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ABSTRACT: We survey here results and problems from the reconstruction theory of
evolutionary trees, which involve enumeration and inversion.

1. Introduction

Since the work of Darwin, there has been a dream of biologists: to reconstruct the tree of

evolution of living things. That tree could be the only scientific basis for classification. In

the last two decades the dramatic progress in molecular biology (reading long segments of

genetic sequences) led to a new field, the theory of molecular evolution.

One assumes that the process of evolution is described by a tree, in which no degree

exceeds 3, since evolutionary events are too rare to coincide. In this tree the leaves denote

existing species represented by corresponding segments of aligned DNA sequences, the

unlabelled branching vertices may denote unknown extinct ancestors; since fossils do not

keep records of the DNA sequence. For a given set of existing species, we define their true

tree by taking the subtree induced by them in the tree describing the process of evolution

and undoing the vertices of degree two. We term any binary tree, in which leaves are

labelled by the species and the branching vertices are unlabelled, an evolutionary tree.

The very problem of reconstruction may be put in this way: given a set of species with

corresponding segments of aligned DNA sequences, select the true tree from the set of

possible evolutionary trees.

In this paper we assume that every bit of the aligned DNA sequence is one of the

four nucleotides, A (Adenine), G (Guanine), C (Cytosine), T (Thymine); i.e. we neglect

insertions and deletions. Biologists also would like to subdivide an edge of the true tree by

a root r to denote a common ancestor and the direction of the evolution. However, if you

have a procedure to solve the problem above, it easily can be applied to finding the root

by outgroup comparison: add a new species to your list which is known to be far from all
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your species, reconstruct the larger true tree, and the neighbor of the new species can be

considered the root of the smaller true tree.

It is not always the case, that A, G, C, T are the letters of the alphabet; a two-letter

alphabet (identifying purines A = G and pyrimidines C = T ), and a 20-letter alphabet of

amino acids for protein sequences are also possible.

To solve the reconstruction problem, one needs a mathematical model that distin-

guishes the true tree in mathematical terms, and one also may expect, that the math-

ematical model in question corresponds to a known or generally assumed mechanism of

molecular evolution. One also may expect several other attributes of the model, as Hendy,

Penny, and Steel [PHS1] listed: a polynomial time algorithm for tree reconstruction, con-

vergence on relatively short sequences to the true tree, insensitivity to small errors in input

data, and falsifiabilty of the model in a Popperian sense. However, no tree reconstruction

method proposed is powerful enough to meet all these criteria; many popular ones do not

even correspond to any assumed mechanism of molecular evolution. It is no surprise, that

Penny, Hendy, Zimmer and Hamby [PHZH] can show sets of species, for which different

evolutionary trees have been published on the basis of different data, and even on the basis

of the same data, using different methods. In [PHS1], [PHS2], and other papers, Penny et

al. gave a program to put the theory of evolutionary trees on a sound philosophical and

mathematical foundation.

It is not the point of the present paper to overview advantages and shortcomings

of all tree reconstruction methods. For a comparison of different methods, see [PHS1].

We restrict the present paper to our modest contribution, that involves enumeration and

inversion, to that program. Sections 3-5 closely follow [SSE]. We give no proofs.

Cavalli-Sforza and Edwards [CSE] introduced the parsimony principle to the analogy

of many minimum principles in science. In many instances the parsimony principle yields

reasonably good trees, however no mechanism of evolution is accountable for it, and there

are situations—where some branches of the true tree have significantly different rate of

change—in which it may be false, see Felsenstein [F]. Section 2 is devoted to the parsimony

principle and related enumeration results.

Section 3 describes a Fourier inverse pair depending on trees and Abelian groups, and

specializes it to the group Zm2 . Section 4 sets Kimura’s models of molecular evolution

in terms of Section 3 and outlines the spectral analysis/closest tree method. Section 5
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is devoted to the construction of a complete set of invariants for Cavender’s model and

Kimura’s 3-parameter model, and Section 6 concludes.

