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The theory of the covering groups S̃n of the symmetric groups Sn has its
origins in early papers by Schur [S1,S2,S3] who investigated the projective
representations of the groups Sn. While the representation theory of the sym-
metric groups made continuous progress, with the appropriate combinatorial
concepts of partitions and tableaux developed early on by Young, the repre-
sentation theory of the covering groups saw a long period of stagnation. Only
50 years after Schur’s fundamental paper on the group S̃n, new light into the
subject was brought by Morris [Mo1, Mo2]. He introduced the combinatorial
notions which turned out to be the right analogues of the notions in the Sn
case: shifted tableaux instead of Young tableaux and bars instead of hooks.
Using these notions he obtained new results on the Q-functions introduced by
Schur, and he found a recursive formula for the irreducible spin characters (i.e.
the characters belonging to the proper projective representations) in analogy
to the Murnaghan-Nakayama formula, thus opening up a deeper investigation
of the characters of S̃n.

In the meantime, p-modular representation theory of finite groups had
been developed, mainly by Richard Brauer, who had defined the fundamental
concept of p-blocks of finite groups. While the p-blocks of the groups Sn
had been determined already in the 1940’s by a combinatorial algorithm –
still known as the Nakayama conjecture – it was only in 1965 that Morris
conjectured how to determine the p-blocks of S̃n for odd primes p, again by
a combinatorial procedure. It took more than 20 years before this conjecture
was settled by Humphreys [H] and then, using different methods, by Cabanes
[C]. In the meantime, there was very little progress on the modular represen-
tation theory of the groups S̃n. But in the past decade the area has seen many
significant contributions, not only from representation theory, but now also
from combinatorialists interested in tableaux (see [St1, St2]). At about the
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same time in the late 1980’s several survey articles were published that took
a new look at Schur’s papers and proceeded with new results. Jozefiak [Jo]
chose the superalgebra approach to Schur’s work, while Stembridge ([St1, St2])
put more emphasis on the combinatorial side, in particular shifted tableaux,
and viewed Q-functions as generating functions for special tableaux. A little
later, Hoffman and Humphreys [HH] gave a full account of the projective re-
presentations of Sn in their book on this subject. Certainly, all these have had
an impact on the increasing interest in this area where algebra interacts with
combinatorics and the theory of symmetric functions.

In the following sections, first a brief introduction into the representation
theory of the groups S̃n will be given, along with its combinatorics, that cor-
responds to the time up to 1986. This will be incomplete in many respects,
e.g. there will be little included about symmetric functions (for this we refer
the reader to the monograph by Macdonald [M] and to the survey article by
Morris [Mo3]) or Clifford algebras (see [Jo]). It will focus on those results
that are needed for the later sections in which we report on the more recent
results in p-modular representation theory of S̃n. Based on the determination
of the p-blocks of S̃n mentioned above, Olsson [O1, O2, O3, O4], Morris and
Yaseen [MY1] and Morris and Olsson [MO] studied the p-block invariants and
developed the appropriate combinatorial tools further. Motivated by the com-
putations of decomposition matrices for small n by Morris and Yaseen [MY2,
Y], general results on the decomposition matrices in characteristic 3 [BMO]
and 5 have been obtained and a surprising connection with a deep conjecture
by Andrews [A1, A2] from 1974 was revealed in this context – motivating
a new attack on the problem which could then be settled [ABO]. Computa-
tions of the decomposition matrix at characteristic 2 by Benson [B1] led to a
conjecture of Knörr and Olsson on the 2-block structure of S̃n in 1987 [O1].
This could recently be proved [BO1], and in fact very good information on
the 2-decomposition matrix could be obtained. On the basis of these results,
now also the heights of spin characters in 2-blocks have been studied, and a
number of central representation theoretical conjectures have been verified for
the groups S̃n [BO2].

1 Spin characters: from Schur to Morris

Let G be a finite group, K = Cl the field of complex numbers. The assertion on
the field can be weakened for some of the results below; we refer the reader to
[HH] and [Jo] for more details. A projective representation of G on a K-vector
space V is a map T : G→ GL(V ), satisfying T (1G) = idV and for any x, y ∈ G
there is a suitable scalar α(x, y) ∈ K∗ with T (x)T (y) = α(x, y)T (xy). The
map α : G×G→ K∗ is then a factor set, i.e. it satisfies the 2-cocycle condition

α(x, y)α(xy, z) = α(x, yz)α(y, z) for all x, y, z ∈ G .
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For a trivial cocycle α ≡ 1, the corresponding representations are the linear
representations of G. The map T induces a map T̄ : G → PGL(V ) which is
a homomorphism, often also called a projective representation of G. So from
a geometric point of view, a projective representation of G is equivalent to
considering G as a transformation group on projective space, which certainly
was a natural point of view at the beginning of the century. But also from the
linear representation theoretic point of view, projective representations come
up naturally when one wants to study the connection between linear represen-
tations of a group G and of a normal subgroup H of G; this is fundamental in
the so-called Clifford theory (see [CR], [NT]).

Two projective representations T1 and T2 of G on K-vector spaces V1 and
V2 respectively, are projectively equivalent if there is an isomorphism A ∈
HomK(V1, V2) and a map δ : G→ K∗ such that

δ(x)AT1(x)A−1 = T2(x) for all x ∈ G .

The equivalence of projective representations induces an equivalence of factor
sets; these equivalence classes form an abelian group M(G), called the Schur
multiplier of G, which is isomorphic to the cohomology group H2(G,Cl ∗).

Now Schur realized that projective representations can be ‘linearized’ by
enlarging the group. More precisely, there is a central extension G̃ of G such
that the projective representations of G can be lifted to linear representations
of G̃. A minimal such group is called a representation group of G. In fact, one
obtains a representation group by taking the central kernel to be the Schur
multiplier. So we have a non-split extension with central kernel contained in
the commutator subgroup of G̃ in the first row of the following commutative
diagram:

1 −→ M(G) −→ G̃
π−→ G −→ 1yρ yT̄

1 −→ Cl ∗ −→ GL(V ) −→ PGL(V ) −→ 1

and T as above is equivalent to the projective representation ρ ◦ u : G →
GL(V ), where u is a fixed section of π and ρ is a suitable linear representation
of G̃.

We now turn to the specific situation G = Sn which Schur studied in his
1911 paper.

Theorem 1.1 (Schur [S3])

H2(Sn,Cl
∗) '

{
0 for n ≤ 3

ZZ2 for n > 3
.
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Theorem 1.2 (Schur [S3]) For n ≥ 4, there are two representation groups of
Sn, which are isomorphic only for n = 6.

Both representation groups can be given explicitly in terms of generators
and relations. Since the representation theory for these two groups is virtually
the same, i.e. one easily transforms results for one into such for the other, we
will only deal with one of them and take Schur’s choice:

S̃n = <t1, . . . , tn−1, z | z2 = 1, t2i = z, 1 ≤ i ≤ n− 1;
ti+1titi+1 = titi+1ti, 1 ≤ i ≤ n− 2;
titj = ztjti for |i− j| > 1, 1 ≤ i, j ≤ n− 1>

for n ∈ IN. So S̃n is a central non-split extension of Sn by <z>, a double
cover of Sn, and it is a representation group for Sn, for n ≥ 4.

