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Abstract

The combinatorial properties of the Fibonacci infinite word are of
great interest in some aspects of mathematics and physics, such as num-
ber theory, fractal geometry, formal language, computational complex-
ity, quasicrystals etc.

In this note, we introduce the singular words of the Fibonacci infinite
word and discuss their properties. We establish two decompositions of
the Fibonacci word in singular words and their consequences. By using
these results, we discuss the local isomorphism of the Fibonacci word
and the overlap properties of the factors. Moreover, we also give new
proofs for the results on special words and the power of the factors.

The combinatorial properties of the Fibonacci infinite word are of great
interest in some aspects of mathematics and physics, such as number the-
ory, fractal geometry, formal language, computational complexity, quasicrys-
tals etc. See [1, 3, 8, 9, 11]. Moreover, the properties of the subwords of
the Fibonacci infinite word have been studied extensively by many authors
[2, 4, 5, 6, 9, 10]. In this note, we shall present some new properties of the
subwords of the Fibonacci word: as we shall see, the most striking of these
properties is that the adjacent singular words of the same order are positively
separated.

This note is organized as follows. After recalling some preliminary remarks
on the Fibonacci word, we introduce the singular words and discuss their
elementary properties. Then we establish two decompositions of the Fibonacci
word in singular words (Theorems 1 and 2) and their consequences. By using
these results, we discuss the local isomorphism of the Fibonacci word (Theorem
4) and the overlap properties of the factors (Theorem 6). Moreover, we also
give new proofs for the results on special words (Theorem 5) and the power of
the factors (Theorem 3).

In this note, we use the following definitions and terminology.
Let A = {a, b} be an alphabet of two letters, let A∗ be the free monoid on

A, and let F be the free group generated by A. The elements of A∗ are called
words. The neutral element of A∗ is called the empty word which we denote
by ε. Let w be a word: we denote by |w| the length of w, we denote by |w|a
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(resp. |w|b) the number of letters of a (resp. b) appearing in w, we denote by
L(w) the vector (|w|a, |w|b).

An infinite word on A is a mapping x : IN −→ A, and we write x =
x1x2 · · ·xn · · ·, where xi ∈ A. The set of infinite words is denoted by Aω.

A word v is a factor of word w and we write v ≺ w, if there exist u, u′ ∈ A∗,
such that w = uvu′. We say that v is a left (resp. right) factor of a word w
and we note that v / w (resp. v . w), if there exists u ∈ A∗ such that w = vu
(resp. w = uv). The notions of left factors and right factors are extended in a
natural way to Aω.

Let w = x1x2 · · ·xn. We denote by w the mirror image of w; that is,
w = xn · · ·x2x1. If w = w, the word will be called a palindrome, and the
set of the palindromes is denoted by P . A word w ∈ A∗ is called primitive if
u = vp, v ∈ A∗, p > 0, implies u = v.

Let w = x1x2 · · ·xn ∈ A∗, and let 1 ≤ k ≤ n. We define Ck(w) =
xk+1 · · ·xnx1 · · ·xk, the k-th conjugation of the word w, and we note that
C(w) = {Ck(w); 1 ≤ k ≤ |w|}. By convention, C−k(w) = C|w|−k(w).

Now let σ : A −→ A∗ be a morphism defined by σ(a) = ab, σ(b) = a.
We define the n-th iteration of σ by σn(a) = σ(σn−1), n ≥ 2 and we denote
Fn = σn(a) (by convention, we define σ0(a) = a, σ0(b) = b). Then the
Fibonacci word F∞ is obtained by iterating σ with the letter a (see [2]).

Let w be a word. We denote by Ωn(w) the set of factors of w of length n,
where |w| ≥ n, and we simply note that Ωn := Ωn(F∞).

By a natural embedding, we can regard the A∗ as a subset of F , and if
we say that w is in F , this means that is reduced (see [7] and therein). Let
w = x1x2 · · ·xn ∈ A∗. We denote by w−1 the inverse word of w, that is
w−1 = x−1

n · · ·x−1
2 x−1

1 . Let w = uv, u, v ∈ A∗, then wv−1 := u and u−1w := v
by convention.

