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1 Introduction

Recent times have seen a revival of interest in the theory of Abelian functions associated with
algebraic curves. An Abelian function may be defined as one that has multiple independent
periods, in this case derived from the periodicity property of an underlying algebraic curve. The
topic can be dated back to the Weierstrass theory of elliptic functions which we use as a model.

Let ℘(u) be the Weierstrass ℘-function which, as an elliptic function, has two complex
periods ω1, ω2:

℘(u + ω1) = ℘(u + ω2) = ℘(u), for all u ∈ C. (1)

Elliptic functions have been the subject of much study since their discovery in the 1800s. The
℘-function is a particularly important example which has the simplest possible pole structure for
an elliptic function. The ℘-function satisfies a number of interesting properties. For example,
it can be used to parametrise an elliptic curve

y2 = 4x3 − g2x− g3,

where g2 and g3 are constants. It also satisfies the following well-known differential equations(
℘′(u)

)2 = 4℘(u)3 − g2℘(u)− g3, (2)

℘′′(u) = 6℘(u)2 − 1
2g2. (3)

Weierstrass introduced an auxiliary function, σ(u), in his theory which satisfied

℘(u) = − d2

du2
log
[
σ(u)

]
. (4)
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This σ-function plays a crucial role in the generalisation and in applications of the theory. It
satisfies the following two term addition formula

−σ(u + v)σ(u− v)
σ(u)2σ(v)2

= ℘(u)− ℘(v). (5)

Taking logarithmic derivatives of this will give the standard addition formula for the ℘-function.
In this document we present generalisations of equations (2)–(5) for new sets of functions.

Klein developed an approach to generalise the Weierstrass ℘-function as described in Baker’s
classic texts [1] and [3]. This approach has motivated the general definitions in [6] and [10]
of what we now call Kleinian ℘-functions. These are defined using the properties of certain
algebraic curves.

Definition 1. For two coprime integers (n, s) with s > n we define a cyclic (n, s)-curve as
a non-singular algebraic curve

f(x, y) = 0, f(x, y) = yn − (xs + λs−1x
s−1 + · · ·+ λ1x + λ0).

Here x, y are complex variables while the λj are a set of curve constants. (Note that in the
literature the word cyclic is sometimes replaced by strictly or purely.)

In each case the genus of the curve is given by 1
2(n− 1)(s− 1) and the associated functions

become multivariate with g variables, u = (u1, . . . , ug). We define the period matrices, ω′, ω′′

associated with this curve as standard and denote the period lattice formed from ω′, ω′′ by Λ.
These are the points

Λ =
{
ω′m + ω′′n, m,n ∈ Zg

}
.

We consider functions that are periodic with respect to these matrices, or equivalently, invariant
under translations by this period lattice.

Definition 2. Let M(u) be a meromorphic function of u ∈ Cg. Then M is an Abelian function
associated with C if

M(u + ω′m + ω′′n) = M(u), (6)

for all integer column vectors m,n ∈ Zg.

Note the comparison with equation (1) and that the period matrices play the role of the
scalar periods in the elliptic case.

We can define generalisations of the Weierstrass functions where the periodicity conditions
are with respect to these matrices. We will follow the notation and definitions used in [12] and
so only give a brief recap here. We start by generalising the Weierstrass σ-function using the
properties of the multivariate θ-functions. The core properties of σ(u) is that it is entire and
that is satisfies a quasi-periodicity condition. It also has definite parity, dependent on (n, s),
with respect to the change of variables u → [−1]u. The only zeros of the σ-function are of order
one and occur on the theta-divisor of the Jacobian.

We next define ℘-functions using an analogy of equation (4). Since there is more than one
variable we need to be clear which we differentiate with respect to. We actually define multiple
℘-functions and introduce the following new notation.

Definition 3. Define n-index Kleinian ℘-functions, (where n ≥ 2) as

℘i1,i2,...,in(u) = − ∂

∂ui1

∂

∂ui2

· · · ∂

∂uin

log
[
σ(u)

]
, i1 ≤ · · · ≤ in ∈ {1, . . . , g}.
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The n-index ℘-functions are meromorphic with poles of order n when σ(u) = 0. We can
check that they satisfy equation (6) and hence they are Abelian. The n-index ℘-functions have
definite parity with respect to the change of variables u → [−1]u and are odd if n is odd and
even if n is even.

When the (n, s)-curve is chosen to be the classic elliptic curve then the Kleinian σ-function co-
incides with the classic σ-function and the sole 2-index ℘-function coincides with the Weierstrass
℘-function. The only difference would be the notation with

℘11(u) ≡ ℘(u), ℘111(u) ≡ ℘′(u), ℘1111(u) ≡ ℘′′(u).

As the genus of the curve increases so do the number of associated ℘-functions. In general, the
number of r-index ℘-functions associated with a genus g curve is (g + r − 1)!/[r!(g − 1)!].

Those curves with n = 2 are defined to be hyperelliptic and the original functions of Klein
and Baker were associated with the simplest of these, the (2,5)-curve which has genus two. Klein
considered hyperelliptic curves of arbitrary genus and Baker also constructed examples using
a genus three hyperelliptic curve in [2]. However a full theory for the functions associated to
an arbitrary hyperelliptic curve did not follow until the 1990s when Buchstaber, Enolskii and
Leykin published [6].

In the last few years a good deal of progress has been made on the theory of Abelian functions
associated to those (n, s) curve with n = 3, which we label trigonal curves. In [8], the authors
of [6] furthered their methods to the trigonal cases, obtaining realisations of the Jacobian variety
and some key differential equations between the functions.

Over recent years several groups of authors have begun to investigate other aspects of the
theory of Abelian functions associated to trigonal curves. In particular, the two canonical cases of
the (3,4)- and (3,5)-curves have been examined in [9] and [4] respectively. Both papers explicitly
construct the differentials on the curve, solve the Jacobi inversion problem and obtains sets of
differential equations between the ℘-functions. The class of (n, s)-curves with n = 4 are defined
as tetragonal curves and have been recently considered for the first time in [12] and [13].

In this paper we present new results for two higher genus trigonal curves. The aim was to
give further examples of results to build towards a general trigonal case and to investigate the
question of whether it is the classification of the curve, (value of n), or the genus that dictates
the behaviour. The results here build on the work in [9] and [4] but have used techniques inspired
by the problems encountered when working with the tetragonal curve of genus six in [12].

In Section 2 we introduce the (3,7)-curve and in Section 3 we use a key result to solve the
Jacobi inversion problem for this case. We then proceed to construct a series expansion for the
σ-function in Section 4, including details of the algorithm to calculate the Schur–Weierstrass
polynomials in Appendix A. Relations between the Abelian functions are derived in Section 5
and in Section 6 we construct an addition formula, presenting the full formula in Appendix B.
In Section 7 we give some details relating to the (3,8)-curve and in Appendix C we discuss the
Jacobi inversion problem for curves of even higher genus. Note that details of calculations which
were considered too unwieldy for inclusion have been made available online at [11].

