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0. Introduction

In his expository lectures on q-series [3] G. E. Andrews devotes a whole chapter to
Bailey’s Lemma (Th. 2.1, 3.1) and discusses some of its numerous possible applications in
terms of the “Bailey chain” concept. This name was introduced by G. E. Andrews [2] to
describe the iterative nature of Bailey’s Lemma, which was not observed by W. N. Bailey
himself.

This iteration mechanism allows to derive many q-series identities by “reducing” them
to more elementary ones. As an example, the famous Rogers-Ramanujan identities can be
reduced to the q-binomial theorem.

G. E. Andrews [2] observed this iteration mechanism in its full generality by an ap-
propriate reformulation of Bailey’s Lemma, whereas P. Paule discovered important special
cases [23]. W. N. Bailey never formulated his lemma in that way and consequently missed
the full power of its potential for iteration. In that paper [2] G. E. Andrews introduced the
notions of “Bailey pairs” and “Bailey chains” and laid the foundations of a Bailey chain
theory for discovering and proving q-identities.

The purpose of this article is to give an introduction to that concept. Therefore many
theorems are not stated in full generality, for which we refer to the literature.

1. Definitions and Tools

A hypergeometric series (see e.g. W. N. Bailey [10]) is a series∑
cn,

where
cn+1

cn

is a rational function in n, i.e.

c0 = 1 and
cn+1

cn
=

(n+ a1)(n+ a2) · · · (n+ ai)
(n+ b1)(n+ b2) · · · (n+ bj)

x

n+ 1
.

Thus

cn =
〈a1〉n · · · 〈ai〉n
〈b1〉n · · · 〈bj〉n

xn

n!
,



where
〈a〉n := a(a+ 1) · · · (a+ n− 1) and 〈a〉0 := 1

Notation:

iFj

(
a1, . . . , ai
b1, . . . , bj

;x
)

=
∞∑
k=0

〈a1〉k . . . 〈ai〉k
〈b1〉k . . . 〈bj〉k

xk

k!

Examples:
1. Wallis:

π

2
= lim
n→∞

〈1〉n〈1〉n
〈 12 〉n〈

3
2 〉n

.

2. The binomial series

1
(1− x)α

= 1F0(α; —;x) =
∑

cn with
cn+1

cn
=
α+ n

1 + n
x and c0 = 1.

3. y = 2F1(a, b; c;x) is solution of

x(1− x)y′′ + (c− (a+ b+ 1)x)y′ − aby = 0

(hypergeometric differential equation).

4. The Jacobi polynomials (see e.g. R. Askey [7]) (α, β > −1)

P (α,β)
n (x) =

〈α+ 1〉n
n! 2F1

(
−n, n+ α+ β + 1

α+ 1
;

1− x
2

)
with orthogonality relation (m 6= n):∫ 1

−1

P (α,β)
n (x)P (α,β)

m (x)(1− x)α(1 + x)βdx = 0.

For many reasons it is convenient to extend this definition by introducing an extra
parameter q (see e.g. L. Slater [30]):

Definition. A basic- (or q-) hypergeometric series is a series
∞∑

n=−∞
cn, where

cn+1

cn
is a

rational function of qn.

Example: The theta-function

∑
cn =

∞∑
n=−∞

qn
2
xn (q = eπir, x = e2iz)

where
cn+1

cn
= q2n+1x, c0 = 1.



Now we define

(a; q)n := (a)n := (1− a)(1− qa) · · · (1− qn−1a) for n = 1, 2, . . .

and

(a; q)0 := (a)0 := 1, (a; q)∞ := (a)∞ :=
∞∏
k=0

(1− qka)

and

(a)n :=
(a)∞

(qna)∞
for integer n.

Observe that
1

(q)n
= 0 for n = −1,−2, . . .

All following q-identities can be treated as formal power series identities. If one likes
to consider them as analytic ones, in most cases it will suffice to take q as real with |q| < 1.

Notation:

iϕj

(
a1, . . . , ai
b1, . . . , bj

; q, x
)

:=
∞∑
k=0

(a1; q)k . . . (ai; q)k
(b1; q)k . . . (bj ; q)k

xk

(q)k

Example: The q-analogue of the binomial series is∑
cn = 1ϕ0(a; —; q;x) with

cn+1

cn
=

1− aqn

1− qn+1
x, c0 = 1.

Setting a = qα we obtain
cn+1

cn
=

1− qα+n

1− q
· 1− q

1− q1+n
x,

which is for q = 1 equal to
α+ n

1 + n
x,

as in 1F0(α; —;x).

In order to emphasize the analogy to the q = 1 case, we introduce the Gaussian
polynomials (or q-binomial coefficients) (see e.g. G. Andrews [4]):[

n

k

]
:=

{
(q)n

(q)k(q)n−k
if 0 ≤ k ≤ n

0 else
.

We shall also write[
n

k

]
=

[n]!
[k]! [n− k]!

, where [n]! := [n][n− 1] . . . [1],

[0]! := 1 and [n] :=
1− qn

1− q
= 1 + q + · · ·+ qn−1, [0] := 1.

From this definition it obvious that [
n

k

]∣∣∣
q=1

=
(
n

k

)
.

Now we introduce the q-binomial theorem in the notion of J. Cigler (cf. the survey
article [15]):



Theorem 1.1. Let R denote the ring of all power series in the variable x over the reals
(or formal power series in x, respectivly). For linear operators A,B on R with BA = qAB
the following formula holds (n = 0, 1, 2, . . .):

(A+B)n =
n∑
k=0

[
n

k

]
AkBn−k. (1)

Proof. The proof is an easy induction exercise using the recursive formula[
n+ 1
k

]
= qk

[
n

k

]
+
[

n

k − 1

]
. (2)

Examples:
1. (xf)(x) := xf(x), (εf)(x) := f(qx) and (ε−1f)(x) := f(q−1x) for f ∈ R. Now we

have BA = qAB for e.g. A = xε, B = ε or A = ε−1, B = x.
2. Observing that (xε)k1 = q(

k
2)xk and (xε + ε)k1 = (x + 1)(qx + 1) · · · (qk−1x + 1) we

obtain by setting A = xε and B = ε in (1):

n∑
k=0

[
n

k

]
q(
k
2)xk = (1 + x)(1 + qx) · · · (1 + qn−1x). (3)

3. A further consequence of Theorem 1.1 is the infinite form of the q-binomial theorem
(cf. [15]):

∞∑
k=0

(a)k
(q)k

xk =
(ax)∞
(x)∞

. (4)

Now for a = qα the q-analogy becomes evident:

1F0(α; —;x) =
∞∑
k=0

〈α〉k
k!

