AN ANALOGUE TO ROBINSON-SCHENSTED
CORRESPONDENCE FOR OSCILLATING TABLEAUX (*)

BY

MARIE PIERRE DELEST, SERGE DuLUCQ AND LLuCc FAVREAU

ABsTrACT. We give the hook formula for oscillating tableaux of length n and final
shape A, and using a bijective proof we construct an analog of the Robinson-Schensted
correspondence to prove the dimension identity,

1-3-5---(2n—1) = > (fn)?
A

related to the irreducible representations of the Brauer algebra of the symplectic group,
[2], [9]. This correspondence turns out to have most of the ordinary Robinson-Schensted
correspondence properties.

1. Introduction. We define an oscillating tableau of length n and shape A to be
the sequence
QJ)\].?)\27"'7)\’H,

of Ferrers diagrams such that \; is a single square (A\; = ), A, is A and for each
¢+ 1, the shape A;y; is obtained from \; by adding or deleting an admissible square.
For instance,

0 0 0
%) 0 0O 0o 0 0 1%} 0 0 O 0O

is an oscillating tableau of length 9 and of shape (2,1). One can see that a standard
tableau is just an oscillating tableau in which we never delete any cell.

The usual Robinson-Schensted correspondence (R.S.C.) is an algorithm which asso-
ciates bijectively to each permutation o of the symmetric group S,, a pair of standard
tableaux with the same shape. This correspondence gives a proof of the dimension

formula
n! = z:(n>\)2 , (1.1)
A

where the sum ranges over all shapes and n) is the degree of the corresponding
irreducible representation of S,. For more details see [6], [8], [10]. We will write

o < (P(0),Q(0)).
(*) This work has been supported by the P.R.C. ”Mathematiques et Informatique.”
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If we consider the P-tableau and the ()-tableau associated to the inverse permuta-
tion, we have the following identities,

Plc™H =Q(o) and Qo ') = P(o). (1.2)

For a beautiful proof of this fact see [8]. Also if we set ¢* to be the reverse word
oy -+ -01, we will get the following,

P(o*) =P"(0) and Q(0*) = Qv..(0), (1.3)

where the superscript 7" means the transpose of the tableau and the subscript V.R.
refers to the so-called ”vidage-remplissage” algorithm due to Schiitzenberger [5].
The hook formula for ordinary tableaux gives the number of standard tableaux of
shape A, that is
n!
[17x

where [] hy is the product of all hook lengths of the shape A, [4].

For instance, if
(1 23 456789
7=\7 213 95 8 4 6)°

7 9 3 8
Plo)=2 5 8 and Q(o)=2 6 9
1 3 4 6 1 4 5

nx

then

The inverse and mirror permutations are
o1 1 2 3 45 6 7 8 9 ot 1 2 3 45 6 7 8 9
~\3 2 4 8 6 91 7 5)’ ~\6 4 8 5 9 3 1 2 7)°

Applying R.S.C. to the inverse we get

3 8 79
Pe™H)=2 6 9 and Qo H =2 5 8
1 4 5 7 1 3 4 6,
that is
P(c™')=Q(0) and Q(o7') = P(0),
and finally
6 7
o 4 8 « 06 8
P(O’)—3 _— and Q(O’)—2 19
1 2 7 1 3 5,
where

P(o*) =P"(0) and Q(0*) =Qy (o).



Let A be the shape (3,2),

oo

S Ooogag-

The number of standard tableaux with this shape is obtained by first computing the
hook length of each cell. That is, for each cell we count the number of cells belonging
to the hook for which it is the corner. Labelling the cells by their hook length will
give in this case

A

2 1
4 3 1.
Using the formula we obtain
5-4-3-2-1
"EDT a1
It means that there are exactly 5 tableaux with this shape, namely:

4 5 35 3 4 2 5 2 4
1 23, 124, 125, 134, 1 3 5.

The goal of the this paper is to recall the hook formula for oscillating tableaux, the
result is due to S. Sundaram [7], then give an extension of the Robinson-Schensted
algorithm in order to prove an analog of (1.1). It will turn out that the proposed
algorithm gives properties analogous to (1.2) and (1.3) as well. There exist other
correspondences in the literature, for instance see [1] or [3], but they are developed
quite differently.

=5.

2. Hook formula for oscillating tableaux. We denote by f) the number of
oscillating tableaux of length n and shape A. It is easy to see that f will be zero if
n—|A| is an odd number. One can also see that an oscillating tableau is a path in the
Young lattice starting from & and ending in the shape A. But before going further
we introduce some definitions and fix some notations.

