q(A) =[] anl).

HeA

The associated module of A-derivations is defined by

D(A)={0cD : QO(Q)}

where p|q is division of polynomials in A. One can rewrite the defining condition for
D(A) in a way that is more amenable to computation. Since the ay are relatively

9



prime (being linear) we have Q|0(Q) is equivalent to ay|0(Q) for all H € A. And
since 6 is a derivation this is true if and only if ay|f(ay) for all H € A. As
examples, consider the Weyl arrangements. Clearly

QA = ] (-

1<i<j<n
QB,) = ziza---x, H (x} — x7)
1<i<j<n
QD) = ] -
1<i<j<n

It is also easy to verify that X¢ € D(A,) for all d > 0 since X%(z; — z;) = af — x4
which is divisible by x; — z;. Similarly X?*! € D(D,) because of what we just
showed for A, and the fact that x; +z;|z?4 +x?d+1. The X% are also in D(B,)
since z;|z24*. By the same methods we get X € D(D,,).

We can now relate freeness and the factorization of .

Theorem 3.1 ([37]) If A is free then D(A) has a homogeneous basis 61, ..., 0,
and the degree set {dy,...,d,} = {degb,...,deg,} depends only on A. Further-
more

XA t)=(t—dy—1)---(t—d, —1). n

We have a simple way to test whether a derivation is in D(A) for a given
arrangement A. It would be nice to have an easy way to test whether A is free
and if so find a basis. This is the Saito criterion. Given derivations 64,...,0,,
consider the matrix whose columns are the corresponding column vectors

O =1[0h,....00 = [0,(x:)].

Theorem 3.2 ([30, 38]) Suppose 61,...,0, € D(A) and that Q is the defining
form of A. Then A is free with basis 01, ...,0, if and only if

det © = Q)
for some ¢ € R\ 0. ]

Let us return to the Weyl arrangements. Given what we know about elements in
their derivation modules and the factorization of their characteristic polynomials,
it is natural to guess that we might be able to prove freeness with the following
matrices

O(A,) = [X°X'X* ... X",
0B, = [X'X)X. ... X",

o(D,) = [Xl,X?’,XE’,...,X?"‘?’,X}.

10



Of course det O(A,)) = [[1cicjcn(®i — 25) = £Q(A,) is just Vandermonde’s
determinant. Similarly we get det ©(B,)) = £x172- - @0 [[1icjcp (27 — 23) by
first factoring out x; from the ¢th row which results in a Vandermonde in squared
variables. For D,, just factor out xjxs---x, from the last column and then put
these factors back in by multiplying row ¢ by x;. The result is again a Vandermonde
in squares. Now the roots of the corresponding characteristic polynomials can be
read off these matrices in agreement with Table 1.

The reader may have noticed that the bases we have for D(B,) and D(D,,)
are the same except for the last derivation. This reflects the fact that exp B,, and
exp D,, are the same except for the last root. Note that the difference between
these roots is n which is exactly the number of hyperplanes in B, but not in
D,. Wouldn’t it be lovely if adding these hyperplanes one at a time to D,, would
produce a sequence of arrangements all of whose exponents agreed with exp(D,,)
except the last one which would increase by one each time a hyperplane is added
until we reach exp(B,,)? This is in fact what happens. Define

DB,y =D, U{z1,22,..., 24}

so that DB, o = D,, and DB, ,, = B,,. Now the derivation 0} = x5 - - xkf( (scalar
multiplication) is in D(DB,, ;) since X € D(D,,) and z' | O(z;) for 1 < i < k.
Furthermore, if we let

O(DB,;) = [ X', X%, X%, ..., X2, 6,]

then det O(DB,, ;) = x122-- -2, det O(D,) = Q(DB,x) so we do indeed have a
basis. Thus exp(DB,.x) = {1,3,5,...,2n—3,n—1+k} as desired. The DB, ; were
first considered by Zaslavsky [41]. Bases for the module of derivations associated
to other hyperplane arrangements interpolating between the three infinite Weyl
families have been computed by Jézefiak and myself [23]. Edelman and Reiner [15]
have determined all free arrangements lying between A,, and B,,. It is still an open
problem to find all the free subarrangements of 3, which do not contain 4,

Related to these interpolations are the notions of inductive and recursive free-
ness. If A is any hyperplane arrangement and H € A then we have the corre-
sponding deleted arrangement

A=A\ H

and the restricted arrangement
A"={H'nH : H e A'}.