=
∞∑
k=0

(
α+ k − 1

k

)
xk =

1
(1− x)α

and

1ϕ0(qα; —;x) =
∞∑
k=0

(qα)k
(q)k

xk =
∞∑
k=0

[
α+ k − 1

k

]
xk =

1
(x)α

.

4. The q-binomial theorem (3) gives (x 6= 0):

∞∑
k=−∞

[
2j
j − k

]
(−1)kxkq

1
2k

2
= (x−1q

1
2 )j(xq

1
2 )j (5)

(The sum on the left is actually finite!), which in the limit j →∞ becomes:

∞∑
k=−∞

(−1)kq
1
2k

2
xk = (q)∞(x−1q

1
2 )∞(xq

1
2 )∞. (6)



(Note that [
2j
j − k

]
=

(q)2j

(q)j−k(q)j+k
→ 1

(q)∞
for j →∞.)

Identity (6) is called Jacobi triple product identity and serves as a fundamental tool
for transforming sums into products and vice versa.

We give a prominent example, one of the Rogers-Ramanujan identities (see e.g. G.
Andrews [4]):

∞∑
n=0

qn
2

(q)n
=
∞∏
n=0

1
(1− q5n+1)(1− q5n+4)

. (7)

By (6) (q replaced by q5 and x = −q 1
2 ) the product on the right is equal to

1
(q)∞

(q5; q5)∞(q2; q5)∞(q3; q5)∞ =
1

(q)∞

∞∑
k=−∞

(−1)kq
5
2k

2− 1
2k.

Now to prove (7) means to prove

1
(q)∞

∞∑
k=−∞

(−1)kq
5
2k

2− 1
2k =

∞∑
n=0

qn
2

(q)n
. (8)

This is exactly the point where the Bailey chain concept enters the stage. In the following
we shall see how identities of this type can be reduced by Bailey chain iteration to identities
of a simpler form or to well-known ones, respectively. In particular we shall demonstrate,
how the Rogers-Ramanujan identity (8) is iterated to a special case of the q-binomial
theorem (5). Further we shall derive the iteration mechanism for that and many other
important applications as a consequence of the q-binomial theorem in the form (1). This
is followed by a closer investigation of the inner structure of that mechanism, i.e. how to
“walk along” Bailey chains.

2. Bailey Pairs and Bailey Chains

2.1 Bailey’s Lemma In distilling some of the work of L. J. Rogers [27, 28] and others
W. N. Bailey formulated the following fundamental q-series transform [(3.1), 9]:

Theorem 2.1 (Bailey’s Lemma).

∞∑
k=0

(r1)k(r2)k

(
xq

r1r2

)k
bk =

(
xq
r1

)
∞

(
xq
r2

)
∞

(xq)∞
(
xq
r1r2

)
∞

∞∑
k=0

(r1)k(r2)k(
xq
r1

)
k

(
xq
r2

)
k

(
xq

r1r2

)k
ak, (9)



where

bn =
n∑
k=0

ak
(q)n−k(xq)n+k

n = 0, 1, 2, . . . (10)

Following G. E. Andrews [2] we say, sequences a = (an), b = (bn) related like (10)
form a Bailey pair (a, b).

Using Bailey’s Lemma as a tool for proving identities of the Rogers-Ramanujan type,
like identity (7) or e.g. one of the Göllnitz-Gordon identities

1
(q2; q2)∞

∞∑
n=−∞

(−1)nq4n2−n =
∞∑
k=0

q2k2

(q2; q2)k(−q; q2)k
, (11)

one has to look for a suitable Bailey pair (a, b), which after insertion into (9) with special
chosen parameters r1, r2 yields the desired identity.

By a skillful application of this procedure L. J. Slater gave a list of 130 identities of
that type in 1950 [29]. As we shall see, by using the Bailey chain concept the search for
appropriate Bailey pairs and the problem of proving or discovering such identities are far
easier to handle and to solve.

In 1972 [6] G. E. Andrews showed how Bailey’s Lemma fits into the frame of a
connection-coefficient problem: Let

Pk(x;α, β|q) := 2ϕ1

(
q−k, αβqk+1

αβ
; q, xq

)
(q-Jacobi polynomials).

Now Bailey’s Lemma is essentially equivalent to the following expansion:

pn(x) =
n∑
k=0

cnkPk(x;α, β|q),

where

pn(x) = 3ϕ2

(
r1, r2, q

−n

αq, r1r2q
−n

αβq

; q, xq

)
and (αβq := x)

cnk =

(
xq
r1

)
n

(
xq
r2

)
n

(xq)k−1(1− xq2k)(r1)k(r2)k(q−n)k

(xq)n
(
xq
r1r2

)
n

(
xq
r1

)
k

(
xq
r1

)
k

(q)k(xqn+1)k

(
xqn+1

r1r2

)k
.

2.1 Bailey chains. In order to describe its potential for iteration we consider the following
special case (r1 = q−m, r2 = q−n, ak replaced by q−k

2
ak and m→∞) of Bailey’s Lemma:

n∑
k=0

akx
k

(q)n−k(xq)n+k
=

n∑
j=0

qj
2
xj

(q)n−j

j∑
k=0

akq
−k2

(q)j−k(xq)j+k
. (12)



Because of its importance we give a separate proof of this identity (cf. Paule [25]).