2. The parsimony principle

Let C denote the letters of our alphabet, which frequently will be referred to as a set of

colours, and let Cm denote the set of m−letter words over that alphabet. Let T be an

evolutionary tree with leaf set L. We term a map χ : L −→ Cm as a leaf-colouration. The

colouration χ̄ : V (T ) −→ Cm is an extension of the leaf-colouration χ if the two maps are

identical on the set L. The changing number of the colouration χ̄ is the number of pairs

of <edge, letter position>, where end-vertices of the edge have different colours at the

corresponding letter position according to χ̄. We term the minimum changing number of

the tree T over all extensions of χ the length of T . The parsimony principle says, that the

true tree has minimum length, i.e. maximum parsimony. Unfortunately, results of Foulds

and Graham [FG] show that the decision problem, whether for a set of leaves and assigned

words, an evolutionary tree with prescribed length exists, is NP-hard, even when |C| = 2.

Therefore, from a statistical point of view, it is reasonable to ask for the expectation and

variance of the length of a random evolutionary tree, in order to use this information as

a selection principle (Steel [S1]). Not much is known yet on the variance, but there are

some results on the expectation. The computation of the expectation can be reduced to

the solution of the following enumeration problem.

Problem. Let fk(a1, ..., at) (t ≥ 2, ai ≥ 1, n = a1 + · · ·+at) denote the number of binary

trees with ai labelled leaves of colour i, with unlabelled branching vertices, with length k.

Evaluate fk(a1, ..., at).

This enumeration problem is still open; not even a conjectured value of fk(a1, ..., at) is at

hand. We list here the solved instances of the problem. Carter, Hendy, Penny, Székely

and Wormald [CHPSW] proved the

Bichromatic binary tree theorem.

fk(a, b) = (k − 1)!(2n− 3k)N(a, k)N(b, k)
(2n− 5)!!

(2n− 2m− 1)!!
, (1)

where a+ b = n and

N(x, k) =
(

2x− k − 1
k − 1

)
(2x− 2k − 1)!!. (2)
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For more than 2 colours, results for extreme length values are available. Observe that

with k colours present, the length is at least k − 1. For this extreme value, Carter & al.

[CHPSW] proved

fk−1(a1, ..., ak) =
(2n− 5)!!

(2n− 2k − 1)!!
N(a1, 1) · · ·N(ar, 1).

For ai ≥ 2, using inclusion-exclusion, Steel [S1] went further to prove

fk(a1, ..., ak) =
(k − 1)(4(n− k)2 − 2n+ k)(2n− 5)!!

(2n− 2k + 1)!!
N(a1, 1) · · ·N(ak, 1).

In another paper Steel [S2] obtained:

f2k(k, k, k) = (k!)3
k∑
s=1

[xk]
Q(x)s

s!
(6k − 5)!!

(6k − 2s− 1)!!
, (3)

where [xi]Q(x) = 2(4i−3)!(6i−3)
(3i−1)!i! . Notice that with 3 colour classes of size k the length is at

most 2k, an extreme case, again. D. Penny [personal communication] computed some small

values of f for 3 colours, which may be useful for making and/or checking conjectures:

fm(2, 2, 3) = 27, 318, 600 for m = 2, 3, 4;

fm(2, 2, 4) = 165, 2610, 7620 for m = 2, 3, 4;

fm(2, 3, 3) = 99, 1566, 5526, 3204 for m = 2, 3, 4, 5;

fm(3, 3, 3) = 351, 6966, 40554, 60858, 19116 for m = 2, 3, 4, 5, 6;

fm(2, 2, 5) = 1365, 27090, 106680 for m = 2, 3, 4;

fm(2, 3, 4) = 585, 11610, 57420, 65520 for m = 2, 3, 4, 5.

A trivial, but useful formula in establishing more values of f is

fk(a1, ..., ar, 1) = (2n− 5)fk−1(a1, ..., ar). (4)

Using (1) and (4), one easily extends the little table above for the values of fm(1, a, b).