2 The cyclic trigonal curve of genus six

We will work with the cyclic (3,7)-curve which, from Definition 1, is the non-singular curve

y3 = x7 + λ6x
6 + λ5x

5 + λ4x
4 + λ3x

3 + λ2x
2 + λ1x + λ0.

Note that this curve has genus g = 6 which is the same as the cyclic (4,5)-curve investigated
in [12]. We denote the Riemann surface defined by an (n, s)-curve with C and start by deriving
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differentials on this surface. We can derive the basis of holomorphic differentials using the
Weierstrass gap-sequence (see for example [5])

du = (du1, . . . , du6), where dui(x, y) =
gi(x, y)

3y2
dx, (7)

with

g1(x, y) = 1, g2(x, y) = x, g3(x, y) = x2,

g4(x, y) = y, g5(x, y) = x3, g6(x, y) = xy.

Although the dimension of the space is the same as the (4,5)-case, the basis of differentials is
different. We usually denote a point in C6 by u, a row vector with coordinates (u1, . . . , u6).
Any point u ∈ C6 may be written as follows, where the Pi are a set of variable points upon C

u =
6∑

i=1

∫ Pi

∞
du. (8)

We also work with a particular 2-form known as the fundamental differential of the second
kind. This differential is symmetric with a pole down the diagonal and a particular series
expansion. (See [5] for details of the explicit construction.) It is used in Klein’s formula for the
℘-functions discussed in the next section. The fundamental differential may be written as

Ω
(
(x, y), (z, w)

)
=

F
(
(x, y), (z, w)

)
dxdz

(x− z)2fy(x, y)fw(z, w)
, (9)

where F is the following polynomial of its variables

F
(
(x, y), (z, w)

)
= 2λ1yz + λ2x

2w + 2λ1wx + 3wλ0 + 3xλ3yz2 − yz4λ4

+ 2x2yz3λ5 + 4xyz3λ4 + yz4xλ5 + λ2yz2 + 3yz4x2λ6 + 3x4wλ6z
2 + yz4x3

+ 2x3wλ5z
2 + 2x5wz2 + 2x2yz5 + x4wz3 + 3y2w2 + λ1yx + λ1wz + 3yλ0

+ λ5x
4wz − λ4x

4w + 2λ2xwz + 2λ2xyz + 3λ3x
2wz + 4λ4x

3wz. (10)

Through this construction we set a basis for the differentials of the second kind,

dr = (dr1, . . . , dr6), where drj(x, y) =
hj(x, y)

3y2
dx,

with

h1(x, y) = y
(
9x4λ6 + 5x2λ4 + 11x5 + λ2 + 3xλ3 + 7x3λ5

)
,

h2(x, y) = xy
(
4xλ5 + 6x2λ6 + 8x3 + 2λ4

)
,

h3(x, y) = y
(
5x3 − λ4 + xλ5 + 3x2λ6

)
, h5(x, y) = 2x2y,

h4(x, y) = x3
(
3xλ6 + 4x2 + 2λ5

)
, h6(x, y) = x4.

We define the period matrices by taking integrals of du around cycles on the surface. The
surface C is associated with an Abelian variety of dimension g, called the Jacobian of the curve,
J = Cg/Λ. We define the Abel map as below to move between the curve and the Jacobian

A : Symk(C),→ J,

(P1, . . . , Pk), 7→
(∫ P1

∞
du + · · ·+

∫ Pk

∞
du

)
(mod Λ). (11)

Here the Pi are points upon the curve C.
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We then define the ℘-functions as in general. Since the genus is six we will, with respect to
notation, be working with the same Abelian functions as in the (4,5)-case. However, we find
the results differ which is seen most clearly by the different weights of the functions.

Within the theory of these functions we can define weights such that every equation is
homogeneous. In general they can be predicted by the values of (n, s) and the Weierstrass gap
sequence these define. In the (3,7)-case these weights are as follows

x y λ6 λ5 λ4 λ3 λ2 λ1 λ0

Weight −3 −7 −3 −6 −9 −12 −15 −18 −21

u1 u2 u3 u4 u5 u6 σ(u)
Weight +11 +8 +5 +4 +2 +1 +16

Note that the weights of the ℘-functions are equal to the negative of the sum of the weights
of their indices. The weight properties were derived and justified in general throughout [12],
although they were known and used previously. They are often referred to as Sato weights.

3 Expanding the Kleinian formula

In this section we work with the Kleinian formula, (Theorem 3.4 in [10]), which links the ℘-
functions with a point on the curve. Let {(x1, y1), . . . , (x6, y6)} ∈ C6 be an arbitrary set of
distinct points and (z, w) any point of this set. Then for an arbitrary point (x, y) and base
point ∞ on C we have

6∑
i,j=1

℘ij

(∫ t

∞
du−

6∑
k=1

∫ xk

∞
du

)
gi(x, y)gj(z, w) =

F
(
(x, y), (z, w)

)
(x− z)2

. (12)

Here gi is the numerator of dui, as given in equation (7), and F is the symmetric function given
in equation (10) as the numerator of the fundamental differential of the second kind.

We will extract information from this formula by expanding it as a series and setting each
coefficient to zero. We use expansions of the variables in ξ, the local parameter in the neigh-
borhood of the infinite point, ∞ ∈ C. This is defined by ξ = x−

1
3 and the following expansions

can be easily derived from the definitions of the variables involved

x =
1
ξ3

, y =
1
ξ7

+
(

λ6

3

)
1
ξ4

+
(

λ5

3
− λ2

6

9

)
1
ξ

+
(

λ4

3
− 2λ6λ5

9
+

5λ3
6

81

)
ξ2 + O

(
ξ5
)
,

u1 = − 1
11ξ11 + O(ξ14), u3 = −1

5ξ5 + O(ξ8), u5 = −1
2ξ2 + O(ξ5),

u2 = −1
8ξ8 + O(ξ11), u4 = −1

4ξ4 + O(ξ7), u6 = −ξ + O(ξ4).

We substitute these expansions into the Kleinian formula to obtain a series in ξ, equal to zero.
The coefficients give equations in the variables (z, w) and the ℘-functions, starting with the
three below

0 = ρ1 = −z4 + ℘56z
3 + ℘36z

2 +
(
℘66w + ℘26

)
z + ℘46w + ℘16, (13)

0 = ρ2 =
(
℘55 − ℘566

)
z3 +

(
℘35 − 2w − ℘366

)
z2 +

(
℘25 − ℘266 + ℘56w

− ℘666w
)
z + ℘15 − ℘466w − ℘166 + ℘45w,

0 = ρ3 =
(

1
2℘5666 − 3

2℘556

)
z3 +

(
1
2℘3666 − 3

2℘356

)
z2 +

(
1
2℘2666 − 3

2℘256

+ (1
2℘6666 − 3

2℘566)w
)
z − 3

2℘156 − 3w2 + 1
2℘1666 +

(
− 3

2℘456 + 1
2℘4666

)
w,

...
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They are valid for any u ∈ C6, with (z, w) one of the points on C that may be used to represent u
in equation (8). They are presented in ascending order (as the coefficients of ξ) and have been
calculated explicitly (using Maple), up to ρ10. They get increasingly large in size and can be
found at [11]. We aim to manipulate these relations to eliminate (z, w).