Proof. We need Theorem 1.1 together with the following facts, which are easily checked:
for all f, g ∈ R

ε(fg) = (εf)(εg), (i)
(ε−1 + x)(xq)∞ = (xq)∞. (ii)

Now we apply the q-binomial Theorem (1) with A = ε−1 and B = x as follows:

n∑
k=0

akx
k

(q)n−k(xq)n+k
=

1
(xq)∞

(
n∑
k=0

akx
k

(q)n−k
εn+k(xq)∞

)
(ii)
=

1
(xq)∞

(
n∑
k=0

akx
k

(q)n−k
εn+k(ε−1 + x)n−k(xq)∞

)

(1)
=

1
(xq)∞

 n∑
k=0

akx
k

(q)n−k
εn+k

n−k∑
j=0

[
n− k
j

]
(ε−1)n−k−jxj(xq)∞


(i)
=

1
(xq)∞

 n∑
k=0

akx
k

(q)n−k

n−k∑
j=0

[
n− k
j

]
qj(j+2k)xj(qj+2k+1x)∞


=

n∑
k=0

akx
k

(q)n−k

n∑
j=k

[
n− k
j − k

]
qj

2−k2 xj−k

(xq)j+k

=
n∑
j=0

qj
2
xj

(q)n−j

j∑
k=0

akq
−k2

(q)j−k(xq)j+k
.

If x = 1 or q for many applications it is of advantage to symmetrize (12) as follows:
(Observe that all sums are finite!)

∞∑
k=−∞

ck
(q)n−k(q)n+k

=
∞∑
j=0

qj
2

(q)n−j

∞∑
k=−∞

ckq
−k2

(q)j−k(q)j+k
(13)

(in (1): x = 1, a0 = c0 and ak = ck + c−k for k ≥ 1),

∞∑
k=−∞

ck
(q)n−k(q)n+1+k

=
∞∑
j=0

qj
2+j

(q)n−j

∞∑
k=−∞

ckq
−k2−k

(q)j−k(q)j+1+k
(14)

(in (1): x = q and ak = q−k

1−q (ck + c−k−1) for k ≥ 0).
Writing Bailey’s Lemma as (12) (or (13), (14), respectively) its potential for iteration

now leaps to our eyes, namely:



The second sums of the right-hand sides are of the same form as the corresponding sums
on the left-hand sides. Thus we may iterate them substituting the whole formula (modified

e.g. by taking ckq
−k2

instead of ck) in the place of the second sum of the right-hand side as
often as we want, in order to reduce the initial sum on the left to a simpler or well-known
one.

Example: In the limit n→∞ (13) becomes

1
(q)∞

∞∑
k=−∞

ck =
∞∑
j=0

qj
2
∞∑

k=−∞

ckq
−k2

(q)j−k(q)j+k
. (15)

With the above iteration-algorithm the Rogers-Ramanujan identity (8) now is easily com-
puted as follows:

1
(q)∞

∞∑
k=−∞

(−1)kq
5
2k

2− 1
2k

(15)
=

∞∑
j=0

qj
2
∞∑

k=−∞

(−1)kq
3
2k

2− 1
2k

(q)j−k(q)j+k

(15)
=

∞∑
j=0

qj
2
∞∑
l=0

ql
2

(q)j−l

∞∑
k=−∞

(−1)kq
1
2k

2− 1
2k

(q)l−k(q)l+k

(5)
=
∞∑
j=0

qj
2
∞∑
l=0

ql
2

(q)j−l
(q)l(1)l

(q)2l

=
∞∑
j=0

qj
2

(q)j
.

The last line follows from the fact that (1)0 = 1 and (1)l = (1− 1)(1− q) · · · (1− ql−1) = 0
for all l ≥ 1.

Now we formulate as a

Theorem 2.2. Given a Bailey pair (a, b) =
(
(an), (bn)

)
a new Bailey pair (a′, b′) =(

(a′n), (b′n)
)

is constructed by

a′n = qn
2
xnan and b′n =

n∑
j=0

qj
2
xj

(q)n−j
bj n = 0, 1, 2, . . .

Proof. The proof is an immediate consequence of equation (12) with ak replaced by akqk
2
.

Definition. The sequence(
(an), (bn)

)
→
(
(a′n), (b′n)

)
→
(
(a′′n), (b′′n)

)
→ · · ·

is called a Bailey chain (cf. Andrews [2]).

Remark. To include the symmetrized versions (13) and (14) among that concept, we call
sequences a = (an)∞n=−∞, b = (bn)n≥0 with

bn =
∞∑

k=−∞

ak
(q)n−k(q)n+k

or bn =
∞∑

k=−∞

ak
(q)n−k(q)n+1+k



also a Bailey pair (a, b).
With this definition Theorem 2.2 remains valid with x = 1 or q according the equa-

tions (13) and (14).
Example: for the Rogers-Ramanujan identity (8) the Bailey chain corresponding to

our iteration (cf. the example above) is as follows: We start with the simplest pair

(a, b) =
(
(an)∞n=−∞, (bn)n≥0

)
,

where
an = (−1)nq(

n
2), bn = δn0 (:=

{ 1 if n = 0
0 else

),

then
(a′, b′) =

(
(a′n)∞n=−∞, (b

′
n)n≥0

)
,

where (Theorem 2.2 with x = 1)

a′n = qn
2
an = (−1)nq

3
2n

2− 1
2n, b′n =

n∑
j=0

qj
2

(q)n−j
bj =

1
(q)n

,

and
(a′′, b′′) =

(
(a′′n)∞n=−∞, (b

′′
n)n≥0

)
,

where (Theorem 2.2 with x = 1)

a′′n = qn
2
a′n = (−1)nq

5
2n

2− 1
2n, b′′n =

n∑
j=0

qj
2

(q)n−j
b′j =

n∑
j=0

qj
2

(q)n−j(q)j
.

It is interesting to look at the corresponding Bailey pair identities:

(a, b) ⇐⇒
∞∑

k=−∞

(−1)kq
1
2k

2− 1
2k

(q)n−k(q)n+k
= δn0, (16)

(a′, b′) ⇐⇒
∞∑

k=−∞

(−1)kq
3
2k

2− 1
2k

(q)n−k(q)n+k
=

1
(q)n

, (17)

(a′′, b′′) ⇐⇒
∞∑

k=−∞

(−1)kq
5
2k

2− 1
2k

(q)n−k(q)n+k
=
∞∑
j=0

qj
2

(q)n−j(q)j
. (18)

In the limit n→∞ equation (18) becomes the Rogers-Ramanujan identity (8).
Thus starting with the special case (16) of the q-binomial theorem (5) and by walking

along the Bailey chain
(a, b)→ (a′b′)→ (a′′, b′′),

we have proved equation (8) and as a by-product identities (17) and (18).