The first proof of the bichromatic binary tree theorem relied on generating functions,

multivariate Lagrange inversion and computer algebra. Later on, Steel gave a proof from

a combinatorial decomposition based on Menger’s theorem [S1], and Erdős and Székely

[ES2] simplified his proof further. It has turned out, that (2) counts binary forests of
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k components on x labelled leaves, such that every component contains one vertex of

degree two or zero [CHPSW], [E]. The term k!N(a, k)N(b, k) nearly present in (1) can be

explained as such forests being built on both colour classes of leaves and then the trees

are matched in all possible ways. Then the rest of (1) comes into play at building different

trees of length k from the matched forests.

It became evident, that a solution of the general enumeration problem requires a good

characterization of the fact, that the length of a tree is not less than t; for two colours

Menger’s theorem provides for such a good characterization. A natural generalization of

the length is the well-known multiway cut problem; given a graph G and N ⊆ V (G), find

an edge set of minimum size, whose deletion separates each pairs of N . Dalhaus & al.

[DJPSY] showed that the multiway cut problem is NP-hard (even for planar graphs, if

|N | is not bounded). Hence, the existence of such a good characterization is unlikely in

general. For r ≥ 2 colours and (not necessarily binary) trees Erdős and Székely [ES3]

proved the following min-max theorem to give good characterization:

Theorem. The length of a leaf coloured tree is equal to the maximum number of oriented

paths, connecting differently coloured leaves, such that no edge is used by two oppositely

oriented paths, and no two paths using the same edge end in the same colour.

However, this is not enough in itself, to solve the problem. Notice that it is unlikely that

a product formula like (1) solves the problem, since the given numerical values have some

large prime factors e.g. 43, 53, 89; and (3) does not suggest any closed form either.

We would like to close this section with applications and a by-product. The applica-

tions are in biology. The well-known astronomer Sir Fred Hoyle has suggested that the

Earth is continually bombarded by viruses (including influenza viruses) that originate from

comets. Henderson, Hendy and Penny [HHP] showed that his hypothesis may be rejected

with very high probability; their basic mathematical tool was the bichromatic binary tree

theorem. A further similar application, due to Steel, Hendy and Penny [SHP], applies

the bichromatic binary tree theorem to calculate a permutation-based statistic for aligned

sequences over the 2-letter alphabet, which allows for a test, whether the alignment is

significantly ”tree-like”.

The byproduct is a bijection of Erdős and Székely [ES1] between some trees with

unlabelled branching vertices and set partitions, which gives a unified technique to solve a
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number of tree enumeration problems. The motivation for the bijection came from count-

ing evolutionary trees, which yields a semifactorial function (Cavalli-Sforza and Edwards

[CSE]), like the number of partitions of a 2n-element set into 2-element sets. Had not

we seen counting of trees with unlabelled branching vertices in biomathematics, we would

hardly have ever come to this point.

3. A Fourier calculus

Let us be given a tree T with leaf set L and one arbitrary leaf R, called a root. We do not

need that the tree is binary, but we assume that no vertex has degree two. Suppose that

we are given a finite Abelian group G and for the edges e ∈ E(T ) we have independent

G-valued random variables ξe with pe(g) := Prob(ξe = g) and
∑
g∈G pe(g) = 1. Produce a

random G-colouration of the leaves of the tree by evaluating ξe for every edge and giving

as colour to the leaf l the product of group elements along the unique Rl path. Let fσ
denote the probability that we obtain a leaf colouration σ : L \ {R} −→ G. We need to

recall some facts on characters and the Fourier transform, which can be found in [J] or in

[EvS].

Lemma. Let G be a finite Abelian group, then

(i) the character group Ĝ is isomorphic to G.

(ii) if f : G→ C is a complex-valued function and f̂ : Ĝ→ C is defined by

f̂(χ) =
∑
g∈G

χ(g)f(g),

then for all g ∈ G
f(g) =

1
|G|

∑
χ∈Ĝ

χ(g)f̂(χ).