Definition 1. Let n,m be two integers such that m < n. An injective tableau T is
an exhaustive labelling of a Ferrers diagram of shape A = m by numbers in a subset
S included in {1,2,...,n} of cardinality m, in such way that rows and columns are
strictly increasing.

The number of such tableaux is (IS\LI) STy

In the following, when we will say involution we mean an involution on a set S of
even cardinality without fixed points. For a given set S there are exactly 1-3--- (|S|—1)
such involutions. To have a convenient notation, we shall present an involution 7 in
form of two rows of distinct numbers

i (011 Qg ... O )
Br P2 .. Br )’
where a7y < ag < --- < af and for all i’'s a; > B;. In fact, written in a more classical
way, T is just a product of transpositions

T = (01 1) (2f2) - - - (o Br).

We are now ready to announce the



Theorem 1. The number of oscillating tableauz of length n and shape X is

Retsem-n-0- (3 m,

where || is the number of cells in the final shape and ny is the number of standard
tableauzr having this shape.

Let us write [m] for {1,2,...,m}. To prove the assertion we construct a bijective
map
@02 (—)T/\ XIn_|)\| XS,

where O, is the set of all oscillating tableaux of length n and shape A, T? is the set
of all standard tableaux of shape A, I,,_|y| is the set of all involutions without fixed
points on [n — |A|], and S is the set of all subsets of [n] of cardinality |A|.

Proof. Let O) be an oscillating tableau of length n and shape A = A,
O} =3, A1, Aoy ey Ane

We produce a pair (7, T?), where T? is an injective tableau on an underlying subset
S, and 7 is an involution on the underlying complementary subset [n] — S of even
cardinality. First we construct the sequence

&, T, Ty, ..., Ty =T
of injective tableaux having respectively shape
Dy A1, Aoy ey Ap.

Starting from @ we do,

(1) If [Nj+1| > |\i| we construct T;4+1 by adding to T; the unique cell of the skew
shape \;11/A; labelled by ¢ + 1.

(2) If [Ajy1] < |A;| we construct T;4q from T; by applying the inverse of R.S.C. to
bump out a unique element x of T; in a way to obtain an injective tableau of
shape A;j41.

At the same time we keep track of the bumped numbers, which we do by creating
a list consisting of two rows,
i1 2 ... g
1 To ... T )’

where i is the number of the step that we are in, and zj is the bumped number.
Using this process we will end with an injective tableau of shape \,, and an involution
7 on some subset. Clearly the obtained tableau is an injective one. To see that we get
an involution just observe that numbers are always added during the process before
they are bumped, hence we will always have

1j > Tj,



and by construction we have
i1<i2<"'<ik,

and all the z; coming out of the tableaux are distinct because they were originally
step numbers. To be convinced that the subset underlying the involution is exactly
S¢, the complement of S, note that no x; can be in T* (the x;’s have been bumped
out), and that any 4; is not in T* because only step numbers appear in T» where an
etnry was added, while the ¢;’s are step numbers where an entry was deleted.

To see that the map is a bijection we just construct the inverse map.

Let T* be an injective tableau on a certain subset S, and an injective involution

il ig e ’ik
T = s
rT T2 ... Tk

on the complement §¢. We construct the sequence of injective tableaux
Tann—lu e 7T15 @,

where T}, = T, by applying one of the following two exhaustive rules.

(1) If 4 is one of the i, then T;_; is obtained from T; by inserting the corresponding
element z; into T; by R.S.C.

(2) If i is not one of the i;, then the tableau 7; must contain ¢ (otherwise it means
that z; = ¢ for some j < %, contradicting the presentation of 7 in which we
should always have z; < j, in fact 4 is the biggest element of T;). In this case,
just remove from T; the corner cell containing ¢, this gives T;_;.

At the end, just keep the corresponding shapes,
D, A1, A2,y A
One can see that this map is exactly the inverse of ®. This complete the proof. N
Example. Take an oscillating tableau,

g g O [l
1%} 4 g g g g %) g g o d (N

Then we construct the sequence of injective tableaux,

3 3 9 9
1%} 1 12 12 1 3 & 7 78 78 7

Taking note of the bumped elements in order, we get the involution

(4 5 6 10
™\l2 13 8/



3. Symmetric correspondence for oscillating tableaux. Looking at the for-
mula of Theorem 1, one can see that when the shape A is a partition of n, we get
back the usual hook formula for standard tableaux. On the other hand, if the shape
A is the empty one, we get an interesting identity,

1-3---(m—1)=f2 .