Remark. Note that equation (18) is a finite sum identity, which yields in the limit n→∞
the Rogers-Ramanujan identity (8).



In the following section we shall have a closer look at the question how to construct
Bailey pairs and to walk along Bailey chains.

2.3 Bailey pairs and walking along Bailey chains. An efficient use of the iteration
mechanism of Bailey’s Lemma depends on our knowledge of Bailey pairs. For that, one
may consult L. Slater’s list [29]. But in addition to those classical examples there exist
many other interesting pairs, which naturally arise in different contexts, as G. Andrews
pointed out in [3].

Now we shall describe some techniques how to find Bailey pairs and how to construct
new Bailey pairs out of given ones as in Theorem 2.2. Further we shall see that there are
several ways how to walk along Bailey chains, which introduces the more general concept
of a Bailey lattice (cf. [13] and [1]).

First we observe:

Theorem 2.3. A Bailey pair (a, b) =
(
(an), (bn)

)
is uniquely determined by one of the

sequences (an) or (bn), respectively.

Proof. This is proved by the inversion formula

an =

 (1− xq2n)
n∑
k=0

(−1)n−kq(
n−k

2 ) (xq)n+k−1

(q)n−k
bk if n ≥ 1

b0 n = 0

iff

bn =
n∑
k=0

ak
(q)n−k(xq)n+k

(19)

(cf. Andrews [(4.1), 2]).

Example: For arbitrary parameter x we obtain with bn = δ0,n(n = 0, 1, · · ·)

an = (−1)nq(
n
2)(1− xq2n)

(xq)n−1

(q)n
(n ≥ 1), a0 = 1

(cf. equation (16) in case x = 1). As G. Andrews pointed out [3], this Bailey pair lies
behind the majority of the identities in L. Slater’s list [29].

Remark. Putting x = qN , Bn =
(q)2n+N

(q)N
bn and An = an this inverse relation reads as:

Bn =
n∑
k=0

[
2n+N

n− k

]
Ak

iff

An =
n∑
k=0

(−1)n−kq(
n−k

2 ) [2n+N ]
[n+N + k]

[
n+N + k

n− k

]
Bk, (20)



which is a q-analogue of one of J. Riordon’s inversion relations of the Legendre type (cf.
e.g. Hofbauer [20]).

I. Gessel and D. Stanton have first pointed out [18] that the Bailey transform can be
viewed as a matrix inversion, which contains (19) as a special case. Using a matrix inverse
observed by D. Bressoud [12] this approch is generalized in [1] in order to establish the
concept of Bailey lattices.

The inverse relation (20) independently was derived by C. Krattenthaler [22] as an
application of his q-Lagrange formula (cf. also [26]).

A Bailey chain is in fact doubly infinite, for the pair (a, b) can be uniquely recon-
structed from (a′, b′). Thus we also can move to the left in a Bailey chain:

· · · ←
(
(an), (bn)

)
←
(
(a′n), (b′n)

)
← · · ·

With respect to the Bailey chain of Theorem 2.2 we explicitly have

Theorem 2.4.

b′n =
n∑
k=0

qk
2
xk

(q)n−k
bk ⇐⇒ bn =

n∑
k=0

(−1)n−k
q(
n−k

2 )−n2

(q)n−k
x−nb′k. (21)

Proof. For a proof see equation (3.42) of Andrews [3], which contains (21) as a special
case.

Remark. Substituting ρ1 = q−a, ρ2 = q−b and a = qN in equation (3.42) of Andrews [3],
equation (21) results from the following inverse relation:

An =
n∑
k=0

[
p+ k

k

]
Bn−k ⇐⇒ Bn =

n∑
k=0

(−1)kq(
k
2)
[
p+ 1
k

]
An−k. (22)

This relation was proved by C. Krattenthaler in [21] as an application of his q-Lagrange
formula.

Another important way to produce a new Bailey pair
(
(An), (Bn)

)
from a given one(

(an), (bn)
)

is the following (see Andrews [2]).

Theorem 2.5. If an = an(x, q), bn = bn(x, q) and

bn =
n∑
k=0

ak
(q)n−k(xq)n+k

then

Bn =
n∑
k=0

Ak
(q)n−k(xq)n+k

,



where Ak := Ak(x, q) := xkqk
2
ak(x−1, q−1) and Bk := bk(x, q) := x−kq−k

2−kbk(x−1, q−1).

Example: From the well-known Gaussian identity

∞∑
k=−∞

(−1)k

(q)n−k(q)n+k
=

1
(q2 − 1)(q4 − 1) · · · (q2n − 1)

(23)

(see, e.g., Cigler [15, (1.4.7)]) we obtain by replacing q by q−1

∞∑
−∞

(−1)kqk
2

(q)n−k(q)n+k
=

1
(q2 − 1)(q4 − 1) · · · (q2n − 1)

(24)

In many applications the following Bailey pair generation is useful (cf. Paule [Lemma 2,
24])

Lemma 2.1. If c ∈ R and

bn =
∞∑

k=−∞

(−1)kqck
2−ck

(q)n−k(q)n+k

then

q−nbn =
∞∑

k=−∞

(−1)kqck
2−(c−1)k

(q)n−k(q)n+k
.

Thus given a Bailey pair
(
(an)∞−∞, (bn)∞0

)
, where an = (−1)nqcn

2−cn, a new Bailey
pair is constituted by

(
(qnan)∞−∞, (q

−nbn)∞0
)
.

One example of the wide range of application of the Bailey chain concept lies in
the field of multiple series generalizations of identities of the Rogers-Ramanujan type (cf.
Andrews [2]).