Classification of irreducible projective Sn-representations now means clas-
sification of the irreducible linear S̃n-representations. The irreducible linear
S̃n-representations with z in their kernel correspond to the well-known irre-
ducible linear Sn-representations. So we are only interested in the linear S̃n-
representations which map z to −idV , and we call these spin representations.

Now Schur succeeded in classifying the irreducible complex spin represen-
tations by giving their characters; he also produced the basic spin represen-
tations explicitly. Only recently Nazarov [N] has constructed all the irreducible
spin representations explicitly by presenting suitable orthogonal matrices, in
analogy to Young’s orthonormal representations in the case of Sn.

The first step towards the computation of the irreducible spin character
table is the determination of the conjugacy classes in S̃n. Let λ be a partition
of n, i.e. a sequence λ = (`1, `2, . . . , `m) of positive integers where `1 ≥ `2 ≥
. . . ≥ `m > 0 and

∑m
i=1 `i = n; we call m = `(λ) the length of λ. We then set

Cλ = {σ ∈ S̃n | π(σ) ∈ Sn is of cycle type λ} .

Furthermore, we let P(n) be the set of all partitions of n, O(n) the set of
partitions of n with odd parts only, and we let D(n) be the set of partitions
of n into distinct parts. Then D−(n) resp. D+(n) denote the sets of those
partitions in D(n) with an odd resp. an even number of even parts; we call the
corresponding partitions odd resp. even partitions.

For the following results of Schur see [S3], [Jo], [HH], [St1, St2].

Theorem 1.3 (Schur) Let λ ∈ P(n). Then Cλ splits into two S̃n-conjugacy
classes if and only if λ ∈ O(n) ∪ D−(n), otherwise Cλ does not split.

In the case that Cλ splits, a specific labelling for the two S̃n-conjugacy
classes in Cλ is needed. If λ = (`1, . . . , `m) ∈ P(n) we set

σλ = v1 · · · vm , where vj = ti+1ti+2 · · · ti+`j−1 , i =
j−1∑
k=1

`k ; j = 1, . . . ,m .
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Then we let C+
λ denote the conjugacy class of σλ, and C−λ the conjugacy class

of zσλ. Note that any spin character vanishes on the non-split classes so we
only have to consider the values on the split classes in the following.

Since the number of non-equivalent irreducible complex representations
of a finite group G is equal to the number of G-conjugacy classes, we can
already conclude that the number of non-equivalent irreducible complex spin
representations equals

|O(n)|+ |D−(n)| = |D(n)|+ |D−(n)| = |D+(n)|+ 2|D−(n)| .

In fact the last expression corresponds nicely to the classification of irre-
ducible spin characters. Before giving this, we need one further definition. Let
sgn denote the sign character of S̃n (induced from the sign character of Sn).
A character χ of S̃n is called self-associate if sgn · χ = χ, otherwise we have a
pair χ, χ′ = sgn · χ of associate characters.

Theorem 1.4 (Schur) A complete list of irreducible complex spin characters
of S̃n is given as follows.
For each λ ∈ D+(n) there is a self-associate spin character 〈λ〉, and for each
λ ∈ D−(n) there is a pair of associate spin characters 〈λ〉, 〈λ〉′ which take the
following values on σα ∈ C+

α :

〈λ〉(σα) = 〈λ〉′(σα) for α ∈ O(n), λ ∈ D−(n)
〈λ〉(σα) = 0 for α ∈ D−(n), λ 6= α

〈λ〉(σλ) = −〈λ〉′(σλ) = i(n−m+1)/2
√∏

j `j/2 for λ = (`1, . . . , `m) ∈ D−(n)

and 〈λ〉(σα) for α ∈ O(n) is determined by the following expansion of the
Schur Q-function into power sum functions:

Qλ =
∑

α∈O(n)

2(`(λ)+`(α)+ε(λ))/2 1

zα
〈λ〉(σα)pα ,

where zα = |CSn(π(σα))| = ∏
j≥1 j

mj(j!) if α = (1m1 , 2m2 , . . .) and

ε(λ) =

{
0 if λ is even
1 if λ is odd

The Q-functions appearing above are special instances of Hall-Littlewood
functions, more precisely:

Qλ(x1, . . . , xn) = 2m
∑

w∈Sn/Sn−m

w

 m∏
i=1

x`ii

m∏
i=1

n∏
j=i+1

xi + xj
xi − xj


for λ = (`1, . . . , `m), m ≤ n; if `(λ) > n, then Qλ(x1, . . . , xn) = 0.
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Their combinatorial significance comes from the fact that they are tableaux
generating functions, indeed, Qλ corresponds to a weight enumeration of marked
shifted λ-tableaux (see [St1, St2]). The shifted λ-diagrams and shifted λ-
tableaux are the analogues of the Young diagrams and Young tableaux in the
ordinary Sn-case, the shifting meaning that the rows are indented along the
diagonal. For example, for λ = (5, 3, 2) the shifted Young diagram S(λ) is
depicted by

The standard shifted λ-tableaux are obtained by filling the shifted λ-diagram
S(λ) with the integers {1, . . . , n} such that entries increase along rows and
down the columns; for example the following is a standard shifted (5, 3, 2)-
diagram:

1 2 3 6 7
4 5 9

8 10

That these are the right combinatorial concepts is seen for example in the
degree formula which explicitly computes the spin character values at 1 ([S3],
[Mo1], [St1, St2]). Before giving this, we need one further central notion due to
Morris: the bar lengths in λ. These are the hook lengths of the λ-nodes in the
shift-symmetric diagram SS(λ) associated with λ. Instead of giving a formal
definition, we illustrate this again with our example λ = (5, 3, 2) ∈ D(10). We
have to adjoin the parts of λ as columns to the shifted diagram and then get
the following shift-symmetric diagram SS(λ), where we have already written
the bar lengths into the λ-nodes of SS(λ):

2 8 7 5 4 1
2 2 5 3 2
2 2 2 2 1
2 2 2

2

Theorem 1.5 Let λ = (`1, . . . , `m) ∈ D(n). Then

〈λ〉(1) = 2[(n−m)/2] n!∏
(`i!)

∏
i<j

`i − `j
`i + `j

Denoting by Hλ the product of the bar lengths in λ and by gλ the number of
standard shifted λ-tableaux, we also have:

〈λ〉(1) = 2[(n−m)/2] n!

Hλ

= 2[(n−m)/2]gλ
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Schur explicitly constructed the basic spin representation which is the one
labelled by λ = (n) and calculated the values of the basic spin character 〈n〉.
The problem of actually computing all the spin character values by a recursive
formula analogous to the Murnaghan-Nakayama formula for the characters of
the symmetric groups was solved by Morris [Mo1, Mo2]. First we have to
explain the process of `-bar removal. Given a partition λ ∈ D(n), we may
subtract ` from a part of λ (if the resulting partition is in D(n− `)), or remove
a part ` from λ (if there is such a part), or we may remove two parts m and
`−m from λ (if possible). Any of these operations is called removal of an `-bar;
an `-bar corresponds to an `-hook in SS(λ) belonging to one of the λ-nodes.
The leg length L(b) of the `-bar b is then defined to be the leg length of the
corresponding `-hook in SS(λ). The partition resulting in removing b from λ
is denoted by λ \ b.