One of the motivations of this note is as follows: we know that the Fibonacci
word is related closely to the Fibonacci numbers (the Fibonacci number is
defined by the recurrence formula fn+2 = fn+1 + fn with the initial condition
f−1 = f0 = 1). Consider the following decomposition of the Fibonacci word

a b aa bab aabaa babaabab aabaababaabaa babaababaabaababaabab · · ·

that is, the length of the n-th block in the decomposition is fn, n ≥ −1. Then a
question is posed naturally: What are these blocks? As we shall see, Theorem
1 will answer this question completely.

In this note, we shall use the following known facts which can be found in
[2, 4, 8, 9].

Property 1 1) |σn(a)| = fn and |Cn(Fn)| = fn, where fn is the n-th Fibonacci
number. That is, all conjugations of Fn are different each other. In particular,
for any w ∈ C(Fn), we have

L(w) = L(Fn) = (fn−1, fn−2),
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and moreover,
C(Fn) = {w; w ∈ C(Fn)}.

2) Fn+1 = FnFn−1.
3) For any k ≥ 1, σk(F∞) = F∞, that is

F∞ = FkFk−1FkFkFk−1 · · · .

4) ab is a suffix of Fn for odd positive n, and ba is a suffix of Fn for even
positive n.
5) b2 6≺ F∞, a

3 6≺ F∞.
6) Any factor of F∞ will appear infinitely many times in F∞.
7) w ≺ F∞ if and only if w ≺ F∞.

Remark 1 In this note, we shall only use Property 1 and not the other known
results of the Fibonacci word. In particular, we shall again prove Theorems 3
and 5 by using singular words.

Let α and β be two words. Note that, by Property 1.4), if αβ . Fn, then
α 6= β.

Lemma 1 Let n ≥ 2, and assume that αβ is a suffix of Fn. Then

Fn = Fn−2Fn−1α
−1β−1αβ,

Fn−2Fn−1 = Fnβ
−1α−1βα.

Proof. Note that αβ . Fn, so βα . Fn−1 by property 1.4). It is easy to check
the case of n = 2 directly. Suppose that the lemma is true for n. Then, by the
hypothesis of the induction, we obtain

Fn+1 = FnFn−1 = Fn−1Fn−2Fn−1 = Fn−1Fnα
−1β−1αβ,

Fn−1Fn = Fn−1Fn−2Fn−1β
−1α−1βα = Fn+1β

−1α−1βα.

Now let |w| = fn. Then by Property 1.3), w will be a factor of the following
words: FnFn, FnFn−1Fn, FnFn−1 and Fn−1Fn. If w = uFn−1v with u . Fn,
v / Fn and |v| ≤ fn−2, then w ≺ FnFn−1Fn−2 = FnFn. On the other hand,
evidently, FnFn−1 ≺ FnFn, and thus the four cases above will be reduced to
the cases FnFn and Fn−1Fn.

On the other hand, by Property 1.1), Ωfn(FnFn) = C(Fn). Therefore it is
sufficient to determine the factors of Fn−1Fn.

Let α and β be two words such that αβ is a suffix of Fn. We denote the
word αFnβ

−1 by wn.

Lemma 2 We have the following:
1) wn 6∈ C(Fn);
2) Ωfn(Fn−1Fn) = wn

⋃{Ck(Fn); 0 ≤ k ≤ fn−2−2}. In particular, as a factor,
wn appears only once in Fn−1Fn.

3



Proof. 1) Since α 6= β, L(wn) 6= L(Fn), which yields 1).
2) By Lemma 1: if αβ . Fn, then we have fn−1Fn = FnFn−1α

−1β−1αβ. Since
Fn−1 / Fn, the first fn−1 factors of length fn of the word Fn−1Fn are exactly
Ck(Fn), 1 ≤ k ≤ fn−1−2, and the last factor is Fn = Cfn(Fn), the (fn−1−1)-th
factor is αFnβ

−1 = wn.

