THE CYCLOTOMIC IDENTITY AND THE CYCLIC GROUP

A. Dress and Ch. Siebeneicher

Universität Bielefeld

Metropolis and Rota [1] discuss the cyclotomic identity

$$\frac{1}{1-\alpha t} = \prod_{n \in \mathbb{N}} \left(\frac{1}{1-t^n}\right)^{M(\alpha,n)}$$

Thereby they define the necklace-algebra Nr(A) for a commutative ring A with unit element 1. We show that Nr(A) is the Burnside-ring $\hat{\Omega}(\mathbb{Z})$ of almost finite \mathbb{Z} -sets, where an almost finite \mathbb{Z} -set is a set with an operation of the infinite cyclic group \mathbb{Z} , such that every element lies in a finite orbit and every orbit type $\mathbb{Z}/n\mathbb{Z}$ occurs only with finite multiplicity. For every $n \in \mathbb{N}$ we have a homomorphism

$$\varphi_n: \hat{\Omega}(\mathbb{Z}) \longrightarrow \mathbb{Z},$$

which assigns to a \mathbb{Z} -set the number of elements invariant under the subgroup $n\mathbb{Z}$. The family φ_n with n > 0 defines an injective homomorphism

 $\varphi: \hat{\Omega}(\mathbb{Z}) \longrightarrow \mathbb{Z}^J$

of $\hat{\Omega}(\mathbb{Z})$ into the product ring \mathbb{Z}^J , where J denotes the set of positive integers.

By defining symmetric powers of almost finite Z-sets, we get a homomorphism

$$s_t: \hat{\Omega}(\mathbb{Z}) \longrightarrow 1 + t\Omega(\mathbb{Z})[[t]]$$

of the additive group $\hat{\Omega}(\mathbb{Z})$ into the multiplicative group of formal power-series with constant term 1 and coefficients in the ring $\hat{\Omega}(\mathbb{Z})$. Combining this homomorphism with φ_1 , we get the isomorphism

$$\varphi_1 \circ s_t : \hat{\Omega}(\mathbb{Z}) \longrightarrow 1 + t\mathbb{Z}[[t]].$$

Finally we show that $\hat{\Omega}(\mathbb{Z})$ is isomorphic to the (generalized) ring of Witt-vectors $W(\mathbb{Z})$.

The Burnside-ring construction applies to every profinite group providing thereby a generalized cyclotomic(?) identity. The construction allows also to define for an arbitrary profinite group and given commutative ring A a generalized ring of Witt-vectors over A.

References

 N. Metropolis and C.-C. Rota, Witt vectors and the Algebra of Necklaces, Adv. in Math. 50 (1983), 95–125.