Theorem 1.6 (Morris’ recursion formula) Let λ ∈ D(n), and let α ∈ O(n)
be a partition with ` as a part. Then

〈λ〉(σα) =
∑

b `-bar
(−1)L(b)2m(b)〈λ \ b〉(σα\`)

where

m(b) =

{
1 if ε(λ \ b)− ε(λ) = 1
0 otherwise

.

As a consequence, one easily deduces the Branching Theorem which de-
scribes 〈λ〉 restricted to S̃n−1, where S̃n−1 = <t1, . . . , tn−2> ⊆ S̃n, and dually
induction of 〈λ〉 to S̃n+1. Up to the modification coming from associate spin
characters this is again very similar to the ordinary Branching Theorem for
Sn. For later purposes we state only the induction version; first we need to set
up some further notation.

For λ ∈ D(n) we put

ˆ〈λ〉 =

{
〈λ〉 if λ ∈ D+(n)
〈λ〉+ 〈λ〉′ if λ ∈ D−(n)

and set

N(λ) = {µ ∈ D(n+ 1) | λ is obtained from µ by removing a 1-bar} ,
N(λ)′ = {µ ∈ N(λ) | `(µ) = `(λ)} .

Theorem 1.7 (Branching Theorem [Mo2]) If λ ∈ D+(n), then

〈λ〉↑S̃n+1=
∑

µ∈N(λ)

ˆ〈µ〉 .
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If λ = (`1, . . . , `m) ∈ D−(n), then

〈λ〉↑S̃n+1 = 〈λ〉′ ↑S̃n+1=
∑
µ∈N(λ) 〈µ〉 if `m = 1 ,

〈λ〉↑S̃n+1 =
∑
µ∈N(λ)′ 〈µ〉+ 〈`1, . . . , `m, 1〉 if `m > 1 ,

(and similarly for the associate character).

2 Generalities from modular representation the-

ory

Let p be a prime dividing the order of the finite group G, and let (R,K, F )
be a p-modular splitting system, i.e. R is a complete discrete valuation ring
with quotient field K of characteristic 0 and residue field F of characteristic
p, and F and K are splitting fields for G (for more details on this and any
unexplained notation we refer to [CR] or [NT]). Typically, K is an extension
of the p-adic field Ql p, containing a primitive |G|-th root of unity, R is the
standard valuation ring of K, and F is the residue field of R.

Given a KG-module V (finite-dimensional over K) there is an RG-lattice
U with V = U ⊗RK, called an R-form of V . Then U and Ū = U ⊗RF are not
uniquely determined up to isomorphism, but the following important result
due to Brauer and Nesbitt holds (see [CR], [NT]):

Theorem 2.1 The FG-composition factors of Ū = U ⊗R F only depend on
V and not on the choice of U .

This allows to define the decomposition matrix of G as follows. Let
V1, . . . , Vt be the (pairwise nonisomorphic) irreducible KG-modules, χi the
character belonging to Vi, let U1, . . . , Ut be R-forms of V1, . . . , Vt resprectively,
and let S1, . . . , Sr be the (pairwise nonisomorphic) simple FG-modules. Then
we define the p-decomposition matrix D = (dij)i,j by

dij = multiplicity of Sj as a composition factor of Ūi

If P1, . . . , Pr are the projective indecomposable RG-lattices, ordered such that
P̄j = Pj ⊗R F is a projective cover of Sj, j = 1, . . . , r, and χPj are their
characters, then we also have:

dij = <χi, χPj> , for i = 1, . . . , t; j = 1, . . . , r ,

where we take the usual inner product < ., . > on characters.
Since we have chosen our fields to be sufficiently large, we know the size

of D:
t is the number of conjugacy classes of G, and r is the number of p-regular

conjugacy classes of G (which are the ones corresponding to elements whose
order is not divisible by p).
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Brauer associated certain complex-valued class functions (now called Brauer
characters) also with FG-modules, but these take values only on the p-regular
classes. The Brauer character uniquely determines the composition factors of
the p-modular representation to which it is associated. Denoting by ϕj the
irreducible Brauer character belonging to Sj, we have

χi =
∑
j

dijϕj on p-regular classes

So the p-decomposition matrix is an important link between ordinary (i.e. char-
acteristic 0) and p-modular representation theory of G, and any information
on its entries is valuable for both areas.

Let us first consider the decomposition of the decomposition matrix into
indecomposable diagonal matrix blocks! That is, sort the modules Vi and Sj
in such a way that

D =



*

*
0

. . .

0
. . .

∗


and no further decomposition of this type is possible.

Then these matrix blocks correspond to the p-blocks of the group algebra
which may be defined resp. viewed in various ways. In algebra terms, we have

RG = B1 ⊕ . . .⊕Bs

with indecomposable 2-sided ideals B1, . . . , Bs, these are the p-blocks of RG.
They are of the form Bi = eiRG, ei a primitive central idempotent, the block
idempotent belonging to Bi. Reduction modulo the maximal ideal of R sends
p-blocks of RG to p-blocks of FG, thus giving a corresponding decomposition
for FG.

Let A ∈ {R, F}. For any indecomposable AG-module V there is an i ∈
{1, . . . s} such that V ei = V and V ej = 0 for all j 6= i. We then say that V (and
its character) belongs to the block Bi and write V ∈ Bi. Thus in particular
the simple and the projective indecomposable modules are sorted into blocks.
Also, sometimes a block is viewed as a set of irreducible characters; indeed,
there is a direct criterion to test whether two irreducible characters belong to
the same p-block which can be read off the character table [CR, NT]. We write
χ ∈ B if χ belongs to the block B, and denote by Irr(B) the set of irreducible
characters belonging to B.
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The p-blocks play a fundamental rôle in modular representation theory,
and it is of central importance to compute their invariants. First, there are
the obvious arithmetical invariants for a p-block B of G:

k(B) = |Irr(B)|
l(B) = |{1 ≤ j ≤ r | Sj ∈ B}|

As mentioned before, the p-block decomposition of the group algebra AG cor-
responds to the matrix decomposition of the p-decomposition matrix D of
G, so the invariants k(B) and l(B) determine the size of the matrix block
corresponding to B in D.

A structural invariant is the defect group δ(B) of B which is a p-subgroup
of G (unique up to G-conjugacy). It can be computed from the block idempo-
tent eB, or from considering the indecomposable AG-modules in B (see [CR]).
The defect d(B) of B is then defined by |δ(B)| = pd(B). Blocks of defect 0 are
just (isomorphic to) full matrix rings; their decomposition matrix is D = (1).

For any n ∈ IN, let νp(n) = r if pr is the exact p-power dividing n. Let
a = νp(|G|), then it is well-known that for any χ ∈ Irr(B) the power pa−d(B)

divides the degree χ(1). The height h(χ) of χ is then defined by

a− d(B) + h(χ) = νp(χ(1)) .

Since χ(1) divides |G|, the height h(χ) is at most d(B). The invariant k(B) is
now refined to

ki(B) = |{χ ∈ Irr(B) | h(χ) = i}| , for 0 ≤ i ≤ d(B) .