As we have seen, for any n ≥ 1, the set Ωfn consists of two parts: the first
part consists exactly of all conjugations of Fn, the other is wn. As we shall
see, wn possesses some interesting properties, which play an important role in
the studies of the factors of F∞.

The word wn is called the n-th singular word of the Fibonacci word F∞.
For convenience, we define w−2 = ε, w−1 = a and w0 = b, and we denote by S
the set of singular words of F∞.

Now we discuss the properties of the singular words:

Property 2 We have the following:
1) If n ≥ 1, then

L(wn) =

{
(fn−1 + 1, fn−2 − 1) if n is odd;
(fn−1 − 1, fn−2 + 1) if n is even.

2) wn 6≺ wn+1.
3) If α . wn+1, then wn+2 = wnwn+1α

−1β.
4) wn = wn−2wn−3wn−2, n ≥ 1.
5) For n ≥ 1,

Cfn−1−1(Fn) = wn−2wn−1,

Cfn−1(Fn) = wn−1wn−2;

In particular,

wn−2 ≺ Ck(Fn) if and only if 0 ≤ k ≤ fn−1 − 1;

wn−1 ≺ Ck(Fn) if and only if fn−1 − 1 ≤ k ≤ fn − 1.

6) For n ≥ 1, w2n−1 = aauaa, w2n = bvb, where u, v ∈ A∗.
7) For n ≥ 2, 1 < k < fn, no proper conjugate of wn is a subword of F∞.
8) For n ≥ 0, w2

n 6≺ F∞.
9) For n ≥ −1, wn is a palindrome.
10) wn is not the product of two palindromes for n ≥ 2.
11) If n ≥ 2, then wn is primitive.
12) For n ≥ 1, we have

wn = w∗n

 n−2∏
j=−1

wj

 =

 n−2∏
j=−1

wn−j−3

w∗n,where w∗n =

{
a if n is odd,
b if n is even;

13) wn 6≺
n−1∏
j=−1

wj;

14) Let k ≥ −1 and p ≥ 1, and let u =
k+p∏
j=k

wj. Then u 6∈ S.
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Proof. 1) If n is odd, then a . Fn−1, b . Fn. Thus

L(wn) = L(aFnb
−1) = (fn−1 + 1, fn−2 − 1),

and the case of n being even can be proved in the same way.
2) Let α . Fn: then β . Fn+1. By the definition of wn, it is easi to see that
wn 6≺ Fn+1, so wn 6≺ Fn+1β

−1. On the other hand wn = βFnα
−1 6= αFnβ

−1.
Since wn+1 = αFn+1α

−1, thus wn 6≺ wn+1.
3) By definition, wn+2 = βFnα

−1. Then by Lemma 1, we have

wn+2 = βFnFn+1β
−1α−1β = wnwn+1α

−1β.

4) Let α . Fn: then α . Fn−2 and β . Fn+1, β . Fn−1. Thus

wn+1 = αFn+1β
−1 = αFn−1Fn−2Fn−1β

−1

= (αFn−1β
−1)(βFn−2α

−1)(αFn−1β
−1)

= wn−1wn−2wn−1.

5) Let α . Fn: then

Fn = Fn−1Fn−2 = (Fn−1α
−1)(αFn−2β

−1)β,

and so the results follow from the definitions of singular word and conjugation
of word.
6) This follows immediately from the definition of wn and 9).
7) and 8) follow from Property 1.5) and Property 2.9).
9) We prove by induction. It is checked directly that the conclusion is true for
n ≤ 2. Now suppose that the conclusion is true for k ≤ n. Then, by 5),

wn+1 = wn−1wn−2wn−1 = wn−1 wn−2 wn−1 = wn−1wn−2wn−1 = wn+1,

that is, wn+1 ∈ P .
10) Let wn = uv, where u, v ∈ P . Since wn is a palindrome, so

wn = wn = uv = uv = vu.