We start by taking resultants of pairs of equations, eliminating the variable w by choice,
and denoting the resultant of ρi and ρj by ρi,j . The first of these, ρ1,2, is presented later in
equation (14) as part of the main theorem in this section. The other ρi,j get increasingly large
and so we instead present Table 1 which details the number of terms they contain once expanded
and their degree in z. In general, the higher the ρi involved in the resultant, the more terms
the resultant has. There were only two polynomials found with degree six in z, ρ12 and ρ14,
with all the others having higher degree. In the (4,5)-case the corresponding polynomials had
many more terms and all had degree in z of at least seven. These calculations have far more in
common with the lower genus trigonal cases than the tetragonal case of the same genus.

Table 1. The polynomials ρi,j .

Res # terms degree Res # terms degree
ρ1,2 40 6 ρ3,4 2025 10
ρ1,3 79 8 ρ3,5 4188 9
ρ1,4 77 6 ρ3,6 4333 8
ρ1,5 154 7 ρ3,7 19043 10
ρ1,6 344 8 ρ3,8 28422 10
ρ1,7 290 7 ρ3,9 44409 10
ρ1,8 412 7 ρ4,5 793 8
ρ1,9 1055 8 ρ4,6 8315 10
ρ2,3 307 7 ρ4,7 1183 8
ρ2,4 219 7 ρ4,8 2112 8
ρ2,5 226 6 ρ4,9 24569 10
ρ2,6 1468 8 ρ5,6 18356 10
ρ2,7 712 7 ρ5,7 2535 8
ρ2,8 737 7 ρ5,8 2316 8
ρ2,9 4536 9 ρ5,9 54384 11

We need to reduce these equations to degree five (= g − 1) in z since such equations must
be satisfied by all six variables and so are identically zero. We select ρ1,2 as it is the smallest
polynomial of degree six, and rearrange it to give an equation for z6. Note that this equation is
polynomial since the coefficient of z6 in ρ1,2 was a constant

z6 = z5
(

3
2℘56 − 1

2℘666

)
+ z4

(
1
2℘55℘66 + · · · .

We may now take any of the other ρi,j and repeatedly substitute for z6 until we have a polynomial
of degree five in z. We can then set the coefficients to zero leaving us with six polynomial
equations between the ℘-functions. Finally, recalling that the ℘-functions have definite parity,
we can separate each of these six relations into their odd and even parts. In the (4,5)-case every
polynomial needed at least two rounds of substitution to reach this stage, with the corresponding
equations for z6 and z7 far more complicated. In this case we need only substitute once into ρ1,4

and so the polynomials achieved here are far simpler. They start with

0 =
(
2℘666 − 3λ6 − 6℘56

)
℘66 + ℘5666 − 3℘46,

0 = −1
2℘556 − 1

6℘66666,
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0 =
(
2℘566 − 2℘55

)
℘2

66 +
(
℘5566 − ℘45 − 2λ5 − 4℘36 + 2℘466

− 2℘56℘666 + 2℘2
56

)
℘66 + ℘44 + ℘4566 − ℘56℘5666 − ℘56℘46 − 3℘46λ6,

0 = −
(

1
6℘56666 + 1

2℘555

)
℘66 − 1

6℘46666 + 1
2℘56℘556 + 1

6℘56℘66666 − 1
2℘455,

...

The other relations in this case all involve two rounds of substitution for z6 and get increasingly
long and complex, involving higher index ℘-functions. Although the relations we achieve are
far simpler than those in the (4,5)-case, there are not enough simple relations to manipulate in
order to find the desired differential equations between the ℘-functions. Hence we proceed, in
Sections 4 and 5, to use the tools developed for the (4,5)-curve to find these relations.

However, as predicted by [8], we may still use the relations from the Kleinian formula to find
the solution of the Jacobi inversion problem. Recall that the Jacobi inversion problem is, given
a point u ∈ J , to find the preimage of this point under the Abel map, (11).

Theorem 1. Suppose we are given {u1, . . . , u6} = u ∈ J . Then we could solve the Jacobi
inversion problem explicitly as follows. We first consider the polynomial ρ1,2 which has degree
six in z and is equal to zero,

ρ1,2 = −2z6 + (3℘56 − ℘666)z5 + (℘55℘66 + 2℘36 − ℘2
56 + ℘45 − ℘566℘66 + ℘56℘666

− ℘466)z4 + (2℘26 − ℘56℘45 + ℘35℘66 − ℘566℘46 + ℘55℘46 − ℘366℘66 + ℘56℘466

− ℘36℘56 + ℘36℘666)z3 + (2℘16 + ℘35℘46 − ℘266℘66 − ℘366℘46 + ℘26℘666 − ℘26℘56

+ ℘25℘66 − ℘36℘45 + ℘36℘466)z2 + (℘16℘666 − ℘266℘46 − ℘16℘56 − ℘26℘45 + ℘15℘66

− ℘166℘66 + ℘25℘46 + ℘26℘466)z − ℘16℘45 − ℘166℘46 + ℘15℘46 + ℘16℘466. (14)

Denote by (z1, . . . , z6) the six zeros of this polynomial, which will be expressions in ℘-functions
that should be evaluated for the given u. Next recall equation (13) which is the following equation
of degree one in w

0 = −z4 + ℘56z
3 + ℘36z

2 +
(
℘66w + ℘26

)
z + ℘46w + ℘16.

We can substitute each zi into this equation in turn and solve to find the corresponding wi.
Therefore the set of points {(z1, w1), . . . , (z6, w6)} on the curve C which are the Abel preimage
of u have been identified.

Note that since ρ1,2 is degree six in z and equal to zero, the coefficients in equation (14) will
be elementary symmetric functions in the roots of the equation. Hence they give expressions for
the elementary symmetric functions in the coordinates of the divisor of six points on C.

Note also that although Theorem 1 only required the first few relations derived from the
Kleinian formula, many of the other relations are used implicitly in the construction of the
σ-function expansion in the next section.

4 The σ-function expansion

We construct a σ-function expansion for the cyclic (3,7)-curve using the methods and techniques
discussed in detail in [12]. We start with a statement on the structure of the expansion.

Theorem 2. The function σ(u) associated with the cyclic (3,7)-curve may be expanded about
the origin as

σ(u) = σ(u1, u2, u3, u4, u5, u6) = SW3,7(u) + C19(u) + C22(u) + · · ·+ C16+3n(u) + · · · ,



8 M. England

where SW3,7 is the Schur–Weierstrass polynomial and each Ck is a finite, even polynomial
composed of products of monomials in u = (u1, u2, . . . , u6) of weight +k multiplied by monomials
in λ = (λ6, λ5, . . . , λ0) of weight 16− k.