The central conjectures in modular representation theory are about these in-
variants. Here we recall some long standing conjectures dealing with ordinary
characters:

Conjecture 2.2 (Brauer’s Height 0 Conjecture) The defect group δ(B) of a
p-block B is abelian if and only if k(B) = k0(B).

Conjecture 2.3 (Brauer) Any p-block B satisfies k(B) ≤ |δ(B)|.

Conjecture 2.4 (Olsson) Let B be a p-block with defect group ∆. Then
k0(B) ≤ |∆ : ∆′|.

Finally we would like to mention the following conjecture on heights of
characters which was recently put forward by Robinson [R]:

Conjecture 2.5 (Robinson) Let B be a p-block with non-abelian defect group
∆. Then for any χ ∈ Irr(B) one has h(χ) < |∆ : Z(∆)|.

By now, quite a bit of evidence has been collected for these conjectures; in
particular, they are known to be true for the symmetric groups Sn. In coming
back to S̃n, we will keep in mind to check the conjectures also for this family
of groups.
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3 Modular representation theory of S̃n at odd

characteristic p

The guide for work on the spin representations of the double covers S̃n of Sn is
always the theory of the symmetric groups Sn itself. In characteristic 0 we have
seen that the rôle of the partitions as labels of the irreducible characters of Sn
is played in the S̃n-case by the partitions into distinct parts (sometimes called
bar partitions) as labels of self-associate resp. pairs of associate irreducible spin
characters.

The p-modular irreducible Sn-representations are labelled by the p-regular
partitions, i.e. the partitions where all parts have mulitiplicity < p. The main
point about these combinatorial labels is that representation theoretical in-
variants like the p-blocks B and their invariants k(B), l(B), ki(B) and d(B)
can be computed via combinatorial algorithms on partitions, and one obtains
some general information on the decomposition matrix by combinatorial con-
siderations. In fact, there is more behind this, namely the Specht modules for
Sn which have a characteristic-free definition. We refer the reader to [JK], [J],
[O4] for details on this. Note that there is as yet no general analogue for the
p-modular labels on the S̃n-side, and there are no analogues for the Specht
modules so far.

First, we recall the p-block distribution of irreducible spin characters of S̃n;
we assume for the rest of this section that p 6= 2. The situation for p = 2 is
completely different and will be discussed in the next section.

In the ordinary Sn case one has to remove p-hooks from a labelling partition
until the p-core is reached; the p-blocks are then determined by the p-core and
the weight (this is the content of the Nakayama Conjecture which was proved
by Brauer and G. de B. Robinson in 1947). In the spin case, hooks are replaced
by bars as we have already seen in the degree formula before: given λ ∈ D(n),
remove p-bars as long as possible; we then obtain a (uniquely determined) bar
partition λ(p̄), called the p̄-core. There is also a description by a suitable p̄-
abacus. This abacus has runners labelled 0, . . . p−1, and we place the numbers
0, 1, 2, . . . on the runners as follows:

0 1 2 . . . p− 1

0 1 2 . . . p− 1
p p+ 1 p+ 2 . . . 2p− 1
2p 2p+ 1 2p+ 2 . . . 3p− 1

3p
...

... . . .
...

...
...

... . . .
...

The runners labelled i and p−i are called conjugate runners, for i = 1, . . . , p−1
2

.
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For a given bar partition λ we place its parts as beads on this abacus. For
example, let p = 5 and take λ = (14, 9, 7, 6, 5, 3) This has the bead configura-
tion:

0 1 2 3 4

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15
...

... . . .
...

...
...

... . . .
...

The removal of p-bars now corresponds to the following operations on a con-
figuration as above on the abacus.

(i) Sliding a bead one position up the runner (if the new position is not yet
occupied); beads in position 0 are dumped.

(ii) Removing the beads on two conjugate runners in the top row.

Operating according to these rules as long as possible we finally obtain the
configuration of the p̄-core λ(p̄) of λ; the process is recorded by the p̄-quotient
λ(p̄) = ρ = (ρ0; ρ1, . . . , ρt), t = p−1

2
, where ρ0 is a bar partition describing the

0-runner of λ while ρi is a partition describing simultaneously the i-th and
(p − i)-th runner of λ (for details, see [O4]). The weight of this p̄-quotient is
w = |ρ0| + |ρ1| + . . . + |ρt| and its sign is (−1)w−`(ρ0). In the example above
one easily checks that λ(5̄) = (4).

We now have the following result on the p-block distribution of the char-
acters of S̃n:

Theorem 3.1 (Morris’ Conjecture [Mo2]; Humphreys [H], Cabanes [C])

(i) Let λ, µ ∈ D(n). Then the spin characters 〈λ〉 and 〈µ〉 are in the same
p-block of S̃n if and only if λ(p̄) = µ(p̄).

(ii) Let λ ∈ D−(n). If λ 6= λ(p̄), then 〈λ〉 and 〈λ〉′ belong to the same p-block

of S̃n. If λ = λ(p̄), then 〈λ〉 and 〈λ〉′ each form a p-block of defect 0 on
their own.

Based on this, Olsson has determined the block invariants in [O2, O3] (see
also [O4]). We now collect some of the results on the p-blocks of S̃n:

Theorem 3.2 Let B be a p-block of S̃n, p 6= 2.

(i) Irr(B) consists only of spin characters or only of ordinary characters.
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Assume now that B is a spin p-block of S̃n, i.e. all characters in B are spin
characters. Let µ be the p̄-core of the spin characters in B. Then we have:

(ii) d(B) = νp((pw)!), where w = n−|µ|
p

is the weight of B.

(iii) Set ε = (−1)ε(µ). Then

k(B) = qε(p̄, w) + 2q−ε(p̄, w)

where qε(p̄, w) is the number of p̄-quotients of weight w and sign ε.

(iv) Let ls(B) resp. lns(B) denote the number of self-associate resp. pairs of
associate modular irreducible spin representations in B. Then

l(B) = ls(B) + 2 lns(B)

and

ls(B) =

{
k(t, w) if w ≡ ε(µ) (mod 2)

0 otherwise

lns(B) =

{
0 if w ≡ ε(µ) (mod 2)

k(t, w) otherwise

where k(t, w) is the number of t-tuples of partitions with total sum w.

Also, an explicit formula for the height h(〈λ〉) in terms of the so-called p̄-
core tower of λ is known, and the refined invariants ki(B) have been computed
by Olsson in analogy to the formula for k(B) (see [O2]). As consequences of
these results, the Brauer Conjectures and Olsson’s Conjecture stated above
hold for the p-blocks of S̃n, p 6= 2.

What do we know about the p-decomposition matrix D of S̃n at this point?
We set Dp(n) = {λ = (`1, . . . , `m) ∈ D(n) | `i 6≡ 0 (mod p), i = 1, . . . ,m},

and then for a sign ε we let Dεp(n) = Dp(n) ∩ Dε(n). Then the decomposition
matrix is of size t× r with t = |D+(n)|+ 2|D−(n)|, r = |D+

p (n)|+ 2|D−p (n)|.
We can also calculate combinatorially the block decomposition of D by

Theorem 3.1, and we have good formulae for the size of the block matrices by
Theorem 3.2.