In this case (A, A", A”) is called a triple of arrangements. Of course A" and A"
depend on H even though the notation does not reflect this fact. Also if A C B,

11



then one can mirror these two operations by defining deletion or contraction of
corresponding edges in G 4. The following Deletion-Restriction Theorem shows
how the characteristic polynomials of these three arrangements are related.

Theorem 3.3 ([13, 40]) If (A, A", A”) is a triple of arrangements then
X(A, t) = X(Ala t) - X(Aﬂu t) u

For freeness, we have Terao’s Addition-Deletion Theorem. Note that its statement
about the exponents follows immediately from the previous result.

Theorem 3.4 ( [36]) If (A, A", A") is a triple of arrangements then any two of
the following statements implies the third:

A is free with  exp A={e1,...,en1,€n},
A’ is free with  exp A' = {e1,...,en 1,6, — 1},
A" is free with — exp A" = {e,...,en1}. n

Continuing to follow [36], define the class ZF of inductively free arrangements
to be those generated by the rules

(1) the empty arrangement in R™ is in ZF for all n > 0,

(2) if there exists H € A such that A, A" € ZF and exp A” C exp A’ then
AcIF.

So to show that A is inductively free, we must start with an arrangement which is
known to be inductively free and add hyperplanes one at a time so that (2) is always
satisfied. If F denotes the class of free arrangements then Theorem 3.4 shows that
ZF C F and one can come up with examples to show that the inclusion is indeed
strict. On the other hand, it is not hard to show using interpolating arrangements
that A,, B, and D,, are all inductively free. Ziegler [44] has introduced an even
larger class of arrangements. The class of recursively free arrangements, RF, is
gotten by using the same two conditions as for ZF plus

(3) if there exists H € A such that A, A” € RF and exp A” C exp.A then
A e IF.

It can be shown that ZF C RF strictly but it is not known whether every free
arrangement is recursively free.

12



4 Supersolvability

In this section we will look at a combinatorial method of Stanley [31] which applies
to lattices in general, not just those which arise from arrangements. First, how-
ever, we must review an important result of Rota [29] which gives a combinatorial
interpretation to the Mobius function of a semimodular lattice.

A lattice L is modular if for all x,y,z € L with y < z we have an associative
law

yV(eAz)=(yVze)Az. (7)

A number of natural examples, e.g. the partition lattice, are not modular but
satisfy the weaker condition

if x and y both cover x A y then x V y covers both z and y

for all x,y € L. Such lattices are called semimodular. Lattice L is modular
if and only if both L and its dual L* (where the order relation is reversed) are
semimodular.

If L is semimodular then one can show that it is ranked. Furthermore, if
B C A(L) (the atom set of L defined in Section 1) then one can prove that

p(\/ B) < |Bl. (8)

We will call B independent and a base for x = \/ B if (8) holds with equality.
This terminology comes from the theory of vector spaces. Indeed if one takes L
to be the lattice of all subspaces of I} (F, a finite field) ordered by inclusion then
atoms have dimension 1 and lattice independence corresponds to independence of
lines. A circuit is a dependent set which is minimal with respect to inclusion. If
arrangement A C A, has graph G = G 4 then the atoms of L(A) are edges of G
and a circuit of L(A) forms a circuit in G in the usual graph-theoretic sense.

Now impose an arbitrary total order on A(L) which will be denoted < so as
to distinguish it from the partial order < on L. A ciruit C' C A(L) gives rise to
a broken circuit. C, obtained by removing the minimal element of C'in <. A set
B C A(L) is NBC (No Broken Circuit) if B does not contain any of the C'. Note
that in this case B must be independent and so a base for \/ B. To illustrate,
consider the semimodular lattice L in Figure 3. If we order the atoms a <ib<tc<id
then L has unique circuit C' = {a, b, ¢} with associated broken circuit C' = {b, c}.
Comparing the number of NBC bases of each element with its Mobius function in
the following table

element x ‘ 0 a« b ¢ d s t u v 1
NBC basesof x| # a b ¢ d a,b a,d bd c,d a,bd
a,c a,c,d

plz) | +1 =1 —1 =1 —1 42 +1 +1 +1 =2

13
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Figure 3: A lattice L

should lead the reader to a conjecture! This is in fact the famous result of Rota
referred to earlier and usually called the NBC Theorem.