This expression means that m is an even number, so we might as well set m = 2n
and,
1-3---(2n—1)= f2 . (3.1)

The left side of the equation can be interpreted as the Brauer algebra dimension,
that is the number of generators of this algebra. As in [2], those generators can be
visualised by graphs whose vertex contains two parallels rows of n dots, in which
each dot is connected by an edge to exactly one other dot. Among these generators
some can be identified with permutations in S,,. They are those for which every edge
connects a dot in a row with a dot in the other row.

Let us look at the right side of equation (3.1), this number enumerates all the
oscillating tableaux of length 2n and shape @, they have the form

|7
O2n = ®7 Ala)\Za . '7)"n7 .- '7A2n—27)‘2n—17® .

Now, a simple but very efficient remark will allow us to produce the analog of
R.S.C. as a consequence of Theorem 1, just note that there is no restriction on A,, in
the tableau O?n. So we just set

PZQ,Al,)\g,...,)\n, (32)
Q = QJ )‘271,—17 A2n—27 .- -7)\71, . (33)

The equation (3.1) can be rewritten as

135 (2n—-1) =) (f)?,

A

where )\ range over all admissibles shapes. All we have to show now is how to pass
from generators to involutions. After a few trials, we can see that labelling the second
row of dots from left to right by numbers 1 to n, and the first row of dots from right
to left by n + 1 to 2n, keeping the edges, will produce the proper involution assuring
the translation by means of the usual correspondence in the case where the generator
is an element of S,,, call this translation Y . For instance,

10 9 8 7 6

T
—
1 2 3 4 5
We can then state the

ORIt
— o
SN
B ©
® S
——
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Theorem 2. The generators of By,, the Brauer algebra of the symplectic group, is in
bijection with pairs of oscillating tableaux of length n and same shape A, that is

1:3-5---2n—1)=> (f2)*.

A

Proof. Take any generator 7, construct Y(v), its associated involution, then applica-
tion of ®~! to the involution will produce an oscillating tableau of shape @, break
the sequence as in (3.2) and (3.3), that is the pair (P(vy),Q(y)). N

For instance, let
10 9 8 7 6

_’/—\ 4 Ty (3679 10
= an (7)_<2 15 4 8)'
N

1 2 3 4 )
Applying ®— !, we get, from right to left

%] 1 12 1 1 15 4 5 4 4 8 g .

Keeping only the shapes,

1%} 0 0o 0 0 oo 0o (] 0 (] .

Breaking the sequence in two parts we obtain

O O
PM=, 0 po o o oo
O O

M=, g 0o o oo oo

Theorem 3. If v is a generator of the Brauer algebra belonging to S, , then the pair
(P(),Q(7)) of oscillating tableaux is a pair of standard tableauzx, and these tableauz
are the ones we obtained by applying R.S.C. to v considered as an element of Sy,.

Proof. Let v be a generator which is also an element o of S,, the corresponding

involution will be of the type

<n+1 n+2 --- 2n-—1 2n)

On Opn—-1 - (o) 01
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Be applying ®~! to the involution we will produce a sequence of injective tableaux
2,11, Toy....Th1, T, Tns1y- oy Ton—1,Top = .

The underlying shapes are
Dy A1, A2, o5 An—1, Ay At 1y - - - s Aoap—1, Aoy = I .

Note that the sequence is constructed from right to left. At each step, from 2n down
to n, we will insert the sequence

g1 09 ... Op .

That means that T, is just P(o), and it also shows that the sequence Ay, ..., A, is
just Q(o).

After that we will remove the entries of T;,, one by one, starting from the biggest
element. It is just the backward construction of P(o), which simply means that

P(y) = P(o) and Q(7) = Q(0). u

As we pointed out in the introduction, this correspondence has symmetry proper-
ties. Inspired by the fact that if any generator is a permutation, then the inverse is
obtained by turning the corresponding graph upside down. We want to do the same
for all the generators.

Definition 2. Let v be any generator of the Brauer algebra. We define vy~ to be the
inverse generator obtained from v by turning it upside down.