By a result of Wales [W] the rows of D corresponding to 〈n〉 and 〈n− 1〉
(and their associates) are known. For ‘small’ n the decomposition matrices
of S̃n have been computed by Morris and Yaseen; more precisely, the decom-
position matrices for n ≤ 11 for p = 3 are given in [MY2] and for n ≤ 13,
p = 5, 7 and n ≤ 14 for p = 11 in [Y]. Yaseen has also obtained tables for
n = 12, 13 for p = 3 but with a few ambiguities unresolved. More recently,
the Brauer character tables for S̃n for n ≤ 13 have also been calculated using
computers. In the work of Morris and Yaseen, the question of finding the
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‘right’ labels was not dealt with, the labels were chosen arbitrarily to a certain
extent.

In the case of Sn, there is so far no algorithm available that automatically
computes the p-decomposition matrix, but there is at least the following gen-
eral shape result (see [JK]) due to Farahat, Müller and Peel [FMP] and James
[J].

Order the partitions labelling the rows of the p-decomposition matrix
of Sn in the following way: first the p-regular partitions in decreasing lex-
icographic ordering, then the other partitions. The p-regular partitions la-
belling the columns are also ordered lexicographically decreasing. Then the
p-decomposition matrix D of Sn has the shape:

p-regular
partitions

p-singular
partitions

p-regular partitions

1
1 0

. . .

∗
. . .

1

∗


Furthermore, the final non-zero entry in the row labelled by a partition α is a
1 in the column labelled by the p-regular partition αR, where αR is obtained
by a combinatorial ‘regularization’ from α. The only non-zero entries in this
row are in columns labelled by p-regular partitions β � αR, where � denotes
the usual dominance order on partitions.

From the data obtained by Morris and Yaseen in the spin case it seemed
likely that a similar result might also hold for the p-decomposition matrix of S̃n,
p 6= 2, except that one has to take the complication arising from the associate
pairs into account and perhaps with suitable 2-powers instead of the 1’s above.
The early proof of the result in the Sn case was by combinatorial arguments on
the p-residue diagram together with suitable inductions from Young subgroups;
later this was proved using the fundamental Specht modules. As mentioned
before, there is no S̃n analogue in sight for the Specht modules, so the approach
followed in the work described below is similar in spirit to the early proof in
the ordinary case.

First we have to introduce some further combinatorial concepts (see [MY1,
MY2]); remember that we still assume p 6= 2.

The p̄-residue diagram of a partition λ ∈ D(n) is the λ-part of the shifted
p̄-residue diagram
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1 2 . . . p−1
2

p+1
2

p−1
2

. . . 2 1 1 2 . . .
1 2 . . . p−1

2
p+1

2
p−1

2
. . . 2 1 . . .

1 2 . . . . . .
. . .

The p̄-content of λ is given by (1c12c2 . . . p+1
2

c(p+1)/2), where ci is the multi-
plicity of i in the p̄-residue diagram of λ.

For example, take λ = (6, 5, 3, 1) and p = 5, then the 5̄-residue diagram
of λ is

1 2 3 2 1 1
1 2 3 2 1

1 2 3
1

and the 5̄-content of λ is (172533).

Theorem 3.3 (Morris and Yaseen [MY1]) Let λ ∈ D(n). Then the p̄-content
of λ determines the p̄-core λ(p̄).

For the proof one uses the analogous result on the p-content of the parti-
tion corresponding to the shift-symmetric diagram SS(λ).

Consequently one can control the distribution of summands of 〈λ〉 ↑S̃n+1

into p-blocks by only adding nodes of a specified p̄-residue to the shifted dia-
gram of λ at a time. This is the principle of (r, r̄)-induction as it was called
by Morris and Yaseen [MY2]. For a given p̄-residue r ∈ {1, . . . p+1

2
} we will

denote by 〈λ〉↑r the sum of the constituents of 〈λ〉↑S̃n+1 which are labelled by
a µ ∈ D(n + 1) reached from λ by adjoining an r-node. By the above, this is

one block component of 〈λ〉↑S̃n+1 .

Let us consider again an example for p = 5. Take λ = (5, 3, 2) and calculate

the block components of the induced character 〈λ〉↑S̃11 . We have indicated in
bold the nodes to be added.

1 2 3 2 1 1
1 2 3 2

1 2
1

〈5, 3, 2〉↑1 = ˆ〈6, 3, 2〉+ 〈5, 3, 2, 1〉
〈5, 3, 2〉↑2 = ˆ〈5, 4, 2〉
〈5, 3, 2〉↑3 = 0

Now it is our aim to find column labels for the decomposition matrix that
are of ‘high’ type, i.e. such that with respect to a suitable ordering of the labels
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the decomposition matrix has the shape

high type
partitions

other
partitions

high type partitions

. . .

0

*
. . .

*


Here we have indicated that we may have 2× 1, 1× 2 or 2× 2 matrix blocks
instead of just an entry along the ‘diagonal’ in the upper part of the matrix in
the case of associated rows resp. columns occurring.

For achieving this, we define a set of partitions of n by the following algo-
rithm which we call the top node algorithm. We keep a prime p 6= 2 fixed.

We set Cp(1) = {(1)}.
Assume that Cp(n − 1) has already been constructed. Then the partition λ
belongs to Cp(n) if it can be constructed from some µ ∈ Cp(n− 1) by adding a
node to the p̄-residue diagram of µ which is the highest among the nodes with
the same p̄-residue that could be adjoined to µ.

Let us illustrate this by an example for p = 3. From (1) we can only
construct (2), by adding a 2-node. Now consider the 3̄-residue diagram of (2)
and the nodes that could be adjoined (these are marked bold below):

1 2 1
1

We are only allowed to add the highest 1-node to the diagram of (2), hence
C3(3) = {(3)}. Similarly, C3(4) = {(4)}. Now we are looking at

1 2 1 1 2
1

and we have the option of adding either the 1-node or the 2-node indicated
above, so C3(5) = {(5), (4, 1)}.

We now face the following problems:

(I) What is the ‘internal’ description of Cp(n)?

(II) What is |Cp(n)|?
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In (II), we would like to have |Cp(n)| = |Dp(n)|, since then Cp(n) could serve
as a set of column labels for the decomposition matrix of S̃n.

For p = 3, both of these problems turned out to find satisfying answers:

Theorem 3.4 Let n ∈ IN. Then

C3(n) = {λ = (`1, . . . , `m) ∈ D(n) | `i − `i+1 ≥ 3 , i = 1, . . . ,m− 1;
`i − `i+1 > 3 if `i ≡ 0(mod 3) , i = 1, . . . ,m− 1}

and |C3(n)| = |D3(n)|.

Proof. The internal description follows easily with the combinatorial
description of the set on the right hand side given via ‘ladders’ in the 3̄-residue
diagram, see below.

The enumerative identity is a special case of a partition identity due to
Schur [S4].