Proof. This proof follows the ideas in [9] and [12]. First we note that the σ-function associated
with the (3,7)-curve is even and then, by Theorem 3(i) in [14], we know the expansion will be
a sum of monomials in u and λ with rational coefficients.

One of the key properties of the σ-function is that the part of its expansion without λ will be
given by a constant multiple of the corresponding Schur–Weierstrass polynomial (see [7] or [14])
and as discussed in [12] we can set this constant to one. We can then conclude the weight of
the expansion to be the weight of SW3,7 which is +16. We split the expansion into polynomials
with common weight ratios and increasing weight in u. The subscripts increase by three since
the possible weights of λ-monomials decrease by three. �

The Schur–Weierstrass polynomial is generated from the integers (n, s) using an easily im-
plemented algorithmic procedure which is summarised in Appendix A. In this case

SW3,7 = 1
22528000u16

6 + u2
2 + 1

80u4u
6
6u

3
5 + 1

3200u4u
10
6 u5 + 1

8u2
6u

5
5u4 − 1

2u3u
3
6u

2
4 − 3

281600u12
6 u2

5

+ 1
2u2

6u5u
3
4 − 1

16u2
4u

4
6u

2
5 + u6u

2
5u1 − 1

2u2u
2
6u

3
5 − u2u

2
5u4 − 1

35200u3u
11
6 + 1

40u2u
6
6u5

− 1
20u5

6u1 − 1
20u4u

5
6u3u5 − 1

80u7
6u

2
5u3 + 1

2u2
3u

2
6u

2
5 + 2u5u4u

2
3 + 3

8u4
5u

2
4 − 1

640u2
4u

8
6

+ 1
4u4u

4
6u2 + 1

40u2
3u

6
6 + 1

8u3u
3
6u

4
5 − u3u6u

3
5u4 − 1

64u8
5 + 1

2560u8
6u

4
5 − 1

4u4
4 − u3u1

− 2u2u3u6u5 − 1
64u6

5u
4
6 + u6u

3
3.

We construct the other Ck successively following the methods of [12]. We can identify the
possible terms in each polynomial as the finite number with the desired weight ratio. We then
determine the coefficients of each term by ensuring the expansion satisfies known properties
of the σ-function. These include the vanishing properties, the polynomials derived from the
expansion of the Kleinian formula and most efficiently, the equations in the next section found
in the construction of basis (16). See [12] for full details of this calculation. The Maple procedures
from the (4,5)-case could easily be adapted to these calculations.

We have calculated the σ-expansion associated with the (3,7)-curve up to and including C49.
The polynomials are available online at [11]. As in the (4,5)-case we simplify calculations by
rewriting procedures to take into account weight simplifications and by using parallel computing
implemented with Distributed Maple [15].

The later polynomials are extremely large and represent a significant amount of computa-
tion, in common with the (4,5)-case rather than the lower genus trigonal cases. In fact these
computations are marginally more difficult since the λ increase in steps of three instead of four,
and so there are a greater number of possible λ-monomials at each stage. Hence there are more
polynomials Ck with more terms in each.

5 Relations between the Abelian functions

In this section we derive sets of relations between the Abelian functions associated with the
(3,7)-curve. Note that these relations are presented in weight order as indicated by the bold
number in brackets. We start with the construction of a basis for the space of those Abelian
functions with poles of order at most two. Recall that there are no Abelian functions with
simple poles and that an Abelian function with no poles is a constant. Hence those functions
with double poles have the simplest possible pole structure and so are sometimes referred to as
fundamental Abelian functions.

We find that for (n, s)-curves with genus greater that 2, the ℘-functions are not sufficient to
span the space. This problem may be overcome by defining another class of Abelian functions.
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Definition 4. Define the operator ∆i as below. This is now known as Hirota’s bilinear operator,
although it was used much earlier by Baker in [3]

∆i =
∂

∂ui
− ∂

∂vi
.

Then an alternative, equivalent definition of the 2-index ℘-functions is given by

℘ij(u) = − 1
2σ(u)2

∆i∆jσ(u)σ(v)
∣∣∣
v=u

, i ≤ j ∈ {1, . . . , g}.

We extend this approach to define the n-index Q-functions, for n even, by

Qi1,i2,...,in(u) =
(−1)

2σ(u)2
∆i1∆i2 · · ·∆inσ(u)σ(v)

∣∣∣
v=u

,

where i1 ≤ · · · ≤ in ∈ {1, . . . , g}.

The n-index Q-functions are Abelian functions with poles of order two when σ(u) = 0. They
are a generalisation of the Q-functions used by Baker. The 4-index Q-functions were introduced
in research on the lower genus trigonal curves, (and in the literature are just defined as Q-
functions). The general definition was developed in [12] as increasing classes are required to
deal with cases of increasing genus. Note that if Definition 4 were applied with n odd then the
resulting function is identically zero. In [9] it was shown that the 4-index Q-functions could be
expressed using the Kleinian ℘-functions as follows

Qijk` = ℘ijk` − 2℘ij℘k` − 2℘ik℘j` − 2℘i`℘jk. (15)

Similarly, in [12] the 6-index Q-functions were expressed as

Qijklmn = ℘ijklmn − 2
[(

℘ij℘klmn + ℘ik℘jlmn + ℘il℘jkmn + ℘im℘jkln + ℘in℘jklm

)
+
(
℘jk℘ilmn + ℘jl℘ikmn + ℘jm℘ikln + ℘jn℘iklm

)
+
(
℘kl℘ijmn + ℘km℘ijln + ℘kn℘ijlm

)
+
(
℘lm℘ijkn + ℘ln℘ijkm

)
+ ℘mn℘ijkl

]
+ 4
[(

℘ij℘kl℘mn + ℘ij℘km℘ln + ℘ij℘kn℘lm

)
+
(
℘ik℘jl℘mn + ℘ik℘jm℘ln + ℘ik℘jn℘lm

)
+
(
℘il℘jk℘mn + ℘il℘jm℘kn + ℘il℘jn℘km

)
+
(
℘im℘jk℘ln + ℘im℘jl℘kn + ℘im℘jn℘kl

)
+
(
℘in℘jk℘lm + ℘in℘jl℘km + ℘in℘jm℘kl

)]
.