Therefore, the |u|-th conjugation of wn will be a factor of F∞. Then, by 6), if
n ≥ 2, we have a4 ≺ F∞, or b2 ≺ F∞, which will contradict Property 1.5).
11) Let wn = up, with u ∈ A∗, and p ≥ 2. Since wn ∈ P , so do u and up−1,
and hence wn = up = uup−1 will be a product of two palindromes; but, by 10),
that is impossible.
12) It is easy to verify that Fn = abF0F1 · · ·Fn−3Fn−2. If n is odd, then b . Fn.
Therefore

wn = aFnb
−1 = aab(aF1b

−1)(bF2a
−1) · · · (bFn−3a

−1)(aFn−2b
−1)

= aw−1w0w1 · · ·wn−3wn−2,
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and the case of n being even may be proved in the same manner.

13) If wn ≺
n−1∏
j=−1

wj, then by 12), wn ≺ w∗n

n−1∏
j=−1

wj = wn+1, which will contra-

dict 2).

14) Assume that u =
k+p∏
j=k

wj = wm for some m ≥ 0. Since wk+p is a factor,

m > k + p. On the other hand, by 12), wm ≺ w∗k+p

k+p∏
j=−1

wj = wk+p+2, so

m = k + p+ 1. By 13), this is impossible.

By an argument analogous to that of Property 2.12), we obtain the follow-
ing result, which answers the question posed in the introduction.

Theorem 1 F∞ =
∞∏

j=−1

wj.

Proof. The proof is similar that of Property 2.12).

Now we are going to introduce another decomposition of F∞ which will
show the positively separate property of the singular words. To this end, we
first establish some lemmas.

Lemma 3 Let wnwn+1 = u1u2u3 (or wn+1wn = u1u2u3) with 0 < |u1| < fn
and 0 < |u3| < fn+1, then u2 6∈ S.

Proof. i) By the condition of the lemma, 2 < |u2| < fn+2 − 2, so u2 6= wn+2.
ii) Let α.Fn, then wnwn+1 = βFnFn−1β

−1. By Lemma 2, wn+1 = αFn+1β
−1

appears only once in FnFn+1. Note that |u3| ≥ 1, we obtain u2 6= wn+1.
iii) Let |u2| = fn and Fn+1 = FnFn−1, u2 ≺ FnFn. But by lemma 2,

wn 6≺ FnFn, and thus u2 6= wn.
iv) Let |u2| = fn−1. Since wnwn+1 = wnwn−1wn−2wn−1, then we must have

u2 ≺ αFnFn−1α
−1. By using lemma 2, a discussion as in ii) yields u2 6= wn−1.

The other cases will be reduced to one of the four cases above, so by
repeating this argument, we prove that, for any k ≥ 1, u2 6= wk, that is,
u2 6∈ S.

Now let n ≥ 0 be fixed. We define a substitution φn : A −→ A∗ by
φn(a) = wn+1, φn(b) = wn−1. Let Σn = {wn+1, wn−1}. For a singular word wk,
we say Wk(Σn) := φn(wk) (if there is no confusion, we simply write Wk), the
k-th singular word over Σn.

Lemma 4 Let n ≥ 0 and k ≥ 1. Then we have

wn+2k = wnx1wnx2 · · ·wnxf2k−2
wn,

w2k+1 = y1wny2wn · · · yf2k−1−1wnyf2k−1
,
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where xj, yj ∈ Σn. Moreover,

x1x2 · · ·xf2k−2
= W2k−2 and y1y2 · · · yf2k−1

= W2k−1

are, respectively, the (2k − 2)-th and (2k − 1)-th singular words over Σn.

Proof. For any fixed n, we prove the lemma by induction. We have, by
Property 2.4),

wn+2 = wnwn−1wn,

wn+3 = wn+1wnwn+1,

wn+4 = wnwn−1wnwn+1wnwn−1wn,

wn+5 = wn+1wnwn+1wnwn−1wnwn+1wnwn+1,

and hence the conclusion is true for k = 1, 2. Now suppose that the conclusion
is true for k − 1 and k. Then

wn+2(k+1) = wn+2kwn+2k−1wn+2k

= wnx1 · · ·wnxf2k−2
wny1wn · · ·wnyf2k−3

wn · · ·wnxf2k−2
,

since x1x2 · · ·xf2k−2
and y1y2 · · · yf2k−3

are, respectively, the (2k − 2)-th and
(2k − 3)-th singular words W2k−2 and W2k−3 on Σn by the assumption of the
induction. So, by Property 2.4),

x1x2 · · ·xf2k−2
y1y2 · · · yf2k−3

x1x2 · · ·xf2k−2
= W2k−2W2k−3W2k−2 = W2k

is the (2k)-th singular word. The same discussion gives the proof for wn+2k+3.
¿From Lemmas 3 and 4, we immediately obtain the following.