We call the partitions in C3(n) Schur regular partitions of n. For any such
partition of n, say λ, there are usually quite different construction paths in
the top node algorithm; we need one for which we have good control over the
constituents in the corresponding induction of 〈1〉 to S̃n. We will then use this
to obtain an approximation to the column of the decomposition matrix which
we want to label by λ. This will be achieved in this induction process since an
induced projective character is again projective (where here projective is again
used in the sense of ordinary representation theory, i.e. meaning a character
belonging to a projective lattice). Since by Theorem 3.1 above 3̄-cores label
irreducible projective characters, we will often use such Schur regular partitions
as a starting point for the induction. For describing an induction path good
for our purposes, we need the concept of ladders in the 3̄-residue diagram.

Let (i, j) denote the j-th node in the i-th row of the p̄-residue diagram.
For i ∈ IN, the i-th ladder Li,r in the 3̄-residue diagram joins the following
r-nodes (from bottom to top):

Li,1: (i, 1)→ (i− 1, 4)→ (i− 1, 3)→ (i− 2, 7)→ (i− 2, 6)→ (i− 3, 10)→ · · ·
· · · → (1, 3i− 2)→ (1, 3i− 3)

Li,2: (i, 2)→ (i− 1, 5)→ (i− 2, 8)→ · · · → (2, 3(i− 2) + 2)→ (1, 3(i− 1) + 2) .

The top parts of these ladders are their highest nodes in the 3̄-residue diagram.
If λ is a bar partition, the ladders in λ are the non-empty intersections

Li,j(λ) of the above ladders Li,j with (the 3̄-residue diagram of) λ. It is not
hard to see that the Schur regular partitions are exactly those bar partitions
for which their nodes on each ladder form a top interval on that ladder (see
[BMO]). So the idea is be to construct a Schur regular partition along its
ladders, i.e. adding the nodes along the ladders L1,1, L1,2, L2,1, L2,2, L3,1, . . . ,
and each time from top down.
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The next proposition is a useful ingredient for having better control over
the coefficients in the induction process; it is used to obtain the 2-powers
appearing in the theorem below. Note that if we only add a sequence of
nodes of the same 3̄-residue, then the assumption on the components below is
satisfied.

Proposition 3.5 Let β̄ ∈ D(n− k) and β ∈ D(n) such that the skew diagram

S(β) \ S(β̄) has connected components of type , , and , only. Then

< 〈ˆ̄β〉↑S̃n , 〈β〉 >= 2a(β,β̄) k !

where a(β, β̄) = (i(β, β̄)− ε(β) + ε(β̄))/2 and i(β, β̄) is the number of isolated
nodes in S(β) \ S(β̄) that are not on the diagonal.

For the proof, count fillings of the boxes in S(β) \ S(β̄) by 1, . . . , k, keep
track of parity changes from odd to even for the partitions arising and apply
the Branching Theorem (see [BMO]).

Inducing along ladders and using this proposition now allows to obtain
‘good’ projective characters. Before we can formulate this, we have to intro-
duce the notion of Schur regularization of a bar partition α ∈ D(n) in the
3̄-residue diagram. For this, take the 3̄-residue diagram of α and consider its
nodes as beads on the ladders defined above. To obtain the Schur regulariza-
tion αS ∈ C3(n), push the beads to the top of their ladders, i.e. if α has j nodes
on a particular ladder L, then αS has the top j nodes on this ladder. This is
a well-defined process that indeed produces a Schur regular partition.

For example, for α = (4, 3, 2) the Schur regularization gives

1 2 1 1 1 2 1 1 2 1 1 2
1 2 1 → 1

1 2

Hence αS = (8, 1).
A detailed analysis of the induction process and its combinatorics, in par-

ticular the compatibility of dominance and regularization, then leads to:

Theorem 3.6 ([BMO]) For any Schur regular partition β ∈ C3(n), there is a
projective character Φβ satisfying

Φβ =
∑

α ∈ D(n)

αS / β

tα ˆ〈α〉+
∑

α ∈ D(n)

αS = β

2a(α) ˆ〈α〉

with tα = 0 if α(3̄) 6= β(3̄), and a(α) =
⌈

1
2
(m0(α) + ε(αc)− ε(α) + o(α))

⌉
,

where m0(α) = |{i | αi ≡ 0(mod 3)}|, αc denotes the bar partition correspond-
ing to the union of the complete ladders in α, and o(α) = |{2-ladders in α \
α′ with an odd number of nodes}|, where α′ corresponds to the union of the
complete ladders together with the next two ladders in α.
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From this we deduce the desired result on the shape of the decomposition
matrix at characteristic 3:

Theorem 3.7 Let B be a 3-spin block of S̃n. Order the spin characters in B
by first taking the ones with Schur regular label in lexicographic order, and then
the others; take as column labels for the decomposition matrix DB the Schur
regular partitions in lexicographic order (doubling the columns if all irreducible
modular spin representations in B are non-selfassociate). Then we have

DB =

Schur regular
partitions

other
partitions

Schur regular partitions

. . .

0

*
. . .

*


Moreover, the last non-zero entry in the row labelled by α ∈ D(n) is in

the (double-)column labelled by αS, and it is at most 2a(α) with a(α) as in
Theorem 3.6.

Furthermore, the final (double-)column in DB (labelled by the minimal
Schur regular partition λ in B) is determined quite precisely (see [BMO]).

Now we turn to the case p = 5. It turns out that already the first combi-
natorial step is much more complicated than for p = 3.

Theorem 3.8 ([ABO]) Let n ∈ IN. Then

C5(n) = {λ = (`1, `2, . . . , `m) ∈ D(n) | `i − `i+2 ≥ 5 for all i ≤ m− 1;
`i − `i+2 > 5 if `i ≡ 0 (mod 5) or if `i + `i+1 ≡ 0 (mod 5) ,
and there are no subsequences of the following types:
(5j + 3, 5j + 2), (5j + 11, 5j + 9, 5j + 5), (5j + 10, 5j + 6, 5j + 4),
(5j + 11, 5j + 10, 5j + 5, 5j + 4), j ≥ 0}

and

|C5(n)| = |D5(n)| .
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A set C̃5(n) very similar to the set C5(n) was defined by Andrews in the
context of generalizing the Rogers-Ramanujan identities [A1, A2]; in fact, there
is an easy bijection between these two sets. Hence, the second statement in
the Theorem above is equivalent to showing |C̃5(n)| = |D5(n)|. This equality
was conjectured by Andrews in 1974, and indeed, for the proof of the second
part of Theorem 3.8 suitable generating functions for partitions in C̃5(n) are
considered in [ABO] and shown to satisfy the correct fourth order recurrence
relation.

The proof of the inclusion ‘⊆’ for the internal description of C5(n) above
is by induction on n, while the other inclusion is proved by actually providing
a specific top node construction for the partitions under consideration. The
basic observation is that the partitions described in the Theorem have a similar
description as in the case p = 3, this time their nodes are ‘almost’ at the top
of their ladders, the only possible exception being a ‘hole’ in (j, 5k + 2) at the
penultimate position of a 2-ladder.