Theorem 3. A basis for the space of Abelian functions upon J with poles of order at most two
occurring on the theta divisor is given by

C1 ⊕ C℘11 ⊕ C℘12 ⊕ C℘13 ⊕ C℘14 ⊕ C℘15

⊕ C℘16 ⊕ C℘22 ⊕ C℘23 ⊕ C℘24 ⊕ C℘25 ⊕ C℘26

⊕ C℘33 ⊕ C℘34 ⊕ C℘35 ⊕ C℘36 ⊕ C℘44 ⊕ C℘45

⊕ C℘46 ⊕ C℘55 ⊕ C℘56 ⊕ C℘66 ⊕ CQ5556 ⊕ CQ5555

⊕ CQ4466 ⊕ CQ3466 ⊕ CQ4456 ⊕ CQ4455 ⊕ CQ4446 ⊕ CQ3355

⊕ CQ3446 ⊕ CQ4445 ⊕ CQ3346 ⊕ CQ3445 ⊕ CQ1556 ⊕ CQ2356

⊕ CQ1555 ⊕ CQ2355 ⊕ CQ2446 ⊕ CQ2346 ⊕ CQ2445 ⊕ CQ3344

⊕ CQ2345 ⊕ CQ3334 ⊕ CQ1355 ⊕ CQ1446 ⊕ CQ2255 ⊕ CQ2246

⊕ CQ2344 ⊕ CQ2245 ⊕ CQ2334 ⊕ CQ1255 ⊕ CQ1335 ⊕ CQ1344

⊕ CQ2244 ⊕ CQ2226 ⊕ CQ2234 ⊕ CQ1155 ⊕ CQ1235 ⊕ CQ1136

⊕ CQ1155 ⊕ CQ1133 ⊕ CQ223466 ⊕ CQ113666.

(16)



10 M. England

Proof. The dimension of the space is 2g = 26 = 64 by the Riemann–Roch theorem for Abelian
varieties. All the selected elements belong to the space and we can easily check their linear
independence explicitly in Maple using the σ-expansion. �

To actually construct the basis we started by including all 21 of the ℘ij since they are all
linearly independent. We then decided which Qijkl to include by testing at decreasing weight
levels to see which could be written as a linear combination. (Note that these computations
were actually performed in tandem with the construction of the σ-expansion. Once a new Ck

was found three more weight levels of the basis could be examined. The relations obtained could
then be used to construct the next Ck in the expansion.)

Upon examining all the 4-index Q-functions, we find that 62 basis elements have been iden-
tified. To find the final two basis elements we repeat the procedure using the 6-index Q-
functions. We find that all those of weight higher than −27 can be expressed as a linear
combination of existing basis entries. However, at weight −27 one of the Qijklmn is required
in the basis to express the others, which was the case also at weight −30. The basis requires
many Q-functions including some with six indices and so has much more in common with the
(4,5)-calculations that the lower genus trigonal work.

Lemma 1. Those 4-index Q-functions not in the basis can be expressed as a linear combination
of the basis elements

(−4) Q6666 = −3℘55,

(−5) Q5666 = 3℘46 + 3λ6℘66,

(−6) Q5566 = 4℘36 − ℘45 + 3λ6℘56 + 2λ5,

(−7) Q4666 = 3λ6℘55 −Q5556,

(−8) Q3666 = −1
4Q5555 − 3

4℘44 + 3
2λ6℘46 − 3

4λ2
6℘66 + 3λ5℘66,

(−8) Q4566 = −℘44 + 3λ6℘46,

(−9) Q3566 = 4℘26 − ℘34 + 3λ6℘36,

(−9) Q4556 = 3℘26 − 2℘34 + 3λ6℘45 − 2λ4,

...

The relations have been calculated down to weight −37 and are available at [11]. There are
similar equations for all the 6-index Q-functions, except Q223466 and Q113666 which were in the
basis. Explicit relations have been calculated down to weight −32. The first few are given below
with the other relations available at [11]

(−6) Q666666 = 36℘36 − 45℘45 − 9λ6℘56 − 6λ5,

(−7) Q566666 = −24℘35 + 5Q5556 − 24λ6℘55,

(−8) Q556666 = 12℘44 + Q5555 + 24λ6℘46 + 12λ2
6℘66,

(−9) Q555666 = 9℘26 + 18℘34 + 36λ6℘36 − 18λ6℘45 + 9℘56λ
2
6 + 6λ6λ5 + 42λ4,

(−9) Q466666 = 15℘26 + 6℘34 − 9λ6℘45 + 6λ4,

...

Proof. It is clear that such relations must exist. The explicit differential equations were cal-
culated in the construction of the basis. �

Note that we can apply equation (15) to the first set of equations in order to derive a gene-
ralisation of equation (3), the second differential equation from the elliptic case

(−4) ℘6666 = 6℘2
66 − 3℘55, (17)
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(−5) ℘5666 = 6℘56℘66 + 3℘46 + 3λ6℘66, (18)

(−6) ℘5566 = 4℘36 − ℘45 + 3λ6℘56 + 2λ5 + 2℘55℘66 + 4℘2
56,

...

Remark 1. Equation (17) may be differentiated twice with respect to u6 to give the Boussinesq
equation for ℘66 with u6 playing the space variable and u5 the time variable. This connection
with the Boussinesq equation has been previously established in [10, 8, 9] and [4], and is discussed
further in Remark 2.

There are also relations to generalisation equation (2) from the elliptic case

(−6) ℘2
666 = 4℘3

66 + ℘2
56 − 4℘55℘66 + 4℘36 − 4℘45,

(−7) ℘566℘666 = 4℘2
66℘56 + 2℘2

66λ6 − ℘55℘56 − 2℘55λ6 + 2℘46℘66 − 2℘35 + 2
3Q5556,

(−8) ℘2
566 = ℘44 + 2℘46λ6 + ℘66λ

2
6 + 1

3Q5555 + ℘2
55 + 4℘46℘56 + 4℘2

56℘66 + 4λ6℘56℘66,

(−8) ℘556℘666 = 2℘2
56℘66 + λ6℘56℘66 − 1

2℘66λ
2
6 + 2℘55℘

2
66 − 2℘2

55 − ℘46℘56

− λ6℘46 + 4℘36℘66 − 2℘45℘66 + 2℘66λ5 + 3
2℘44 − 1

6Q5555,

(−9) ℘556℘566 = 2℘34 + 2℘55℘56℘66 + 2℘56λ5 + ℘55℘66λ6 + 2℘3
56 + 4℘36℘56

− 2℘45℘56 + ℘46℘55 + 2℘2
56λ6 − 2℘45λ6 + 2℘36λ6 + 4λ4,

(−9) ℘555℘666 = 6℘55℘56℘66 − 8℘36℘56 − 4℘35℘66 − ℘2
56λ6 − 2℘26 + 2℘66Q5556

+ 7℘45℘56 − 4℘36λ6 − 2℘3
56 + 4℘45λ6 − 2℘55℘66λ6 + 2℘46℘55,

(−9) ℘466℘666 = 2℘55℘66λ6 + 4℘46℘
2
66 − 2℘46℘55 + ℘45℘56 − 2

3℘66Q5556 + 2℘26,

...

These were derived by considering the possible cubic polynomials in 2-index ℘-functions and
using the σ-expansion to find the coefficients. This method fails after weight −11 and an
alternative approach is currently being developed. A similar problem is encountered in the
(4,5)-case.