Corollary 1 Let m ≥ n + 2. Then there are exactly m − n − 2 factors wn
appearing in wn which are separated by wn−1 and wn+1 as in Lemma 4.

Let n be fixed, then by Property 1.6), the word wn will appear in F∞
infinitely many times. We arrange these words as a sequence wn,k the k-th
singular word of the order n.

Lemma 5 Let F∞ =
∞∏

j=−1

wj be the decomposition as in Theorem 1. Let u be

any singular word of order n (that is, u = wn,k for some k). Then u must be
contained completely in some wm, where m ≥ n.

Proof. i) From Property 2.13), wn 6≺
n−1∏
j=−1

wj.

7



ii) If u ≺
n∏

j=−1

wj, then by Property 2.12),

u ≺

w∗n−1

n−1∏
j=−1

wj

wn = wn+1wn,

so by Lemma 3, u must be wn.

¿From i) and ii), we only need to consider u ≺
∞∏
j=n

wj. Since |u| = |wn|,

there exists m, m ≥ n, such that, either u ≺ wm, or u ≺ wmwm+1 with u 6≺ wn
and u 6≺ wn+1. But by lemma 3, the later case is impossible.

We thus finish the proof from the discussions above.

Now we can state our main result of this note.

Theorem 2 For any n ≥ 0, we have

F∞ =

 n−1∏
j=−1

wj

wn,1z1wn,2z2 · · ·wn,kzkwn,k+1 · · ·

where z = z1z2 · · · zn · · · is the Fibonacci word over Σn.

Proof. From theorem 1 and lemma 4, we get

F∞ =

 n−1∏
j=−1

wj

wnwn+1

 ∞∏
j=n+2

wj


=

 n−1∏
j=−1

wj

wnwn+1(wnwn−1wn)(wn+1wnwn+1) · · ·

(wnx1wn · · ·xf2k−2
wn)(y1wny2 · · ·wnyf2k−1

) · · ·

Note that
i) by lemma 4, lemma 5 and corollary 1, all factor wn of F∞ (or the sequence
wn,k, k ≥ 1) appear in the formula above;
ii) by lemma 4,

x1 · · ·xf2k−2
= W2k−2,

y1 · · · yf2k−1
= W2k−1,

thus
∞∏
j=1

zj =
∞∏

j=−1

Wj is the Fibonacci word on Σn.

i) and ii) follow the theorem.

The following example illustrates the decomposition of F∞ of the words
w1, w2:
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abaa(bab)aabaa(bab)aa(bab)aabaa(bab)aabaa(bab)aa(bab)aabaa(bab)aa(bab)aabaa···

Let y = y1y2 · · · yn · · · be an infinite word over {a, b}. Let u, v ≺ y, u =
ykyk+1 · · · yk+p and v = ylyl+1 · · · yl+m, where l ≥ k, then the distance of the
words u and v define by

d(u, v) =

{
l − k − p if l > k − p;
0 otherwise.

If d(u, v) > 0, we say that the words u and v are positively separate.
The theorem 2 has the following direct consequences:

Corollary 2 The adjacent singular words of the same order are positively sep-
arate. More precisely, for any n and k, we have

d(wn,k, wn,k+1) ∈ {fn+1, fn−1}.

Moreover, one of d(wn,k, wn,k+1) and d(wn,k+1, wn,k+2) is fn+1.

Corollary 3 The left and the right adjacent word of the length fn−2k of the
singular word wn+1 are exactly wn−2k.