For example, take α = (16, 14, 6, 4) ∈ C5(40) and look at its 5̄-residue
diagram (where the critical 2-holes are indicated as boxes):

1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2

1 2 3 2 1 1 2 3 2 1 1 2 3 2
1 2 3 2 1 1 2

1 2 3 2

The ladders in the 5̄-residue diagram are defined similarly as in the 3-case,
i.e. by giving the nodes that they are joining, from bottom to top:

Li,1: (i, 1)→ (i− 2, 6)→ (i− 2, 5)→ (i− 4, 11)→ (i− 4, 10)→ · · ·
Li,2: (i, 2)→ (i− 1, 4)→ (i− 2, 7)→ (i− 3, 9)→ (i− 4, 12)→ · · ·
Li,3: (i, 3)→ (i− 2, 8)→ (i− 4, 13)→ (i− 6, 18)→ (i− 8, 23)→ · · ·

So in the example above the ladders L5,2(α) and L7,2(α) have holes in the
penultimate position (indicated by a box), and all other ladders have their
nodes at the top.

Now again we construct α ∈ C5(n) by going along the ladders from top
down except that we take detours caused by ‘accessible’ holes in 2-ladders, i.e.
holes in position (j, 5k + 2) where αj = 5k + 1.

Let us consider a big example for illustrating the path chosen. We first
show the 5̄-residue diagram of the partition

λ = (36, 31, 30, 26, 21, 20, 16, 11, 10, 6, 3, 1)

(with the holes indicated by boxes) and then give the path in tableau nota-
tion, starting with the 1-ladder before the first 2-ladder with an accessible hole.
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1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1
1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2

1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1
1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1

1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2

1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1
1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1

1 2 3 2 1 1 2 3 2 1 1 2

1 2 3 2 1 1 2 3 2 1
1 2 3 2 1 1

1 2 3
1

. 8 19 20 24 29 32 34 35
. 1 2 9 16 25 31 36 2

. 10 21 22 26 30 33 37
. 3 4 11 17 27 38 39
. 12 23 40 2

. 5 6 13 18 28 41

. 14 42 43
. 7 44 2

. 15 45
. 46 47

. .
48

That is, in going down a 1-ladder one has to watch out for neighbours of
2-holes; if such a node would be added in the next step one goes to the top of
the next ladder. In going down a later 1-ladder, Li,1(α) say, one then may be
required to add the left-out neighbour of a 2-hole on Li−1,1(α) before adjoining
the final node of Li,1(α). Then one jumps back to Li−1,1(α) to add the tail end
of this, again using the same procedure.

For β ∈ C5(n) let s(β) be the sequence of 5̄-residues of its nodes in the
order of the construction path described above. We say that α ∈ C5(n) can be
constructed along s(β) if α has a construction path (not necessarily of the top
node type) with the same 5̄-residue sequence.

Now we have the following crucial combinatorial result:

Proposition 3.9 Let β ∈ C5(n) and suppose α ∈ C5(n) can be constructed
along s(β). Then α� β.

As a consequence we obtain the desired approximation to the decomposi-
tion matrix for S̃n at characteristic 5:

Theorem 3.10 For any β ∈ C5(n) there is a projective character Φβ of S̃n of
the form

Φβ =
∑

α ∈ C5(n)
α� β

cαβ ˆ〈α〉+
∑

α 6∈ C5(n)

cαβ ˆ〈α〉 ,
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with cββ 6= 0. In particular, with respect to decreasing lexicographical ordering
of the C5(n)-partitions we obtain an approximation to the decomposition matrix
of S̃n at characteristic 5 of the form

C5(n)

D(n) \ C5(n)

C5(n)

∗
∗ 0

. . .

∗
. . .

∗

∗



(up to splitting of rows)

and hence the 5-decomposition matrix of S̃n also has the form above (up to
splitting of rows and columns).

For p = 5 we have as yet no suitable regularization process, so this result
is weaker than Theorem 3.7 for p = 3 where we had determined the final non-
zero entry for each row.

In trying to extend our approach to p > 5, a bad surprise came up:

|C7(21)| = 52 < |D7(21)| = 53

so the top node algorithm no longer produces enough labels for p = 7. In fact,
|Cp(3p)| < |Dp(3p)| for p = 7, 11 and 13, and the difference between |Cp(n)|
and |Dp(n)| gets worse for larger n.

On the other hand, more important than the choice of the labelling parti-
tions β is the right choice of the induction path s(β), as we have seen above. It
turns out that indeed for p = 7, n = 21, it is possible to choose two ‘indepen-
dent’ induction paths for the partition (9, 7, 5) ∈ C7(21) and thus still obtain a
full approximation matrix – which is of the desired shape. The problem now is:
how to get control over the induction paths? One should keep in mind though
that this approach was led by the hope that one can find enough projective
characters just via inducing – and it is still an open question whether this
holds.

4 Spin representations at characteristic 2

The situation for p = 2 is completely different from the odd characteristic case.
Whereas the conjecture on the p-block distribution of the spin characters had
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been formulated by Morris for odd p already in 1965, such a conjecture on
the 2-block distribution was only suggested in 1987 by Knörr and Olsson [O1],
based on work by Benson. In [B1], Benson had calculated the 2-decomposition
matrices up to n = 15 (with slight ambiguities for n ≥ 14). He had also
obtained information on special rows of the 2-decomposition matrix for S̃n.

In contrast to odd characteristic, the 2-blocks of S̃n are mixed, i.e. contain
ordinary as well as spin characters. The simple S̃n-modules in characteristic
2 all have <z> in their kernel, so they may be identified with the simple Sn-
modules Dλ which are labelled by partitions λ ∈ D(n). So we do not have to
worry about the labelling of the columns of the decomposition matrix. This
knowledge of the simple modules was exploited in the 2-block determination
achieved in [BO1].

First we have to introduce some more notation. For a partition λ =
(`1, . . . , `m) ∈ D(n) we set

dbl (λ) =

([
`1 + 1

2

]
,

[
`1

2

]
,

[
`2 + 1

2

]
,

[
`2

2

]
, . . . ,

[
`m + 1

2

]
,

[
`m
2

])
∈ P(n) ,

the doubling of λ. Furthermore, for α ∈ P(n) we denote by [α] the corre-
sponding ordinary character of Sn.

Using this terminology, Knörr and Olsson conjectured the following 2-block
distribution [O1] which was recently proved in [BO1]:

Theorem 4.1 ([BO1]) Let λ ∈ D(n). Then 〈λ〉 and [dbl(λ)] belong to the
same 2-block of S̃n.

The strategy of the proof of this Theorem is quite surprising: we first
determined the number of spin characters in a fixed 2-block of S̃n (and simi-
larly for the 2-blocks of Ãn, the double covers of the alternating groups), and
the result on the 2-block distribution was then proved by an intricate induc-
tion on n and the weight of relevant blocks, using the outcome of the spin
character count (see [BO1]). The key to the counting of spin characters in
a 2-block was that as a consequence of Brauer’s Second Main Theorem the
number of ordinary characters in a p-block is ‘locally determined’ by the num-
ber of p-modular characters, and in our case 2-modular S̃n-representations are
essentially 2-modular Sn-representations. Further ingredients were a group
theoretic analysis of certain centralizer subgroups in Sn, Clifford theory, the
usage of specific spin character values and some combinatorial identities.