(iii) The characters of a direct product group are exactly the products of characters.

Take Gn−1 = the set of colourations σ : L \ {R} −→ G endowed with pointwise mul-

tiplication. Let χ = (χl ∈ Ĝ : l ∈ L \ {R}) be an ordered (n − 1)-tuple of char-

acters. Then χ ∈ Ĝn−1 acts on Gn−1 according to Lemma (iii). For e ∈ E(T ), set

Le = {l ∈ L : e separates l from R in T}. Define

rχ =
∏

e∈E(T )

∑
g∈G

pe(g)
∏
l∈Le

χl(g). (5)

In [SSE] we obtained the following inverse pair:
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Theorem.

rχ =
∑

σ∈Gn−1

fσ
∏
l

χl(σ(l)) and (6)

fσ =
1

|G|n−1

∑
χ∈Ĝn−1

rχ
∏
l

χl(σ(l)). (7)

In [SSE] we observed that (6) and (7) are equivalent by Lemma (ii) for any f : Gn−1 −→ C

and r : Ĝn−1 −→ C; and it is no longer difficult to prove (6) with our fσ and rχ, as soon as

the correct definition (5) is discovered. Let us specialize the Theorem for G = Zm2 , since it

admits a combinatorial description and has practical significance at the same time. Fourier

calculus over Zm2 occured many times in the literature (see [SSE] for some references), but

not for the same purpose.

For every l ∈ L \ {R}, take a copy of G, G = Gl = Zm2 and Ĝ = Ĝl by

Gl =
{

(σ1, ..., σm) : σi ⊆ {l}
}
, Ĝl =

{
(X1, ..., Xm) : Xi ⊆ {l}

}
,

both endowed with the positionwise symmetric difference operation as group multiplica-

tion. For χl = (X1, ..., Xm) ∈ Ĝl and gl = (σ1, ..., σm) ∈ Gl define the action

χl(gl) = (−1)
∑m
i=1 |σi ∩Xi|.

For the direct product of Gl’s and Ĝl’s one has

Gn−1 =
{

(σ1, ..., σm) : σi ⊆ L \ {R}
}
, Ĝn−1 =

{
(X ′1, ..., X

′
m) : X ′i ⊆ L \ {R}

}
.

For the combinatorial interpretation the key observation is that the latter formula can be

identified with

Ĝn−1 =
{

(X1, ..., Xm) : Xi ⊆ L, |Xi| even
}
,

endowed by the positionwise symmetric difference operation as group multiplication and

character action

(X1, ..., Xm)(σ1, ..., σm) = (−1)
∑m
i=1 |σi ∩Xi|

under the correspondence

Xi =
{
X ′i, if |X ′i| even,
X ′i ∪ {R}, if |X ′i| odd.
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Now (5) turns into

rX1, ..., Xm
=

∏
e∈E(T )

∑
g⊆M

(−1)
|g ∩ {i : e ∈ P (T,Xi)}|pe(g),

where P (T,Xi) =
{
e ∈ E(T ) : |Le ∩Xi| odd

}
(the unique T-join of the set Xi for a graph

theorist); and (6)-(7) turns into (8)-(9)

rX1, ..., Xm
=

∑
σ1,...,σm

(−1)
∑m
j=1 |σj ∩Xj |fσ1,...,σm , (8)

fσ1,...,σm =
1

2m(n−1)

∑
X1,...,Xm

(−1)
∑m
j=1 |σj ∩Xj |rX1, ..., Xm

. (9)

It is an important fact that the connecting matrices in (6)-(7) are— after normalization—

unitary, and hence the connecting matrices in (8)-(9) are Hadamard.