Lemma 2. There are a set of identities bilinear in the 2- and 3-index ℘-functions

(−6) 0 = −1
2℘466 − 1

2℘555 − 1
2λ6℘666 − ℘56℘666 + ℘66℘566, (19)

(−7) 0 = −2℘366 + 2℘456 − ℘55℘666 − ℘56℘566 + 2℘66℘556,

(−8) 0 = 2
3℘356 − 2

3℘455 − 2
3℘55℘566 + 1

3℘56℘556 + 1
3℘66℘555 − ℘46℘666 + ℘66℘466,

(−9) 0 = −2℘355 − 3
2λ6℘466 + 1

2λ6℘555 + 1
2λ2

6℘666 − 2λ5℘666 − ℘55℘556

+ ℘56℘555 + ℘46℘566 − ℘56℘466 − 4℘36℘666 + 4℘66℘366,

(−9) 0 = 2℘446 − ℘45℘666 + ℘56℘466 + 2℘66℘456 − 2℘46℘566,

(−10) 0 = 4
3℘346 − ℘266 − 1

3℘445 − ℘45℘566 − 1
3℘55℘466 + 2

3℘56℘456 + 2
3℘66℘455,

(−10) 0 = 1
2℘266 + 1

3℘346 + 1
6℘445 − ℘46℘556 + 2

3℘55℘466 + 2
3℘56℘456 − 1

3℘66℘455,

(−10) 0 = 2℘346 − 2℘266 − ℘35℘666 + ℘56℘366 + 2℘66℘356 − 2℘36℘566,

...

Proof. These can be derived by cross-differentiating the identities for 4-index ℘-functions. For
example, substituting equations (17) and (18) into

∂

∂u5
℘6666(u)− ∂

∂u6
℘5666(u) = 0

gives equation (19). A method to generate complete sets of such relations has been developed
and will appear in a later publication. �
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6 Addition formula

In this section we develop the two term addition formula for the σ-function associated with the
(3,7)-curve, generalising equation (5) from the elliptic case.

Theorem 4. The σ-function associated with the cyclic (3,7)-curve satisfies

−σ(u + v)σ(u− v)
σ(u)2σ(v)2

= f(u,v) + f(v,u),

where f(u,v) is a finite polynomial of Abelian functions associated with C. It may be written

f(u,v) =
[
P32 + P29 + P26 + P23 + P20 + P17 + P14 + P11 + P8 + P5 + P2

]
(u,v),

where each Pk(u,v) is a sum of terms with weight −k in the Abelian functions and weight k−32
in λ-monomials.

Proof. We follow the proof of Theorem 4 for the (4,5)-case. This time the σ-function is even
instead of odd so the addition formula becomes symmetric instead of anti-symmetric. The ratio
of σ-derivatives has weight −32 and the polynomials have weights shifting by three since the
weights of possible λ-monomials are all multiples of three. �

The formula has been derived explicitly using the σ-function expansion. The same approach
and Maple procedures can be used as in the (4,5)-case. Since f(u,v) may contain λ-monomials
of weight −30, the σ-expansion should be truncated after C46. We find the polynomials Pk(u,v)
to be as given in Appendix B.

Note that the construction of the σ-expansion, the basis (16), the relations between Abelian
functions and the addition formula are all similar to the (4,5)-results and have little in common
with the lower genus trigonal cases.

7 The cyclic trigonal curve of genus seven

In this section we briefly present the corresponding results for the Abelian functions associated
with the cyclic (3,8)-curve. This is the non-singular algebraic curve C given by

y3 = x8 + λ7x
7 + λ6x

6 + λ5x
5λ4x

4 + λ3x
3 + λ2x

2 + λ1x + λ0.

It has genus g = 7 and is the highest genus curve to have been considered.

7.1 Differentials and functions

The standard basis of holomorphic differentials upon C is

du = (du1, . . . , du7), where dui(x, y) =
gi(x, y)

3y2
dx,

with

g1(x, y) = 1, g2(x, y) = x, g3(x, y) = x2,

g4(x, y) = y, g5(x, y) = x3, g6(x, y) = xy, g7(x, y) = x4.

The fundamental differential of the second kind is given by equation (9) with

F
(
(x, y), (z, w)

)
= 3yλ0 + λ1yx + λ1wz + λ2x

2w + 2λ1yz − λ4x
4w + 2λ1wx + 3wλ0
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+ 3y2w2 + λ2yz2 − yz4λ4 + wx6z2 + 2yx3z5 + 2x5z3w + z6yx2 + 2λ2xwz + x4z3wλ7

+ 2λ2xyz + 3λ3x
2wz + 4λ4x

3wz + λ5x
4wz + 3λ3yxz2 + 4xyz3λ4 + 3wx4λ6z

2

+ 2x2yz3λ5 + yz4λ5x + 3yz4λ6x
2 + yz4λ7x

3 + 2wx3λ5z
2 + 2wx5λ7z

2 + 2yx2z5λ7.

An explicit basis for the differentials of the second kind associated with the cyclic (3,8)-curve
was derived as follows

dr = (dr1, . . . , dr7), where drj(x, y) =
hj(x, y)

3y2
dx,

with

h1(x, y) = y
(
λ2 + 13x6 + 3λ3x + 5λ4x

2 + 7λ5x
3 + 9λ6x

4 + 11λ7x
5
)
,

h2(x, y) = 2xy
(
λ4 + 2λ5x + 3λ6x

2 + 4λ7x
3 + 5x4

)
, h5(x, y) = 2x2y

(
λ7 + 2x

)
,

h3(x, y) = y
(
λ5x + 3λ6x

2 + 5λ7x
3 + 7x4 − λ4

)
, h6(x, y) = x4

(
λ7 + 2x

)
,

h4(x, y) = x3
(
5x3 + 2λ5 + 3λ6x + 4λ7x

2
)
, h7(x, y) = x2y.

We can now proceed to define the period lattice and Abelian functions as in the general case.
This time the functions have g = 7 variables.

7.2 Expanding the Kleinian formula

We consider again the Kleinian formula, this time applied to the (3,8)-curve. This is given by
equation (12) but with the sum running to g = 7. We use the techniques of Section 3 to derive
relations between the ℘-functions. Expanding the formula as a series in ξ gives a sequence of
equations starting with the three below

0 = ρ1 = ℘77z
4 + ℘57z

3 + (℘37 − w)z2 + (℘67w + ℘27)z + ℘47w + ℘17, (20)

0 = ρ2 = −2z5 + (℘67 − ℘777 − λ7)z4 + (℘56 − ℘577)z3 + (℘36 − ℘377)z2

+
(
(℘66 − ℘677)w − ℘277 + ℘26

)
z + (℘46 − ℘477)w − ℘177 + ℘16,

0 = ρ3 =
(

1
2℘7777 − 3

2℘677

)
z4 +

(
1
2℘5777 − 3

2℘567

)
z3 +

(
1
2℘3777 − 3

2℘367

)
z2 +

(
1
2℘2777

− 3
2℘267 +

(
1
2℘6777 − 3

2℘667

)
w
)
z − 3w2 +

(
1
2℘4777 − 3

2℘467

)
w − 3

2℘167 + 1
2℘1777.