For instance, if

It is perfectly clear that for generators belonging to S,, the property (1.2) holds.
We wish to extend the property to every generator. Let v be a generator, we will
use the notation vy when the labelling is from left to right in the second row with
numbers from 1 to n, and from right to left in the top row with numbers from n + 1
to 2n. We also use the notation y— when the labelling is from left to right for both
rows with numbers from 1 to n. Using that latter notation we can break v into
three constituents, namely, an involution 7, on a certain subset of the upper row,
an involution v; on a subset of same cardinality on the lower row, and a bijection ~;
between the remaining dots of boths rows. For instance if

then
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Theorem 4. Let~y be a generator of B,,, and the corresponding constituents vy, i, Vo-
Using Y and ®~' we produce

P(’y)zg,)\l,...,)\n :A,
Q(PY) = ®7A2n7"'7An = A
Applying ® to both P and Q) will give
®(P(v) = (Tp,mp) » Q)= (T3, 7q).
Then

M=TP 5, Yu = TQ,
and
Pw)=Tp , Qw)=Tp,
where (P (), Q(vp)) is obtained by applying R.S.C. to .

Before showing the proof, let us examine an example. Let v be

Y= 6 e & o o e
— T

Using two different notations we get

14 13 12 11 10 9 8 1 2 3 4 5 6 7
¢ e & o v ¢ e & o v
VS:M and ijw"
L T L T
1 2 3 4 5 6 7 1 2 3 4 5 6 7

(5 6 (37 g e (24T

Using the translation T, we get

3 7 8 11 12 13 14
TQ”“(2 45 1 9 6 10)'

Applying ®~!, we produce a sequence of injective tableaux, keeping the shapes
and breaking the sequence in two parts,

O
O O I
Py= ¢ 0O OO0 0O OO0 OO 0O OO
O
O O O O o o .
Q)= ¢ 0O 0O OO OO0 OO 0O 00



10

Reapplying ® to both P(v) and Q(v), we get

o= (5 5 (5 1))
san=(5 ; (1 3))-

Proof (Theorem 4). Let « be a generator, If we use the translation T a generator

looks like
iy dg - ip
‘7;1 x2 e e 0 mn .

Application of the correspondence ®~! will produce a sequence of injective tableaux

and

T +To T+ Ty 1T, =9 .
We keep the first half of it and the underlying shapes, that is
)\na )‘n—{—l’ ceey A2n—15 )\Qn =g,

corresponding to (). We also produce the sequence of injective tableaux corre-
sponding to the application of ® to the oscillating tableau Q(v),

Sn < Sn_|_1 — e < Sgn_z — Sgn_l < Sgn = o
n n—1 2 1 0

Note that the relation between step index 7 and subscript index of the tableaux S is
P—2n —10 . (3.4)
Consider the sequence

(T2n; S2n); (TZn—h S2n—1)7 DR (Tn; Sn)

of pairs of injective tableaux with the same shape, coding respectively B2y, B2rn_1,. ..,
B, and suppose that Ts,_j is the first tableau where we delete an element. In fact,
as pointed out in Theorem 1, this element is 2n — k 4+ 1, and of course this element
was inserted at a certain step, say j, for k < j < 2n. Note that at step kK — 1, the pair

(Ton—k+1, S2n—k+1) is coding

1 2 k—1
/82n—k+1:( >,

Tn Tp-1 e Tp—k

and that 2n — k + 1 must be one of the z;’s, that is

(12 j S
2n—k+1 — Ty  Tpe1 2n—k+1 Tn—k .
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Because deleting in 75, and ejecting the corresponding element in Ss,,_ is the

backward construction of
_1 ] ey Ry |
ﬁ2n—k+1 ( ce e J )’
we see that at step &, the pair (T2, g, S2n—#) is coding the bijection 3, _, ., obtained
from B2, k11 by removing the vertical pair (j,2n — k + 1), but in notation < this is
the transposition (2n — k 4+ 1,2n — j 4+ 1), and in notation y— it is the transposition
(k,j)- Application of this procedure each time we delete an element allows us to
conclude that
Yu =TQ -

Since all transpositions in the top row are going to be omitted, the last pair (T, Sy,)
will code a bijection which is exactly 7.

To see that P(vp) is Tp, just note that T;, is exactly Tp, and finally, to see that
v = Tp, we can argue that for any ¢, where ¢ > k, inserting an element at step ¢ means
to insert its corresponding element in the transposition (i, j) of «y;, where j < i. Now
at step j, because there will be nothing to insert, we will remove the biggest element,
which is ¢z. But all this is just the backward construction of 7p. M

With all this in mind, it should be obvious that property (1.2) holds for oscillating
tableaux.

Corollary 4.1. Let v be a generator of the Brauer algebra, and let v~ be the cor-
responding inverse generator. By applying ®~1 to each of them we produce pairs of
oscillating tableaux

Then
Py =Q() and Qv ') =P(v).