4. Kimura’s models of molecular evolution

After the work of Kimura, the general assumption for the mechanism of molecular evolution

is that changes in the DNA are random. It is assumed that changes at different sites are

independent and of identical distribution. In case the data violates too much the condition

on identical distribution, one may thin out the sequences by considering one site of each of

the codons (the consecutive triplets of nucleotides encoding amino acids), particularly the

third position, which is more redundant in the coding scheme than the other two positions,

and therefore less influenced by natural selection. For m = 1, the model described in

Section 3 specializes to a model of Cavender [C1], for which Hendy and Penny found

the special case of the calculus above and applied it in their spectral analysis/closest

tree method for tree reconstruction from sequences over a 2-letter alphabet [H], [HP1],

[HP2]. Our part was the generalization for other groups; the practical importance of this

generalization is mostly for m = 2, i.e. for sequences over the 4-letter alphabet A, G, C,

T. We explain the m = 2 case in details, the explanation also applies, mutatis mutandis,

to m = 1. It is an interesting paradox of the theory of evolution, that evolution is random

at the molecular level and follows natural selection at a high level.

¿From now on we describe Kimura’s 3-parameter model [K2, K3] and some restricted

versions of it, which are known as Kimura’s 2-parameter model [K1] and Jukes-Cantor

model [JC], (the Jukes-Cantor model is more explicit in Neyman [N]). We follow the
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group theoretical setting of these models from Evans and Speed [EvS]. Take the symmetric

difference group of the subsets of M = {1, 2}, which is the Kleinian group Z2 × Z2 with

generators {1} and {2}. We compromise at this point and do not assume any longer,

that evolutionary trees and the true tree are binary, but we assume, that they have no

vertex of degree two. Take the true tree with a common ancestor r, a random subset of

M is assigned under a certain (unknown) distribution to r. To every edge of the tree a

random element of the Kleinian group is assigned independently. In the group theoretical

setting of the Kimura’s models [EvS], the elements of the Kleinian group are identified

with nucleotides, A ↔ ∅, G ↔ {2}, C ↔ {1}, T ↔ M . The random group element at r

tells the original nucleotide value there, and the random variable at an edge describes the

nucleotide change on that edge. In terms of biology, multiplication by ∅ on an edge causes

no change in the nucleotide, multiplication by {2} causes transition, and multiplication

by {1} or M causes one of the two possible types of transversions. To every leaf l the

product of group elements along the unique path rl and in r itself is assigned. We have a

random 4-colouration of the leaves (in fact, of all vertices) of the tree. That is Kimura’s

3-parameter model of molecular evolution. Kimura’s 3-parameter model allows for every

edge e of the tree 4 arbitrary probabilities which sum up to 1, i.e. 3 free parameters, which

may be different on different edges. Kimura’s 2-parameter model is similar, but further

restricted by pe({2}) = pe(M) for all edges, and finally, the Jukes-Cantor model requires

in addition pe({1}) = pe(M) for all edges.

It is very interesting, that the models above were equipped with substitution mecha-

nisms for transitions and transversions that fit perfectly the group theoretical description,

although this was not the motivation for their invention.

The model, in which we work, slightly differs from Kimura’s models, namely, we do

not have a root r for an unknown common ancestor. This is in no way a serious loss, since,

as we have already explained, it easily can be found by outgroup comparison. The root

that we use, is, like in Section 3, one arbitrary leaf R, which represents an existing species.

At every site of the sequence of R, we find a group element, and for normalization, in

every leaf we multiply at the same site with the inverse of that group element. We refer

to the sequences obtained as normalized sequences, note, that the normalized sequence

of R contains identity elements only. From the normalized sequences we can read a leaf

colouration at every bit; we count relative frequencies of leaf colourations and we treat

these relative frequencies as if they were the fσ1,σ2 leaf colouration probabilities from the
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model of Section 3. Observe that the propagation of group elements along the tree is

direction dependent unless pe(g) = pe(g−1) for all e and g; and without this condition

the normalization would not make sense. However, for G = Zm2 , the condition holds

automatically.

