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Summary. We prove that, for every finite semigroup S, there exist elements a1, a2, . . . ,

ak, ak+1 of S and integers i1, i2, . . . , ik such that

a1 · xi1 · a2 · xi2 · . . . · ak · xik · ak+1 = a1 · yi1 · a2 · yi2 · . . . · ak · yik · ak+1

for each x, y of S.

We refer to [1] for the notion of (combinatorial) line as well as for the other com-
binatorial concepts we use in the sequel.

The following theorem of Hales–Jewett is well-known.

Theorem ([2]). Given any finite set A and any integer r there exists an integer
N = N(A, r) such that for each n ≥ N(A, r) in any coloring of An there is always a
monochromatic line.

In [1], Graham presented an interesting algebraic application of the theorem: for
every finite commutative semigroup S, there exist an element a of S and an integer
n such that

a · xn = a · yn

for each x, y of S, i.e., a · xn is independent of x (shortly, we speak of the constant
word a · xn for S).

Trivially, there are finite non-commutative semigroups without constant word of
type a · xn, such as, for example, the semigroup D presented by the following Cayley
table

u v

u u v

v u v

True, for this semigroup the word x · u is constant, i.e., for this semigroup a
particular case of the word xn · b (“dual” of a ·xn) is constant. But the semigroup D′

presented by the following Cayley table

u v

u u u

v v v
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shows that xn · b is not a constant word for each finite semigroup.
Again, the direct product D × D′, where D and D′ are as previously described,

is a semigroup without constant word of type a · xn and without a constant word of
type xn · b.

After some other considerations like the previous ones, the following question nat-
urally arises: given any finite semigroup, does there exist a sort of constant word for
it?

The following proposition gives us the answer.

Proposition. For any finite semigroup S there exist an integer k, a (k + 1)-tuple
a1, a2, . . . , ak, ak+1 of elements of S, and a k-tuple i1, i2, . . . , ik of integers such that

a1 · xi1 · a2 · xi2 · . . . · ak · xik · ak+1

is independent of x, i.e., it is a constant word for S.

Proof. Consider S both as an alphabet and as a set of colors. From Hales–Jewett’s
theorem there exists an integer N(S, |S|) such that for each integer n ≥ N(S, |S|) and
each |S|-coloring of Sn, a line of Sn is monochromatic.

This is true, in particular, when each element

(x1, x2, . . . , xn)

of Sn is colored by
x1 · x2 · . . . · xn,

i.e., the product in S of x1, x2, . . . , xn.
Now, if the monochromatic line is the diagonal, then the conclusion follows imme-

diately.
If the monochromatic line is not the diagonal, then the lengths of the “lakes” of

the non-fixed coordinates (there is always such a coordinate) give us the integer ij ,
and the elements aj are easily obtained by looking at the fixed coordinates.
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