Proof. Let v be a generator and vy~ ! its inverse. Break v and ™
constituents,

1 into their three

¥ (Yus V15 78)5

Y e (L L Y-

By definition of the inverse y~!, it is obvious that v, ' = v, ! = 4, and that

75t = (75)~!. Then using Theorem 4, we immediatly get the result. MW

Now, we want to show that our correspondence has a property analogous to (1.3).
Regarding our presentation of the generators, instead of just reversing the lower row
of dots, as we do to get the reverse word of a permutation, we will reverse, with
respect to a vertical axis, the whole generator. This choice was suggested by the fact
that to get the inverse generator, we reverse the object with respect to a horizontal
axis. Note that reversing a permutation, with respect to a vertical axis, we get a
much more symmetric relation, namely

P(0*) = Prr(o) and Q") = Qv.r.(0).
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Definition 3. Let v be any generator of the Brauer algebra, we define v* to be the
mirror generator obtained from v by a reflexion about a vertical axis.

For instance, if

R L Pue S

In what follows we need to define the ”vidage-remplissage” for injective tableaux.
We recall that this algorithm is a process, which applied to a standard tableau gives
another tableau of the same shape. It can be described as follows. Take a standard
tableau T" and replace the leftmost and bottommost cell by a blank, remembering the
element that was there. Then, exchange the blank with the cell to its right or with
the cell on top of it, according to the smallest entry, repeat this procedure until the
blank reaches a corner cell, and replace the blank by the remembered element. We
start over again with the leftover tableau, disregarding the remembered element. The
process stops when the leftover tableau is empty. The new tableau obtained in this
manner is not standard, all lines and columns are strictly decreasing. To get back a
standard tableau, replace all entries 7 by n + 1 — ¢. It is the ”vidé-rempli” of T'. For
instance, take

7
T=3 4 8
1 2 5 6 9.
We move the blank to a corner cell,
7 7 7 7
3 4 8 - 3 4 8 - 3 0O 8 —- 3 8 U
0O 2 5 6 9 2 0O 5 6 9 2 4 5 6 9 2 4 5 6 9.
Now we replace the blank by 1, and start over again. In the end we get
2
6 5 1
9 8 7 4 3.
Finally we apply the transformation 2 <— n + 1 — ¢ to get the ”vidé-rempli” tableau
8
4 5 9
1 2 3 6 7.

In what follows, we need to extend the process to injective tableaux. If T' is an
injective tableau with m cells on the set [n], a natural way to produce the analog
for those tableaux is to do the same, and at the end, instead of performing the
transformation i<+m + 1 — 4, we replace ¢ by n + 1 — 4. For instance, if

79
= 2 4 5 8
is an injective tableau on [10], then the ”vidé-rempli” will be

3 6
Tvr=9 4 7 9.
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Corollary 4.2. Let v be a generator of the Brauer algebra, and let v* be the corre-
sponding mirror generator. By applying ®~1 we produce pairs of oscillating tableauz,

() = (P(7), Q(7)),

and
o (v) = (P(v), Q(v"))
Ry applying @ to those oscillating tableaux, we will get

®(P(v)) = (Tp,TP),

2(Q(7)) = (Tg, Q)
®(P(v*)) = (Tp~,Tp~),
2(Q(Y")) = (To+, Q)

Then
Tp v.r. = Tp+ and Tg v.r. = T+,

and Tp~ and Tg« are respectively obtained from Tp and 7g by applying the transfor-
mation 1 <—n+ 1 — 1.

Proof. Using theorem 4, the proof is straight forward. M

4. A few remarks. The main argument to get the correspondence between the
generators and pairs of oscillating tableaux of same shape and length, was to produce

a sequence
Qa /\1A2a sy )‘na ey )\271—2’ /\Zn—la Qa

and cut it in half. But we could cut it somewhere else and get a more general formula,

m

where g is a partition of p < n — m, that might be of some significance in the
context of representation theory. To support this remark, we notice that a class of
oscillating tableaux including the standard ones is connected with representations of
the symmetric group. Take all oscillating tableaux, of length m and shape u, that
increase from step 1 to a certain step n < m, and decrease from step n+1 to m. The
number of such tableaux, denoted by c# , (¢ for ”colline”), is

ny - n!
|

where m = 2n — |p|. This allows us to rewrite equation (1.1) in a more general form,
_ p
e oy
m

where n, is the dimension of the irreducible representation of S,|, indexed by pu,
and an—|u| is the multiplicity of that same representation, induced to S,,, in the left
regular representation of S,,.

ct = ,
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