We had a set of species with corresponding segments of aligned DNA sequences. We

selected an arbitrary species for R and we normalized the sequences from R, and obtained

an f ′σ1,σ2
relative frequency of the colouration (σ1, σ2) among the bits. Now we face the

following problem: which tree T and probability distributions pe(g) over its edges yield a

leaf colouration probability fσ1,σ2 = f ′σ1,σ2
for all (σ1, σ2)? Working with real data, we

must be satisfied with the best approximation in a reasonable norm. Having the pe’s on

the edges of the true tree allows for estimating a time scale, i.e. how far ago in time the

evolutionary events in question did happen. The following theorem will give a solution for

the problem; we formulate it for G = Zm2 .

Let H denote the connecting Hadamard matrix in (8). Let f denote the vector of

fσ1,...,σm ’s in (8). We adopt the convention of writing [v]j for the jth coordinate of the

vector v. Let K denote the Hadamard matrix, in which rows and columns are indexed

with subsets of M , and the general h, g entry is

(−1)
|h ∩ g|

;

let pe denote the vector, for which [pe]h = pe(h). For a positive vector v, we denote by

log v the vector, for which [log v]i = log[v]i. We define an important set here, which is

essential also for our results on invariants:

C(T ) =

{
(σ1, ..., σm) : e ∈ E(T ), h ⊆M, σi =

{
Le(T ), if i ∈ h,
σi = ∅, otherwise

}
. (10)

We generalized with Hendy [SHSE] the spectral analysis/closest tree method as follows:

Theorem. In the model of Section 3 for G = Zm2 ,

[H−1 logHf ]σ1,...,σm =
0, if (σ1, ..., σm) /∈ C(T ),
[K−1 logKpe]h, if (∅, ..., ∅) 6= (σ1, ..., σm) ∈ C(T )

defined by e and h in (10),
−
∑
e∈E(T )

∑
∅6=h∈M [K−1 logKpe]h, if (σ1, ..., σm) = (∅, ..., ∅),

(11)

if all the logarithms are to be taken of positive numbers.
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We note here, that the model of Section 3 does not imply the existence of the logarithms;

however, for real data, there is no problem with them, due to the fact, that the probabilities

pe(g) are sufficiently small for g 6= (∅, ..., ∅). Working with f arising from the model of

Section 3, (11) and (10) tell the edges of the tree, and from (11) one can obtain pe for all

edges as well.

Working with empirical f ′, the closest tree method, which is a branch-and-bound

algorithm, determines then the evolutionary tree and the pe’s over its edges, which yields

f , such that H−1 logHf approximates H−1 logHf ′ best in the Euclidean norm. The actual

computation can be facilitated by writing H into a symmetric form achieving H−1 =

41−nH and by an adaptation of the fast Fourier transform. The inverse pair (8)-(9) is a

necessary tool in proving (11).

5. Invariants

There is a continuing interest in the theory of invariants of evolutionary trees. Roughly

speaking, an invariant is a polynomial identity, which holds on one evolutionary tree no

matter what the probabilities assigned to the edges are, and usually does not hold on other

evolutionary trees. The great advantage of using invariants is that one may discriminate

against some trees without (strong) assumptions regarding the probabilities. Invariants

were introduced by Cavender and Felsenstein [CF], [C2], [C3] and Lake [L]; and recently

Evans and Speed [EvS] gave an algebraic technique based on Fourier analysis to decide if

a polynomial is invariant or not for Kimura’s 3-parameter model.

Here we give explicitly a complete set of invariants for the mathematical model de-

scribed in Sections 3-4 for G = Zm2 . We still do not assume, that the tree is binary, but we

assume, that no vertex has degree two. For a formal definition, let us be given a tree T and

another tree T ′ on the same leaf set L and root R. Introduce the indeterminates xσ1,...,σm

for all σi ⊆ L \ {R}, i = 1, 2, ...,m. A multivariate polynomial q(..., xσ1,...,σm , ...) is an

invariant of the tree T , if q vanishes after the substitution of fTσ1,...,σm ’s into xσ1,...,σm ’s,

for any ξe independent random variables over the edges of T . We expect from an invariant,

that it is non-zero on a typical fT
′

σ1,...,σm ; and hence searching for the true tree T ′, having

the observed fT
′

σ1,...,σm , we may reject a wrong candidate T , using its invariant(s).