As an example we consider the analytic counterpart to Gordon’s partition theorem [19]
discovered by Andrews [5]:

∞∏
n=1

n 6≡0,±r (mod 2s+1)
1≤r≤s

(1− qn)−1 =
∑

n1≥···ns−1≥0

qn
2
1+n2

2+···+n2
s−1+nr+···+ns−1

(q)n1−n2(q)n2−n3 · · · (q)ns−1

. (25)

According Jacobi’s identity (6) the left hand side of (25) is equal to

1
(q)∞

∞∑
k=−∞

(−1)kq(s+ 1
2 )k2−(s−r+ 1

2 )k := Ar,s.



Now the case r = s is immediately obtained by walking along a Bailey chain as far as
we arrive at a simple special case (16) of the q-binomial theorem.

As,s =
1

(q)∞

∞∑
k=−∞

(−1)kq(s+ 1
2 )k2− 1

2k

(15)
=

∞∑
n1=0

qn
2
1

∞∑
k=−∞

(−1)kq(s+ 1
2 )k2− 1

2k

(q)n1−k(q)n1+k

(13)
=

∞∑
n1=0

qn
2
1

∞∑
n2=0

qn
2
2

(q)n1−n2

· · ·
∑

ns−1=0

qn
2
s−1

(q)ns−2−ns−1

×

×
∞∑

nBs=0

qn
2
s

(q)ns−1−ns

∞∑
k=−∞

(−1)kq
1
2k

2− 1
2k

(q)ns−k(q)ns+k

(16)
=

∑
n1≥···ns−1≥0

qn
2
1+n2

2+···+n2
s−1

(q)n1−n2(q)n2−n3 · · · (q)ns−1

.

We observe that for r 6= s this Bailey chain does not arrive at the q-binomial theorem.
Now the way out of that problem is to leave the original chain at some point by switching
to a new Bailey pair and continuing the Bailey chain walk with that new pair as a new
starting point. If desired, we may repeat this process. Moving like that the authors of [1]
would call a walk in a Bailey lattice.

As an example we look at the case r 6= s of equation (25) (cf. Paule [24]). We have

Ar,s
(15)
=

∞∑
n1=0

qn
2
1

∞∑
k=−∞

(−1)kq(s− 1
2 )k2−(s−r+ 1

2 )k

(q)n1−k(q)n1+k
.

Now we apply (13) (r − 1)-times, which gives

Ar,s =
∞∑

n1=0

qn
2
1

∞∑
n2=0

qn
2
2

(q)n1−n2

· · ·
∞∑

nr=0

qn
2
r

(q)nr−1−nr
×

×
∞∑

k=−∞

(−1)kq(s−r+ 1
2 )k2−(s−r+ 1

2 )k

(q)nr−k(q)nr+k
.

According to Lemma 2.1 we now switch to a new Bailey pair:

Ar,s =
∞∑

n1=0

qn
2
1

∞∑
n2=0

qn
2
2

(q)n1−n2

· · ·
∞∑

nr=0

qn
2
r

(q)nr−1−nr
×

× qnr
∞∑

k=−∞

(−1)q(s−r+ 1
2 )k2−(s−r− 1

2 )k

(q)nr−k(q)nr+k
.



Now we move one step in the new Bailey chain by (13):

Ar,s =
∞∑

n1=0

qn
2
1

∞∑
n2=0

qn
2
2

(q)n1−n2

· · ·
∞∑

nr=0

qn
2
r+nr

(q)nr−1−nr
×

×
∞∑

nr+1=0

qn
2
r+1

(q)nr−nr+1

∞∑
k=−∞

(−1)kq(s−r− 1
2 )k2−(s−r− 1

2 )k

(q)nr+1−k(q)nr+1+k
.

We repeat this process of applying Lemma 2.1 followed by (13) until we arrive at

Ar,s =
∑

n1≥···≥ns≥0

qn
2
1+n2

2+···+n2
s+nr+···+ns

(q)n1−n2(q)n2−n3 · · · (q)ns−1−ns
×

×
∞∑

k=−∞

(−1)kq
1
2k

2− 1
2k

(q)ns−k(q)ns+k
,

which now is reduced by the special case (16) of the q-binomial theorem to

Ar,s =
∑

n1≥···≥ns−1≥0

qn
2
1+···+n2

s−1+nr+···+ns−1

(q)n1−n2(q)n2−n3 · · · (q)ns−1

.

This proves equation (25).

Now there is another Bailey chain walk to prove equation (25) which brings iden-
tity (14), the counterpart of (13), into play (cf. Agarwal-Andrews-Bressoud [1]). To demon-
strate this we first need

Lemma 2.2. If c ∈ R and

bn =
∞∑

k=−∞

(−1)kq(c+1)k2−ck

(q)n−k(q)n+k

then

bn =
∞∑

k=−∞

(−1)kq(c+1)k2+ck

(q)n−k(q)n+1+k
,

and vice versa.

Proof. To prove Lemma 2.2 is equivalent to show that

∞∑
k=−∞

[
2n+ 1
n− k

]
(−1)kq(c+1)k2+ck = (1− q2n+1)

∞∑
k=−∞

[
2n
n− k

]
(−1)kq(c+1)k2−ck.

Using the recurrence formula[
r + 1
s

]
=
[
r

s

]
+ qr−s+1

[
r

s− 1

]



the left hand side of this equation becomes
∞∑

k=−∞

[
2n
n− k

]
(−1)kq(c+1)k2+ck − qn+1

∞∑
k=−∞

[
2n
n− k

]
(−1)kq(c+1)k2−(c+1)k

= (1− q2n+1)
∞∑

k=−∞

[
2n
n− k

]
(−1)kq(c+1)k−ck.

The last line follows by Lemma 2.1.

Behind Lemma 2.2 lies the following important observation:

It is possible to pass from a Bailey pair
(
(an), (bn)

)
relative to x, i.e.

bn =
n∑
k=0

ak
(q)n−k(xq)n+k

,

to a Bailey pair
(
(a′n), (b′n)

)
relative to y, i.e.

b′n =
n∑
k=0

a′k
(q)n−k(yq)n+k

.