Before we state the result of this spin character enumeration, we recall some
more definitions and results from the Sn case. Given a partition α ∈ P(n),
we obtain its 2-core α(2) by removing as many 2-hooks (i.e. dominoes) from
the Young diagram of α as possible; α(2) determines the 2-block of [α]. The
number of removed 2-hooks is then the weight of the 2-block of Sn to which
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the character [α] belongs. Any 2-block B of a symmetric group is uniquely
determined by its 2-core and its weight w. It is well-known that k(B) = k(2, w)
where k(2, w) is the number of 2-quotients of weight w, i.e. the number of pairs
of partitions (λ0, λ1) with |λ0|+ |λ1| = w. Note also that l(B) = p(w).

Theorem 4.2 Let B be a 2-block of Sn of weight w, and let B̃ be the 2-block
of S̃n containing B (as sets of characters). Then

k(B̃)− k(B) = p(w) + p̃−(w) .

Furthermore, let B′ be the block of An covered by B and let B̃′ be the block
of Ãn covered by B̃. Then

k(B̃′)− k(B′) = p(w) + p̃+(w) .

Here, p̃ε(w) counts the partitions α of w with (−1)`(α) = ε.

With these results at hand, a combinatorial toolkit for dealing with spin
characters was developed that was similar to the one encountered before in
odd characteristic.

Let us first recall that for studying the representations at characteristic 2
the partitions labelling the ordinary characters of Sn resp. S̃n are handled
by the 2-residue diagram, i.e. by considering ladders and regularization along
these ladders in the 2-residue diagram:

0 1 0 1 0 1 0 1 0 . . .
1 0 1 0 1 0 1 0 . . .
0 1 0 1 0 1 0 . . .
1 0 1 0 1 0 1 . . .
...

Here the ladders connect the nodes (from bottom to top):

Li,0 : (2i− 1, 1)→ (2i− 2, 2)→ (2i− 3, 3)→ . . .→ (1, 2i− 1)

Li,1 : (2i, 1)→ (2i− 1, 2)→ (2i− 2, 3)→ . . .→ (1, 2i)

Again, the ladders in a partition α are just the intersections of the Li,j with
(the 2-residue diagram of) α. It is clear that the 2-regular partitions are exactly
those partitions α where all the nodes on the ladders of α form top parts of
these ladders. Given an arbitrary partition α, we “regularize” α by replacing
the nodes in each ladder Li,j(α) by the same number of nodes at the top of Li,j;
it is easy to check that this gives a 2-regular partition which we call αR (see
[JK, p. 282]).
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For example, take α = (42, 3, 12). Then the regularization of the 2-residue
diagram of α is as follows:

0 1 0 1 0 1 0 1 0
1 0 1 0 → 1 0 1 0
0 1 0 0 1 0
1 1
0

so αR = (5, 4, 3, 1).
For the spin characters we consider instead of the 2-residue diagram the

4̄-residue diagram. For example, λ = (13, 11, 8, 5, 2) ∈ D(39) has 4̄-residue
diagram

0 1 1 0 0 1 1 0 0 1 1 0 0
0 1 1 0 0 1 1 0 0 1 1

0 1 1 0 0 1 1 0
0 1 1 0 0

0 1

In the 4̄-residue diagram the ladders Li,j join the 0- resp. 1-nodes as follows
(from bottom to top):

Li,0 : (i, 1)→ (i− 1, 5)→ (i− 1, 4)→ (i− 2, 9)→ (i− 2, 8)→ . . .

. . .→ (1, 4(i− 1) + 1)→ (1, 4(i− 1))

Li,1 : (i, 3)→ (i, 2)→ (i− 1, 7)→ (i− 1, 6)→ . . .

. . .→ (1, 4(i− 1) + 3)→ (1, 4(i− 1) + 2)

Note that with these definitions the 4̄-content of λ equals the 2-content of
dbl(λ), and this content determines the common 2-block of 〈λ〉 and [dbl(λ)].

Now induction along the ladders in the 2-residue diagram of a given bar
partition β ∈ D(n) gives the well-known shape result for the part of the 2-
decomposition matrix corresponding to the ordinary characters of Sn resp. S̃n,
and at the same time, by careful consideration of the ladders in the 4̄-diagram
of the bar partitions labelling the spin characters, gives the following result for
rows corresponding to the spin characters:

Theorem 4.3 ([BO1]) Let λ ∈ D(n). Set dbl2(λ) = dbl(λ)R, and let m0(λ)
denote the number of even parts of λ. Furthermore, for β ∈ D(n) let Dβ

denote the corresponding 2-modular simple representation of Sn.
Then the 2-modular composition factors of the spin representation labelled by
λ are given by:

〈λ〉 ∼ 2[m0(λ)/2]Ddbl2(λ) +
∑

β.dbl2(λ)

cβD
β .
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For special bar partitions λ this result was proved by different methods by
Benson [B2].

Based on the knowledge of the 2-block distribution of spin characters,
results about the heights of spin characters in 2-blocks have recently been
proved in [BO2]. Remember that by the degree formula the height of the spin
character 〈λ〉 is intimately connected with the number gλ of standard shifted
λ-tableaux.

We have already had a glimpse of the significance of the 4̄-combinatorics
for spin characters before; the 4̄-quotient of a bar partition λ ∈ D(n) describes
the bead positions of the λ-parts on the runners of a suitable 4̄-abacus (see
[BO1]). We denote this 4̄-quotient of λ by ρ = λ(4̄), say ρ = (i2mi+εi) with
εi ∈ {0, 1}, and we set ρo = (imi) and ρe = (iεi). Let λo resp. λe denote
the partition consisting of all odd resp. even parts of λ. Then λe = 2ρe and
ρo = µ(λo) in the notation of [O4]. Furthermore, the spin character 〈λ〉 belongs
to a 2-block of weight w = w(λ) = 2|ρo|+ |ρe|. Finally, we define h̄(λ) = h(〈λ〉)
to be the height of 〈λ〉 in its 2-block of S̃n.
With these notations we have:

Theorem 4.4 Let λ ∈ D(n), w = w(λ), ρo, ρe as defined above. Then

h̄(λ) = ν2([ρo] (1)) + ν2(〈ρe〉(1)) + ν2

(
w

|ρe|

)
+ 2|ρo|+

[
|ρe|
2

]
+ γ(ρe)

where

γ(ρe) =

{
1 if |ρe| odd and ρe ∈ D−
0 otherwise

.

Note that by this formula the height of 〈λ〉 does not depend on the 2-core
of its 2-block but only on the 4̄-quotient of λ.

With this formula and a detailed study of the minimal 2-powers dividing
spin character degrees we then obtained a sharp lower bound for the heights;
also an upper bound was given in [BO2].

Theorem 4.5 Let n ∈ IN, λ ∈ D(n), w = w(λ) and let s = s(w) be the
number of summands in the 2-adic decomposition of w. Then[

2w − s
2

]
≤ h̄(λ) ≤

[
3w − 2s

2

]
.

In fact, an explicit description of the bar partitions λ attaining the lower
resp. upper bound is given in [BO2].

As an application of our results on the 2-block distribution of spin charac-
ters and their heights, we have shown in [BO2] that the conjectures by Brauer,
Olsson and Robinson stated before all hold for the covering groups S̃n also at
characteristic p = 2.
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