A set of invariants of T is complete, if for any other tree T ′, at least one of the poly-

nomials does not vanish on some fT
′

σ1,...,σm . (Then, it comes for free, that it discriminates
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against almost all probability distributions.) For m = 1, our complete set of invariants was

already found by Hendy [H], although it is not explicit there. These invariants are very

similar to (11), but note, that (11) is not a polynomial identity. Define the polynomials

RX1,...,Xm =
∑

σ1,...,σm

(−1)
∑m
i=1 |σi ∩Xi|xσ1,...,σm

for Xi ⊆ L, |Xi| even, i = 1, 2, ...,m. Now for an arbitrary given (ρ1, ..., ρm) (ρi ⊆ L\{R},
i = 1, 2, ...,m), define the polynomial δρ1,...,ρm of all the variables xσ1,...,σm :

δρ1,...,ρm =
∏

(X1,...,Xm):∑m

i=1
|Xi∩ρi|≡0 mod 2

RX1,...,Xm −
∏

(X1,...,Xm):∑m

i=1
|Xi∩ρi|≡1 mod 2

RX1,...,Xm .

Theorem. The polynomials {δρ1,...,ρm : (ρ1, ..., ρm) /∈ C(T )} make a complete set of

invariants of T .

It is worth making the following comment here. Evans and Speed [EvS] made the

following conjecture: ”the number of algebraically independent invariants and the number

of free parameters among the pe(g)’s obtained by an informal parameter count add up

to the number of variables xσ1,...,σm”. Their first problem seems to have been to set

candidates for these independent invariants. Assume that for g 6= ∅, pe(g) is a variable

and pe(∅) = 1−
∑
g 6=∅ pe(g), then the number of variables fσ1,...,σm is 2m(n−1), the number

of free parameters is |E(T )|(2m − 1), the number of invariants given in the theorem is

2m(n−1)−|C(T )| = 2m(n−1)−|E(T )|(2m−1)−1; and actually, we have one more invariant,∑
fσ1,...,σm = 1. The numerology works, but a positive result here would seem to involve

algebraic geometry.

If it comes to application of these invariants, then values of polynomial functions must

be computed instead of the polynomials, since computer algebra in many variables is rather

prohibitive.

Problem. Generalize the above set of invariants to the case of arbitarary finite Abelian

group.
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6. Conclusion

The spectral analysis method has the advantage of using all the genetic information from

the sequences, a property, which is not shared by most other reconstruction techniques. As

it was pointed out in [H], [PHS1], [PHS2], it satisfies the Popperian program of falsifiability.

Namely, the probabilities pe(h) resulting from (11) might be negative numbers in the closest

tree. That this can happen for artificial data but not for real data is a circumstancial

evidence for the truth of Cavender’s model and Kimura’s 3-parameter model. There is

an additional Popperian test for Kimura’s 3-parameter model, namely, that in (11), for

(σ1, σ2) /∈ C(T ), σ1 6= σ2, [H−1 logHf ]σ1,σ2 = 0; and this test does not even assume any

knowledge on the closest tree.

Compared with spectral analysis, the parsimony principle is a rather rough exploratory

method. However, with small binary trees and uniform small probabilities pe(g) for any

change (g 6=identity), pe(g)2 << pe(g), changing twice for a nucleotide is highly unlikely,

and the parsimony principle turns into an approximation of Kimura’s model. The parsi-

mony principle and the closest tree method are both minimum principles, although with

different objective functions.

The second author proposes the development of randomized algorithms for tree re-

construction. In view of the successes of randomized algorithms in situations where de-

terministic algorithms fail, this approach could be promising, although nothing is done

yet.
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