In practice y will be x times an integer power of q.
Example: By Lemma 2.2 we immediately get

∞∑
k=−∞

(−1)kq
3
2k

2+ 1
2k

(q)n−k(q)n+1+k
=

1
(q)n

, (26)

the counterpart of the Bailey pair corresponding to equation (17).
Remark. This problem was first considered by D. Bressoud [1] and Agarwal-Andrews-
Bressoud [13] in the general context of matrix inversion and motivated these authors to
introduce the notion of a Bailey lattice.

Now we present a second proof of equation (25) by a different Bailey chain walk:

Ar,s
(15)
=

∞∑
n1=0

qn
2
1

∞∑
k=−∞

(−1)kq(s− 1
2 )k2−(s−r+ 1

2 )k

(q)n1−k(q)n1+k

(13)
=

∞∑
n1=0

qn
2
1

∞∑
n2=0

qn
2
2

(q)n1−n2

· · ·
∞∑

nr−1=0

qn
2
r−1

(q)nr−2−nr−1

×

×
∞∑

k=−∞

(−1)kq(s−r+ 3
2 )k2−(s−r+ 1

2 )k

(q)nr−1−k(q)nr−1+k

(Lemma 2.2)
=

∞∑
n1=0

qn
2
1

∞∑
n2=0

qn
2
2

(q)n1−n2

· · ·
∞∑

nr−1=0

qn
2
r−1

(q)nr−2−nr−1

×

×
∞∑

k=−∞

(−1)kq(s−r+ 3
2 )k2+(s−r+ 1

2 )k

(q)nr−1−k(q)nn−r+1+k
.



Now we walk along the Bailey chain by repeated application of (14) as far as we arrive at

Ar,s =
∞∑

n1=0

qn
2
1

∞∑
n2=0

qn
2
2

(q)n1−n2

· · ·
∞∑

nr−1=0

qn
2
r−1

(q)nr−2−nr−1

×

×
∞∑
nr=0

qn
2
r+nr

(q)nr−1−nr
· · ·

∞∑
ns−1=0

qn
2
s−1+ns−1

(q)ns−2−ns−1

×

×
∞∑

k=−∞

(−1)kq
3
2k

2+ 1
2k

(q)ns−1−k(q)ns−1+1+k

=
∑

n1≥···≥ns−1≥0

qn
2
1+n2

2+···+n2
s−1+nr+···+ns−1

(q)n1−n2(q)n2−n1 · · · (q)ns−1

.

The last line follows from equation (26). This proves equation (25).

In this proof we first walked along the Bailey chain corresponding to identity (13).
After that, we made a side-step changing the parameter x = 1 to x = q and continued our
walk along the Bailey chain corresponding to identity (14). Finally we arrived at a Bailey
pair, which we recognized as the (x = q)-counterpart (26) of (17).

Thus we have seen that identity (25) has been proved by two different walks in a
Bailey lattice.

In Agarwal-Andrews-Bressoud [1] identity (25) is proved as a special case of a very
general theorem [Theorem 3.1, 1], which is based on a Bailey lattice walk with one param-
eter change of x to xq−1.

Concluding this section we make some remarks on changing the parameter x.

Given a Bailey pair
(
(an), (bn)

)
, i.e.

bn =
n∑
k=0

ak
(q)n−k(xq)n+k

,

we substitute x = qN . This motivates the following

Definition. Two sequences (An), (Bn) form a q-binomial (or simply binomial) Bailey
pair relative to N , if

Bn =
n∑
k=0

[
2n+N

n− k

]
Ak.

Each Bailey pair
(
(an), (bn)

)
, where bn =

∑n
k=0

ak
(q)n−k(xq)n+k

with x = qN , can be

turned into a binomial Bailey pair (by defining An := an and Bn := (q)2n+N
(q)N

bn) and vice
versa.

Now changing the parameter x to xq−1 is expressed as



Theorem 2.6. If
(
(An), (Bn)

)
is a binomial Bailey pair relative to N , i.e.

Bn =
n∑
k=0

[
2n+N

n− k

]
Ak,

then
(
(A′n), (B′n)

)
is a binomial Bailey pair relative to N − 1, i.e.

B′n =
n∑
k=0

[
2n+N − 1
n− k

]
A′k,

where

A′n :=
Ak

[2k +N ]
− q2k+N−2 Ak−1

[2k +N − 2]
(A−1 := 0)

and

B′n :=
Bn

[2n+N ]
.

Proof. For k 6= n we conclude from[
2n+N

n− k

]
=

[2n+N ]
[n− k]

[
2n+N − 1
n− k − 1

]
and [

2n+N − 1
n− k

]
=

[n+ k +N ]
[n− k]

[
2n+N − 1
n− k − 1

]
=
(

[2k +N ]
[n− k]

+ q2k+N

)[
2n+N − 1
n− k − 1

]
that [

2n+N

n− k

]
=

[2n+N ]
[2k +N ]

([
2n+N − 1
n− k

]
− q2k+N

[
2n+N − 1
n− k − 1

])
.

Thus

B′n =
Bn

[2n+N ]
=

1
[2n+N ]

n∑
k=0

[
2n+N

n− k

]
Ak

=
An

[2n+N ]
+
n−1∑
k=0

[
2n+N − 1
n− k

]
Ak

[2k +N ]
−

n∑
k=1

[
2n+N − 1
n− k

]
q2k+N−2Ak−1

[2k +N − 2]

=
[
2n+N − 1

n

]
A0

[N ]
+

n∑
k=1

[
2n+N − 1
n− k

]
A′k,

which proves Theorem 2.6.

It is easily seen that the important Lemma 2.2 is contained in Theorem 2.6 as a special
case: (set N = 1 and Ak = (−1)kq(c+1)k2+ck).

As we shall see in the next section a generalization of Theorem 2.6, which is the key
result (Lemma 1.2) of the Agarwal-Andrews-Bressoud paper [1], is also a straight-forward
application of Theorem 2.6.

What happens if we want to change the parameter x to xq? We treat this question as
a transition from a binomial Bailey pair relative to N−1 to a binomial Bailey pair relative
to N . The inversion of Theorem 2.6 yields



Theorem 2.7. If
(
(A′n), (B′n)

)
is a binomial Bailey pair relative to N − 1, i.e.