The polynomials have been calculated explicitly (using Maple), up to ρ8. They get increas-
ingly large in size and can be found at [11]. We take resultants of pairs of equations, eliminating
the variable w by choice. We denote the resultant of ρi and ρj by ρi,j and find that ρ1,2 is the
simplest with 55 terms and degree seven in z

ρ1,2 = 2z7 + (λ7 − 3℘67 + ℘777)z6 + (℘77℘677 − ℘77℘66 − 2℘47 − ℘777℘67 − ℘67λ7 + ℘2
67

+ ℘577 − ℘56)z5 + (℘377 − ℘77℘46 + ℘77℘477 − ℘47λ7 + ℘57℘677 + ℘67℘47 + ℘56℘67

− ℘777℘47 − ℘57℘66 − ℘577℘67 − ℘36)z4 + (℘277 − ℘377℘67 − ℘26 − ℘37℘66 + ℘36℘67

− ℘577℘47 + ℘57℘477 + ℘56℘47 − ℘57℘46 + ℘37℘677)z3 + (℘36℘47 − ℘377℘47

+ ℘27℘677 + ℘177 − ℘16 + ℘26℘67 + ℘37℘477 − ℘37℘46 − ℘27℘66 − ℘277℘67)z2

+ (℘17℘677 − ℘27℘46 + ℘27℘477 + ℘26℘47 − ℘177℘67 + ℘16℘67 − ℘277℘47 − ℘17℘66)z
− ℘177℘47 + ℘16℘47 − ℘17℘46 + ℘17℘477. (21)

Although the genus is higher, the ρi,j are not nearly as complicated as the corresponding ones
in the (4,5)-case. Also, as in the (3,7)-case, we only have to use one round of substitution to
find polynomials of degree g−1. We can again use these equations to solve the Jacobi inversion
problem.
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Theorem 5. Suppose we are given {u1, . . . , u7} = u ∈ J . Then we could solve the Jacobi
inversion problem explicitly using the equations derived from the Kleinian formula.

Proof. The equation ρ1,2 = 0 given by equation (21) above has degree seven in z. We denote
by (z1, . . . , z7) the roots of this equation, which will be expressions in ℘-functions evaluated at
the given u. Next consider equation (20) which is degree one in w. Substitute each zi into
equation (20) in turn and solve to find the corresponding wi. We have then identified the set
of points {(z1, w1), . . . , (z7, w7)} on the curve C which are the Abel preimage of u. �

So the manipulation of the Kleinian formula and solution of the Jacobi inversion problem
seems to share a computational difficulty with the lower genus trigonal problems. In fact, it
is possible to easily solve the Jacobi inversion problem with this method for trigonal curves of
much higher genus as demonstrated in Appendix C.

7.3 The σ-function expansion

The σ-function expansion for the cyclic (3,8)-curve may be constructed as in the (3,7)-case.

Theorem 6. The function σ(u) associated with the cyclic (3, 8)-curve may be expanded about
the origin as

σ(u) = σ(u1, u2, u3, u4, u5, u6, u7) = SW3,8(u) + C24(u) + C27(u) + · · ·+ C21+3n(u) + · · ·,

where SW3,8 is the Schur–Weierstrass polynomial and each Ck is a finite, odd polynomial com-
posed of products of monomials in u = (u1, u2, . . . , u7) of weight +k multiplied by monomials in
λ = (λ7, λ6, . . . , λ0) of weight 21− k.

Proof. Identical to the proof of Theorem 2 except the σ-function is now odd with
weight +21. �

Following Appendix A, the Schur–Weierstrass polynomial generated by (3,8) is given by

SW3,8 = 1
45660160000u21

7 + u3
3 + u2

2u7 − u4
5u4 + 1

5u2
7u

5
6u5u4 − 1

10u5
7u6u5u

2
4 − 1

80u8
6u4

− 1
70u7

7u5u2 − 2
u5

u3u2 + 1
10u5

6u2u7 − 1
1120u9

7u2u6 + 1
20u3

6u
5
7u2 + u2

3u
2
7u4

+ 1
1120u8

7u
2
5u4 − 1

8u3u
4
7u

2
4 + 2

5u5
6u5u3 − 1

8u2
6u

4
7u1 − u3u7u1 + u3

6u4u2 + 1
4u2

6u
4
7u

2
5u4

+ 1
2u2

5u
2
4u

3
7+ u3u7u

2
5u4− 3

326144000u17
7 u2

6+ 1
1164800u13

7 u4
6+ 1

400u10
6 u7+ 1

280u8
7u6u5u3

+ 1
20u3u

6
7u

2
5 − 1

1600u8
6u

5
7 − u2

7u
2
6u

2
5u3 − 3

2240u9
7u4u3 + 2u7u6u5u

2
3 − 1

25088000u16
7 u4

− 3
2u3u

2
6u

2
4 + 3

11200u10
7 u2

6u3 − u3
7u6u5u4u3 − 1

22400u9
7u

6
6 − 1

4u7u
4
4 − 1

40u2
6u

5
7u4u3

− 1
20u3u

2
7u

6
6 − 1

4u3u7u
4
6u4 + 1

2u2
6u

3
7u

2
3 − u3u

2
7u2u6 − u2

7u5u4u2 + 1
80u6

7u
3
4

− 2u2
5u2u7u6 − 1

20u4
5u

5
7 − 1

291200u13
7 u2

5 + 1
4u4

7u6u4u2 + u2
7u6u5u1 + 1

4076800u14
7 u3

+ 1
2548000u15

7 u6u5 + 1
350u7

7u
5
6u5 − 1

40u4
6u

5
7u

2
5 − 1

10u2
5u7u

6
6 + u4

5u7u
2
6 − 1

1120u9
7u

2
6u

2
5

− 1
2u2

5u
4
6u4 + 1

4u2
7u

2
6u

3
4 + u3

4u6u5 − 1
80u4

6u
6
7u3 + 1

2800u10
7 u6u5u4 + 1

448u8
7u1 − 1

4u4
6u1

+ u2
5u1 − 1

8u4
6u

3
7u

2
4 − 1

280u7
7u

2
3 + 1

80u6
6u

4
7u4 − 1

4480u8
7u

4
6u4 − 1

44800u12
7 u2

6u4

+ 1
560u7

7u
2
6u

2
4 + 1

22400u11
7 u2

4.