Let w = xkxk+1 · · ·xk+p (k, p ≥ 1) be a factor of F∞. If there is an integer
l, 1 ≤ l ≤ p, such that w = xk+lxk+l+1 · · ·xk+l+p, then we say that w has
overlap with p − l as length of overlap. The above definition is equivalent to
the following assertion: Let u ≺ F∞, if there exist words x, y and z such that
u = xy = yz and u(y) := uz = xyz ≺ F∞. From corollary 2, we obtain
immediately

Corollary 4 For n ≥ 1, wn has no overlap.

Corollary 5 Let u ≺ F∞ and let fn < |u| ≤ fn+1, let w be one of the largest
singular words contained in u (in the sense of order), then w appears only once
in u, moreover, w must be one of the three following singular words: wn−1, wn
and wn+1.

Proof. Suppose that the conclusion is not true. Then there will be another
singular word of the same order contained in u which is adjacent to w and we
denote by w′. Thus there is a word v, such that wvw′ ≺ u (or w′vw ≺ u). By
theorem 2, either v, or wvw′, will be a singular word which has higher order
than w, this is in contradiction with the hypothesis of w.

The second conclusion of the corollary follows from directly the property
2.5).

As applications of singular word, in particular, the positively separate prop-
erty of the singular words, we are going to illustrate some examples in the
following. Although some results are known (example 1 and example 3), but
the proofs are new. Moreover, these proofs show that the singular words play
an important role in the studies of the factor of the Fibonacci word.
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Example 1. Power of the factors. [2, 5, 6, 9]

Theorem 3 We have
1) For any n, w2

n 6≺ F∞;
2) For 0 ≤ k ≤ fn − 1, (Ck(Fn))2 ≺ F∞;
3) If u ≺ F∞ with fn−1 < |u| < fn, then u2 6≺ F∞;
4) If 0 ≤ k ≤ fn−1 − 2, then (Ck(Fn))3 ≺ F∞;
5) If fn−1 − 2 < k < fn, then (Ck(Fn))3 6≺ F∞;
6) For any u ≺ F∞, u

4 6≺ F∞.

Proof. 1) It follows from the properties 1.5) and 2.6), w2
n 6≺ F∞;

2) Let Ck(Fn) = uv with Fn = vu. Then u . Fn and v / Fn. Since

(Ck(Fn))2 = uvuv = uFnv ≺ (Fn)3,

the conclusion (Ck(Fn))2 ≺ F∞ will follow from F 3
n ≺ F∞.

3) Suppose that wk be the largest singular word contained in u as in
corollary 5, and let u = v1wkv2. Assume that u2 = v1wkv2v1wkv2 ≺ F∞,
then wk 6≺ v2v1, otherwise by theorem 2 we shall have either wk+1 ≺ v1, or
wk+1 ≺ v2, that will be in contradiction with the hypothesis of wk. Thus two
singular words of the order k above are adjacent, so by theorem 2 again, v2v1

must be either wk+1 or wk−1. By property 2.5), u will be either a conjugation of
Fk+2, or of Fk+1. But these two cases are impossible because of the hypothesis
of u.

4) Since aaba ≺ f∞, so dose FnFnFn−1Fn. Let αβ . Fn−1, then by lemma
1, we have

F 2
nFn−1Fn = F 2

nFn−1Fn−2Fn−1α
−1β−1αβ = F 3

nFn−1α
−1β−1αβ ≺ F∞,

notice that Fn−1 / Fn, hence if 0 ≤ k ≤ fn−1 − 2, then

(Ck(Fn))3 ≺ F 3
nFn−1α

−1β−1 ≺ F∞.

5) Now suppose that fn−1 − 1 < k < fn, then by property 2.5), wn−1 ≺
Ck(Fn). Let Ck(Fn) = uwn−1v, then vu = wn−2, thus

(Ck(Fn))3 = uwn−1wn−2wn−1wn−2wn−1v.

Hence if (Ck(Fn))3 ≺ F∞, then the word wn−1wn−2wn−1 = wn+1 will have
overlap, but by corollary 5, this is impossible.

6) The conclusion follows from an analogous argument with 5).