B′n =
n∑
k=0

[
2n+N − 1
n− k

]
A′k,

then
(
(An), (Bn)

)
is a binomial Bailey pair relative to N , i. e.

Bn =
n∑
k=0

[
2n+N

n− k

]
Ak,

where

Ak := [2k +N ]qk
2+(N−1)k

k∑
j=0

q−j
2−(N−1)jA′j

and
Bn := [2n+N ]B′n.

Proof. The proof is a simple matrix inversion using the inversion relation

xk =
k∑
j=0

yj ⇐⇒ yk = xk − xk−1 (x−1 := 0),

with

xk := q−k
2−(N−1)k Ak

[2k +N ]
, yk := q−k

2−(N−1)kA′k,

assuming that (Ak) and (A′k) are connected as in Theorem 2.6.

Example: Identity (24) can be rewritten as

n∑
k=0

[
2n
n− k

]
A′k = B′n,

where A′0 = 1, A′k = 2(−1)kqk
2

k ≥ 1 and B′n = (q; q2)n.
Now Theorem 2.7 with N = 1 yields

Ak = [2k + 1](−1)kqk
2
andBn = [2n+ 1](q; q2)n,

which gives
∞∑

k=−∞

[
2n+ 1
n− k

]
(−1)kqk

2
= (q; q2)n+1

as the (N = 1)-counterpart of (24).



3. Generalizations

3.1 An extension of Bailey’s Lemma. In this section we shall consider a general-
ization of Bailey’s Lemma, which contains Theorem 2.1 as a limiting case.

Definition. For n1 + n2 + · · ·+ nj = n we define[
n

n1, n2, · · · , nj

]
:=

[n]!
[n1]![n2]! · · · [nj ]!

(q-multinomial coefficient).

We formulate this extended form of Bailey’s Lemma in the language of q-multinomial
coefficients:
Theorem 3.1. If

(
(An), (Bn)

)
is a binomial Bailey pair relative to N , then

(
(A′n), (B′n)

)
is also a binomial Bailey pair relative to N , where

A′k :=
[
2a+N

a− k

][
2b+N

b− k

]
qNk+k2

Ak

and

B′n :=
[2a+N ]![2b+N ]![2n+N ]!

[a+ b+N ]![b+ n+N ]![n+ a+N ]!

n∑
j=0

[
a+ b+ n+N − j

a− j, b− j, n− j, 2j +N

]
qNj+j

2
Bj .

This is what G. Andrews denotes by ”Baileys’s Lemma” in [(2.3)-(2.6), 2] with ρ1 =
q−a, ρ2 = q−b and the parameter a replaced by qN (= x).

W. N. Bailey described in §4 of [9] how to get Theorem 3.1, but he never carried it
out explicitly. The reason for that may lie in the fact that he did not observe the iteration
mechanism hidden in his Lemma (Theorem 2.2). Bailey’s Lemma was first stated in full
generality by G. Andrews in [2] and P. Paule [23] independently observed the important
special cases N = 0 and N = 1 of

∑
k=0

[
a+ b+N

a− k

][
b+ c+N

b− k

][
c+ a+N

c− k

]
qk

2+NkAk

=
∑
j=0

[
a+ b+ c+N − j

a− j, b− j, c− j, 2j +N

]
qj

2+NjBj , (27)

where

Bj =
j∑

k=0

[
2j +N

j − k

]
Ak

(see D1 and D2 of Paule [23]).
It is easily checked that (27) is an equivalent reformulation of Theorem 3.1.



Now we come back to the key result Lemma 1.2 of Agarwal-Andrews-Bressoud [1],
which can be rewritten as

n∑
k=0

[
a+ b+N − 1

a− k

][
b+ n+N − 1

b− k

][
n+ a+N − 1

n− k

]
qk

2+(N−1)kA′k

=
n∑
j=0

[
a+ b+ n+N − 1

a− j, b− j, n− j, 2j +N − 1

]
qj

2+(N−1)jB′j , (28)

where

A′k =
Ak

[2k +N ]
− q2k+N−2 Ak−1

[2k +N − 2]
(A−1 := 0)

and

B′n =
Bn

[2n+N ]
.

(See (1.9) of Agarwal-Andrews-Bressoud [1] with ρ = q−a, δ = q−b and a = qN .)

Now, if
(
(An), (Bn)

)
forms a binomial Bailey pair, equation (28), i. e. Lemma 1.2 of

[1], is immediately proved by (27) and Theorem 2.6.

If we let c tend to infinity in equation (27), we obtain a formula, which is equivalent to
Theorem 2.1. (cf. Paule [24]). In this resulting formula it is possible to send b to infinity,
which gives identity (12) with x replaced by qN , and finally a to infinity, which yields a
general equation (15) (with parameter x = qN instead x = 1).

G. Andrews observed [3] that also in this general case we can walk backwards in the
Bailey chain. Thus is, because walking along the Bailey chain now means to construct a
sequence of Bailey pairs

· · · →
(
(An), (Bn)

)
→
(
(A′n), (B′n)

)
→ · · ·

according to Theorem 3.1, a process, which can be reversed by

Ak =
[
2a+N

a− k

]−1[2b+N

b− k

]−1

q−k
2−NkA′k

and

Bn = q−n
2−Nn (q)a−n(q)b−n

(q)a(q)b(q)a+N (q)b+N
×

×
n∑
k=0

(−1)n−kq(
n−k

2 )
[
a+ b+N + 1

n− k

]
B′k.

Also this extension of (21) is an application of the inverse relation (22).



If N = 0 or N = 1 it is possible to symmetrize identity (27) as follows:

∞∑
k=−∞

[
a+ c+ ρ

a− k

][
b+ c+ ρ

b− k

][
c+ a+ ρ

c− k

]
ck (29)

=
∞∑
j=0

[
a+ b+ c+ ρ− j

a− j, b− j, c− j, 2j + ρ

]
qj

2+ρj ×

×
∞∑

k=−∞

[
2j + 1
j − k

]
q−k

2−ρkck,

where ρ = 0 or 1 (cf. Paule [23]).
Example. In [(B) and (B′), 14] P. Cartier and D. Foata proved

∞∑
k=−∞

(
b+ c+ ρ

c+ k

)(
c+ a+ ρ

a+ k

)(
a+ b+ ρ

b+ k

)
up+kvp−k+ρ

=
p∑

n=0

(a+ b+ c− n+ ρ)!
(a− n)!(b− n)!(c− n)!