Theorem 4.1 ([29]) Let L be a semimodular lattice. Then for any total ordering
< of A(L) we have

w(z) = (—=1)P@ (number of NBC bases of x). "

In order to apply the NBC theorem to our factorization problem, we will need
to make an additional restriction on L. Write xMz and call x,z a modular pair
if equation (7) is satisfied for all y < z. Furthermore = € L is a modular element
if Mz and zMx for every z € L. For example, if L = L(A,) or L(B,) then an
element corresponding to a graph Ky, which has a complete component on the
vertex set W C {1,2,...,n} (all possible edges from the parent graph between
elements of W) and all other components trivial (isolated vertices) is modular. A
semimodular lattice is supersolvable if it has a maximal chain of modular elements.
The lattice of subgroups of a finite supersolvable group (one possessing a normal
series where quotients of consecutive terms are cyclic) is supersolvable. From the
previous example we see that L(A,) and L(B,) are supersolvable. However it is
not true that L(D,,) is supersolvable as we will see later.

Now any chain 0= To<T1<...<xp= 11in L defines a parition of the atoms
A(L) into subsets

Ai={a€cA(L) : a<z;and a £ z;1} (9)
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called levels. A total order < on A(L) is said to be induced if it satisfies
if a € A; and b € A; with ¢ < j then a <b. (10)

With these definitions we can state one of Stanley’s main results [31] about semi-
modular supersolvable lattices. It states that their characteristic polynomials fac-
tor over Z>( because the roots are the cardinalities of the the A;.

Theorem 4.2 ([31]) Let L be a semimodular supersolvable lattice and suppose
0=x9 <21 <...<xy =118 a maximal chain of modular elements of L. Then
for any induced total order < on A(L)

(1) the NBC bases of L are exactly the sets of atoms gotten by picking at most
one atom from each A;,

(2) X(L;t) = (¢t = [A[)( = [As]) - - (2 = [An]).

Proof. The proof that (1) implies (2) is so simple and beautiful that I cannot
resist giving it. The coefficient of "% on the right side of (2) is (—1)* times the
number of ways to pick atoms from exactly k of the A;. But by (1) this is up to
sign the number of NBC bases of elements at rank k. Putting back in the sign and
using the NBC theorem, we see that this coefficient is the sum of all the Mobius
values for elements of rank k, which agrees with the corresponding coefficient on
the left side. [
As an example, consider the chain of graphs with a single nontrivial complete
component . R
0= K{l} < K{L?} <... < K{1,27_._,n} =1

in IT,, = L(A,). Then Ay is the set of all positive edges from k+ 1 to 7,7 < k + 1,
and 50 |Ag| = k. Thus x(II,,, t) =[]/, (t —i) as before. Using the analogous chain
in L(B,) (which starts at Kj) gives A, as containing all edges ik*,i < k, and all
half-edges j", j < k. So |Ax| = 2k — 1 giving the usual roots. Now we can also see
why L(D,,) is not supersolvable for n > 4. When n > 4 the second smallest root
of x(Dy,t) is 3. So if the lattice were supersolvable then Theorem 4.2 would imply
that some element x € L(D,,) of rank two would have to cover at least 3+ |A;| =4
atoms. It is easy to verify that there is no such element.