Remark 2 ¿From theorem 3.2), we see that, any conjugation of Fn, n ≥
0, is not separated positively. This is an important difference between the
conjugations of Fn and wn.
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Example 2. Local isomorphism

Let u = u1u2 · · ·un · · · and v = v1v2 · · · vn · · · be two infinite words over the
alphabet {a, b}. We say that u and v are locally isomorphic if any factor
(or its mirror image) of u is also factor of v and vice versa (By the property
1.7), for the Fibonacci word, we don’t need to consider mirror images of the
factors). If u and v are locally isomorphic, we shall write u ' v. The notion
of local isomorphism is very useful in the studies of the energy spectra of
one-dimensional quasicrystals [12].

For an infinite word u = u1u2 · · ·un · · ·, we define the translation T (u) of
u by Tu = u2u3 · · · and define T k = T (T k−1) by recurrence. By using the
properties of the singular words of the Fibonacci word, we can easily obtain
the following results of the local isomorphism of the Fibonacci word.

Theorem 4 We have
1) If we change a finite number of letters of F∞, then the obtained infinite
word F ′∞ is not locally isomorphic to F∞.
2) Let u ∈ A∗, then F∞ ' uF∞ if and only if there exists m > −1, such that
u . wmw

∗
m, where w∗m is defined as in property 2.12).

3) For any k ≥ 1, T k(F∞) ' F∞.

Proof. 1) Let F∞ =
∞∏

j=−1

as in theorem 1, because we only change a finite

number of letters of F∞, we can find an integer m and words u, v ∈ A∗, such
that

F ′∞ = uv
∞∏
j=m

wj,

where |v| = fm−1, v 6= wm−1. Therefore by corollary 3, vwm 6≺ F∞, that is
F∞ 6' F ′∞.

2) From theorem 1 and property 2.12), for any k > 0 and m ≥ 0,

w2maF∞ = w2ma

2m+2k−1∏
j=−1

wj

 ∞∏
j=2m+2k

wj

 = w2mw2m+2k+1

 ∞∏
j=2m+2k

wj

 ,
then, by corollary 3, w2mw2m+2k+1 ≺ F∞, that is, for any v ≺ w2maF∞, we
can find an integer k, such that v ≺ w2mw2m+2k+1, so v ≺ F∞. The case of
w2m+1b can be proved in the same way. That is, if u .wmw

∗
m for some m, then

F∞ ' uF∞. If u is not a right factor of any wmw
∗
m, then by the discussion

similar that of 1), we see that uF∞ 6' F∞.
3) The proof follows from the property 1.6).

Example 3. Study of special words of F∞

Berstel [2] introduced the special words of F∞ as follows: if ua, ub ≺ F∞, then
the word u is called a special word of F∞. The following theorem is due to
Berstel [2] which we shall give another proof by using singular word.
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Theorem 5 A word w ≺ F∞ is a special word if and only if, for some n ≥ 0,
w . Fn.

Proof. It is easily checked that, for any n ≥ 0, Fn is a special word, therefore
the theorem is reduced to show that, for any n ≥ 0, |Ωn| = n+ 1.

Now let u ≺ F∞ and let fk < |u| ≤ fk+1. By an analogous argument with
that for lemma 2, it is readily to see that the word u must be one of the three
following forms:

• u = swnt, |st| ≤ fn−1;

• u = sFnt, s, t 6= ε, |st| ≤ fn−1, s . Fn, t / Fn;

• u = st, s . Fn, t / Fn.

In the first case, by corollary 3, the factor s . wn−1, (resp. t) are determined
uniquely. Moreover, since wn has no overlap, if s 6= s′, then swnt 6= s′wnt

′.
Hence there are exactly |u| − fk + 1 different words swnt which correspond
with |s| = 0, 1, . . . , n− fk.

In the two later cases, from property 1.1), it is readily to prove that there
are exactly fk different factors of length |u| of F 3

k .
Summarize the discussions above, we get |Ω|u|| = fk+(|u|−fk+1) = |u|+1.