(uv)p−n
(u+ v)2n+ρ

(2n+ ρ)!
, (30)

where ρ = 0 or 1. (For the case ρ = 0 see D. Foata [17])
By (29) and the q-binomial theorem in the form (5) or its (N = 1)-counterpart

∞∑
k=−∞

[
2n+ 1
n− k

]
(−1)kxkq

1
2k

2
= (x−1q

1
2 )n(xq

1
2 )n+1, (31)

respectively, the following q-analogue of (30) can be given:

∞∑
k=−∞

[
b+ c+ ρ

c+ k

][
c+ a+ 1
a+ k

][
a+ b+ ρ

b+ k

]
q

3
2k

2− 1
2k(

u

v
)k (32)

=
∑
n=0

[a+ b+ c− n+ ρ]!
[a− n]![b− n]![c− n]!

(− v
uq

1−ρ)n(−uv q
ρ)n+ρ

[2n+ ρ]!
,

where ρ = 0 or 1.
Remark. In proving equation (30) P. Cartier and D. Foata gave a purely combinatorial
proof of (

b+ c+ ρ

c+ k

)(
c+ a+ ρ

a+ k

)(
a+ b+ ρ

b+ k

)
(33)

=
∑
n

(a+ b+ c+ n− ρ)!
(a− n)!(b− n)!(c− n)!(n+ k)!(n− k + ρ)!

,

where ρ = 0 or 1 (a Pfaff-Saalschütz summation).



From that the proof of (29), the extension of Bailey’s Lemma in the cases N = 0 or
1, for q = 1 is simple: one just has to multiply equation (32) by coefficients ck and to sum
over all possible k′s and finally change the order of summation.

Recently [31] D. Zeilberger q-analogized the Cartier-Foata proof of (32) to show[
b+ c

c+ k

][
c+ a

a+ k

][
a+ b

b+ k

]
= (34)

=
∑
n

qn
2−k2 [a+ b+ c− n]!

[a− n]![b− n]![c− n]![n+ k]![n− k]!
.

This gives equation (29) with ρ = 0 as described above.

3.2 Concluding Remarks. Bailey’s Lemma and the concept of Bailey chains have a
wide range of application in additive number theory, combinatories and special functions,
and physics (R. J. Baxter’s hard hexagon model in statistical mechanics, see e.g. R. J.
Baxter [11]). For these applications one should consult G. Andrews [2] and his q-series
compendium [3], which contains also an extensive reference list.

In [2] G. Andrews pointed out that all of the 130 Rogers-Ramanujan type identities
given in Slater’s list [29] posess multiple series generalizations as equation (25), which
contains the Rogers-Ramanujan identities. (e.g. s = 2 and r = 2 in (25) yields (7)).

Let us close with an example of H. Cohen [16], where two important special cases of
equation (25) arise in an algebraic context:

∑
G

pk−1G=0

| AutG |−1=
∞∏
n=1

n 6≡0,±k (mod 2k+1)

(1− p−n)−1

and ∑
G

pk−1G=0

| AutG |−1

| G |
=

∞∏
n=1

n 6≡0,±1 (mod 2k+1)

(1− p−n)−1

where the sums are over all isomorphism classes of abelian p-groups annihilated by pk−1

(p a prime).
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15. J. CIGLER, Elementare q-Identitäten, Seminaire Lotharingen de Combinatoire,
5e Session, Sainte-Croix-aux Mines, 1982.

16. H. COHEN, On the pk-rank of finite abelian groups and Andrew’s generalizations
of the Rogers - Ramanujan identities, Indag. Math. 88 (1985), 377-383.

17. D. FOATA, Etude algebrique de certains problemes d’Analyse Combinatoire et
du Calcul des Probabilites, Publ. Inst. Statist. Univ. Paris, 14 (1965), 81-241.



18. I. GESSEL, D. STANTON, Applications of q-Lagrange inversion to basic hyper-
geometric series, Trans. Amer. Math. Soc., 277 (1983), 173-201.

19. B. GORDON, Some identities in combinatorial analysis, Quart. J. Math. Oxford
Ser., 12 (1961), 285-290.

20. J. HOFBAUER, Langrange Inversion, Seminaire Lotharingien de Combinatoire,
6 eme session, Burg Feuerstein 1982.

21. C. KRATTENTHALER, ”q-Lagrangeformel und inverse Relationen”, Ph. D.
Thesis, University of Vienna, 1982.

22. C. KRATTENTHALER, A new q-Lagrange formula and some applications, Proc.
of the AMS 90 (1984), 338-344.

23. P. PAULE, ”Zwei neue Transformationen als elementare Anwendungen der q-
Vandermonde Formel”, Ph. D. Thesis, University of Vienna, 1982.

24. P. PAULE, On identities of the Rogers - Ramanujan type, J. Math. Anal. and
Appl. 107 (1985), 255-284.

25. P. PAULE, A note on Bailey’s lemma, J. Comb. Th. (A) 44 (1987), 164-167.

26. P. PAULE, Ein neuer Weg zur q-Lagrange Inversion, Bayreuther Math. Schriften
18 (1985), 1-37.

27. L. J. ROGERS, Second memoir on the expansion of certain infinite products,
Proc. London Math. Soc. 25 (1894), 318-343.

28. L. J. ROGERS, Third memoir on the expansion of certain infinite products, Proc.
London Math. Soc. 26 (1895), 15-32.

29. L. J. SLATER, Further identities of the Rogers - Ramanujan type, Proc. London
Math. Soc. (2), 54 (1952), 147-167.

30. L. J. SLATER: ”Generalized Hypergeometric Functions”. Cambridge Univ. Press,
London and New York, 1966.

31. D. ZEILBERGER, A q-Foata proof of the q-Saalschütz identity, preprint.
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