It is frustrating that L(D,) is not supersolvable. To get around this prob-
lem, Bennett and I have introduced a more general concept [2]. Looking at the
previous proof, the reader will note that it would still go through if every NBC
base could be obtained in the following manner. First pick an atom from a set
Ay = {ay,d},a],...}. Then pick the second atom from one of a family of sets
Ay, AL AT L. according to whether the first atom picked was ay,a},af, ... respec-
tively, where |As| = |A}| = |AY| = ..., and continue similarly. This process can
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be modeled by an object which we call an atom decision tree or ADT and any
lattice admitting an ADT has a characteristic polynomial with roots r; equal to
the common cardinality of all the sets of index 7. It turns out that the lattices for
all of the interpolating arrangements DB, , admit ADTs and this combinatorially
explains their factorization. Hélene Barcelo and Alain Goupil [1] have indepen-
dently come up with a factorization of the NBC complex of L(D,,) (the simplicial
complex of all NBC bases of a lattice) which is similar to the ADT one. Their
paper also contains a nice result (joint with Garsia) relating the NBC sets with
reduced decompositions into reflections of Weyl group elements.

Another way to generalize the previous theorem is to replace the semimodu-
larity and supersolvability restrictions by weaker conditions. The new concepts
are based on a generalization of the NBC Theorem that completely eliminates
semimodularity from its hypothesis. Let < be any partial order on A(L). It can
be anything from a total order to the total incomparability order induced by the
ordering on L. A set D C A(L) is bounded below if for any d € D there is a € A(L)
such that

(a) a <d and
(b) a<\/D.

In other words a bounds d below in (A(L), <) and also bounds \/ D below in
(L,<). Wesay B C A(L) is NBB if it contains no bounded below set and say
that B is an NBB base for x =\/ B. Blass and I have proved the following NBB
Theorem which holds for any lattice

Theorem 4.3 ([10]) Let L be any lattice and let < be any partial order on A(L).
Then for any x € L we have

pla) = 3 (1)

B

where the sum s over all NBB bases of x. [

Note that when L is semimodular and < is total then the NBB and NBC bases
coincide. Also in this case all NBC bases of x have the same cardinality, namely
p(x), and so our theorem reduces to Rota’s. However this result has much wider
applicability, giving combinatorial explanations for the Md&bius functions of the
non-crossing partition lattices and their type B and D analogs [24, 28], integer
partitions under dominance order [11, 12, 18], and the shuffle posets of Greene [19].

Call z € L left modular if Mz for all z € L. So this is only half of the
condition for modularity of x. Call L itself left modular if
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L has a maximal chain 0 = zg < 21 < ... < 2, = 1 of left modular elements.

This is strictly weaker than supersolvability as can be seen by considering the
5-element nonmodular lattice [31, Proposition 2.2 and ff.].

In Stanley’s theorem we cannot completely do away with semimodularity as
we did in Rota’s (the reason why will come shortly), but we can replace it with
a weaker hypothesis which we call the level condition. In it we assume that the
partial order < has been induced by some maximal chain, i.e., satisfies (10) with
“if” replaced by “if and only if.”

If <is induced and by <1 by < by < ... < by then by £ \/f:1 b;.

It can be shown that semimodularity implies the level condition for any induced
order but not conversely. An LL lattice is one having a maximal left modular chain
such that the induced partial order satisfies the level condition. So Theorem 4.2
generalizes to the following. Note that we must extend the definition of the char-
acteristic polynomial since an LL lattice may not have a rank function and the
first of the two parts makes y well-defined.

Theorem 4.4 ([10]) Let L be an an LL lattice with <Q the partial order on A(L)
induced by a left modular chain.

(1) The NBB bases of L are ezxactly the sets of atoms obtained by picking at most
one atom from each A; and all NBB bases of a given x € L have the same
cardinality denoted p(

(2) If we define x(L,t) = ZzeL,u(x)tp(i)*p(@ with p as in (1), then

X(Lot) = (= [Au])(t = [Aa]) --- (E = |An]). m

This theorem can be used on lattices where Stanley’s theorem does not apply,
e.g., the Tamari lattices [16, 17, 20] and certain shuffle posets [18]. Note also that
we cannot drop the level condition which replaced semimodularity completely:
If one considers the non-crossing partition lattice then it has the same modular
chain as II,,. However, it does not satisfy the level condition and its characteristic
polynomial does not factor over Zx.

I hope that you have enjoyed this tour through the world of the characteristic
polynomial and its factorizations. Maybe you will feel inspired to try one of the
open problems mentioned along the way.
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