Example 4. Overlap of the subwords of the Fibonacci word

In this example, we shall determine the factors which have overlap.
Recall that: Let u ≺ F∞, if there exist words x, y and z such that u =

xy = yz and û(y) := uz = xyz ≺ F∞. Then we shall say that the word u
has overlap with the overlap factor y (or overlap length |y|), the word û(y) is
called the overlap of u with the overlap factor y. We denote by O(F∞) = O
the set of factors having overlap.

Evidently, if u ∈ O, we have

|u|+ 1 ≤ |û(y)| ≤ 2|u| − 1, (∗)

where y is any overlap factor of u.

Lemma 6 Let fn < |u| ≤ fn+1, and let u 6= wn+1, then u ∈ O if and only if
wn 6≺ u.

Proof. Let wn ≺ u and write u = swnt. If u ∈ O, notice that wn 6∈ O, thus
overlap of u must be of the form swnvwnt. By corollary 4,

|swnvwnt| ≥ |s|+ |t|+ 2fn + fn−1 = |u|+ fn+1 ≥ 2|u|,

which is in contradiction with the inequality (∗).
Now suppose that wn 6≺ u, then discuss as in theorem 5, we have either

• u = sFnt, where s, t 6= ε, |s|+ |t| ≤ fn−1, s . Fn, t / Fn;

12



• or u ≺ F 2
n .

In the first case, if |t| = fn− 1, then u = wn+1 6∈ O. Now consider |t| < fn− 1.
Since |s|+ |t| ≤ fn−1, s . Fn, t / Fn, we can write Fn = txs. Since |t| < fn − 1,
by theorem 3.4),

(C|t|(Fn))3 = (xst)3 = xstxstxst ≺ F∞,

that is, u = sFnt = stxst has overlap with factor st.
In the second case, notice that u ≺ F 2

n and |u| > fn, so if we write u = st,
with |t| = fn, then t = Ck(Fn) for some k, and s . t, thus u = sxs. On the
other hand, since u = sCk(Fn) ≺ F 2

n , so sxsxs = s(Ck(Fn))2 ≺ F 3
n ≺ F∞, that

is u = sxs has overlap with overlap factor s.

Lemma 7 If u ∈ O, then the overlap of u is unique.

Proof. Let fn < |u| ≤ fn+1, and let w be the largest singular word contained
in u. By corollary 6, w is one of wn−1, wn and wn+1. Since u ∈ O, w must
be wn−1 from lemma 6, so we can write u = swn−1t. Now suppose that
there are two different overlaps of u, then wn−1 will appear three times in
one of these two overlaps. Since wn−1 6∈ O, this overlap must be of the form
swn−1v1wn−1v2wn−1t, then by an analogous argument with lemma 6, we shall
get a contradiction of (∗).

¿From lemma 7 and the proof of the lemma 6, we obtain immediately

Corollary 6 Let fn < |u| ≤ fn+1, and let u ∈ O, then u = vv′v, where |v| is
the overlap length.

Summarize the results above, we have

Theorem 6 Let fn < |u| ≤ fn+1 and let u 6= wn+1, u ≺ F∞, then u ∈ O if
and only if wn 6≺ u. If u ∈ O, then the overlap of u is unique and u = vv′v,
where v is the factor of overlap and |v| = |u| − fn.

In particular, Ck(Fn) ∈ O if and only if 0 ≤ k ≤ fn − 2.

Note that:
i) fn+1 < 2fn < fn+2 < 3fn < fn+3;
ii) for any k, wn+1 6≺ (Ck(Fn))2;
iii) for any k, wn+2 6≺ (Ck(Fn))3.
We get immediately from theorem 6

Corollary 7 For any k, (Ck(Fn))2 ∈ O, (Ck(Fn))3 ∈ O.

Remark 3 If w2 6≺ F∞ and w has no overlap, then the adjacent words of w
will be positively separate. Moreover we can prove that for these words, there
is a decomposition similar to the singular words.
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Let w = abab, by theorem 3.3) and theorem 6, w2 ≺ F∞ and w 6∈ O, so
w is separated positively. the following decomposition illustrates the remark
above:

aba(abab)aaba(abab)a(abab)aaba(abab)aaba(abab)a(abab)aaba(abab)a(abab) · · ·
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(1993).
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