The other Ck are constructed successively as in the (3,7) and (4,5)-cases. We have calculated the
expansion up to and including C42 with the polynomials available at [11]. The polynomials are
rising in size much quicker than in the (4,5) and (3,7)-cases. Derivation of further polynomials
would be computationally difficult.
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7.4 Relations between the Abelian functions

The basis for the fundamental Abelian functions has not been completed for the cyclic (3,8)-
curve yet as further σ-expansion is required. The dimension of the space is 2g = 27 = 128
which is considerably larger than in the previous cases. So far the 4-index Q-functions down to
weight −22 have been examined and 70 of the basis elements have been identified

C1 ⊕ C℘11 ⊕ C℘12 ⊕ C℘13 ⊕ C℘14 ⊕ C℘15

⊕ C℘16 ⊕ C℘17 ⊕ C℘22 ⊕ C℘23 ⊕ C℘24 ⊕ C℘25

⊕ C℘26 ⊕ C℘27 ⊕ C℘33 ⊕ C℘34 ⊕ C℘35 ⊕ C℘36

⊕ C℘37 ⊕ C℘44 ⊕ C℘45 ⊕ C℘46 ⊕ C℘47 ⊕ C℘55

⊕ C℘56 ⊕ C℘57 ⊕ C℘66 ⊕ C℘67 ⊕ C℘77 ⊕ CQ6667

⊕ CQ4777 ⊕ CQ4667 ⊕ CQ5577 ⊕ CQ5567 ⊕ CQ3667 ⊕ CQ4477

⊕ CQ4467 ⊕ CQ4566 ⊕ CQ5557 ⊕ CQ3477 ⊕ CQ3567 ⊕ CQ2667

⊕ CQ3467 ⊕ CQ3466 ⊕ CQ3557 ⊕ CQ4447 ⊕ CQ4456 ⊕ CQ5555

⊕ CQ2567 ⊕ CQ3367 ⊕ CQ4555 ⊕ CQ1667 ⊕ CQ2467 ⊕ CQ2566

⊕ CQ3366 ⊕ CQ2377 ⊕ CQ2466 ⊕ CQ2557 ⊕ CQ3555 ⊕ CQ4445

⊕ CQ1477 ⊕ CQ1567 ⊕ CQ2367 ⊕ CQ2457 ⊕ CQ1377 ⊕ CQ1466

⊕ CQ1557 ⊕ CQ2277 ⊕ CQ2357 ⊕ CQ2555

It is likely that 6-index or even higher index Q-functions will be required to complete the basis.
As before we obtain equations for those Q-functions not in the basis as a linear combination

of basis entries

(−4) Q7777 = −3℘66,

(−5) Q6777 = 3℘57,

(−6) Q6677 = 4℘47 − ℘56 + 2λ7℘67,

(−7) Q5777 = −Q6667,

(−8) Q6666 = 12℘37 − 3℘55 − 4Q4777,

(−8) Q5677 = 4℘37 − ℘55 + 2λ7℘57,

(−9) Q5667 = 2℘36 − 2℘45 + 3λ7℘47 + 3λ6℘67 + λ5,

(−9) Q4677 = −℘45 + 2℘47λ7,

...

The relations have been calculated down to weight −20 and can be found at [11]. We can apply
equation (15) to the first set of equations in order to derive a generalisation of equation (3)

(−4) ℘7777 = 6℘2
77 − 3℘66,

(−5) ℘6777 = 3℘57 + 6℘67℘77,

(−6) ℘6677 = 4℘47 − ℘56 + 2℘67λ7 + 2℘66℘77 + 4℘2
67,

...

Remark 2. As in Remark 1, the first equation in this set may be differentiated twice with
respect to u7 to give the Boussinesq equation for ℘77, with u7 playing the space variable and u6

the time variable.
In fact, this should be the case for all the trigonal (n, s) curves. We can see this by considering

the weight properties of these curves in more detail. The trigonal curves will all have variables
u = (u1, . . . , ug) for which ug has weight 1, ug−1 has weight 2 and the other uj have weight
greater than 3. (This is clear from the derivation of the weights discussed in detail in [12].)
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The function Qgggg will be an Abelian function associated to the curve with poles of order
two and weight −4. Since it is the only such Q-function it should be expressible as a linear
combination of the 2-index ℘-functions at this weight. Given the discussion of weights above we
see that the only such function is ℘g−1,g−1. Hence we should find an equation Qgggg = c℘g−1,g−1

for a suitable constant c. Upon substituting for the Q-function and differentiating twice we will
be left with a Boussinesq type equation.

An addition formula for the (3, 8)-curve has not been constructed as it requires the basis to
be completed and more of the σ-expansion to be derived. Further progress here is limited by the
computational time and memory required for calculations. However, it is clear that the higher
genus will mean the results are further removed from the lower genus cases.

8 Conclusions

The difficulty and complexity of calculating the σ-expansion and deriving the relations between
℘-functions is dictated by the genus of the curve considered. However, the expansion of the
Kleinian formula provides an exception to this rule, and we find that some results derived from
this such as the solution to the Jacobi inversion problem and the connection with the Boussinesq
equation are similar for trigonal curves of arbitrary genus.

A Constructing Schur–Weierstrass polynomials

In this Appendix we summarise the algorithmic procedure that can be used to calculate Schur–
Weierstrass polynomials. For more information on these polynomials and their role in the theory
see [7] and [14]. To construct the Schur–Weierstrass polynomial associated to (n, s):

1. Calculate the Weierstrass gap sequence generated by (n, s). These are the natural numbers
not representable in the form an + bs where a, b ∈ N. There will be g such numbers,
Wn,s = {w1, . . . , wg} where g corresponds with the genus of the associated (n, s)-curve.

2. Calculate the associated Weierstrass partition, πn,s as the partition in which each entry is
given by πk = wg−k+1 + k − g for k − 1, . . . , g.

3. Write the elementary symmetric polynomials using their representation in elementary New-
ton polynomials, given by

ek =
1
k!

∣∣∣∣∣∣∣∣∣∣∣

p1 1 0 . . . 0 0 0
p2 p1 2 . . . 0 0 0
...

...
...

. . .
...

...
...

pk−1 pk−2 pk−2 . . . p2 p1 k − 1
pk pk−1 pk−2 . . . p3 p2 p1

∣∣∣∣∣∣∣∣∣∣∣
.

4. Denote the Schur polynomial defined by the Weierstrass partition as Sn,s and calculate it
as Sn,s = det

(
(eπi−i−j)1≤i,j≤g

)
, where the ek are as given in the previous step.

5. Denote the corresponding Schur–Weierstrass polynomial by SWn,s and derive it by making
the change of variables pwi = wiug+1−i, i = 1, . . . , g into Sn,s.

B Addition formula associated to the cyclic (3,7)-curve

The polynomial f(u,v) in Theorem 4 is given by

f(u,v) =
[
P32 + P29 + P26 + P23 + P20 + P17 + P14 + P11 + P8 + P5 + P2

]
(u,v),
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where the polynomials Pk(u,v) are given as follows

P2(u,v) = − 4
63℘66(v)λ6λ5λ4λ3 − 3

2℘66(v)λ4λ0 − 1
3℘66(u)λ2

5λ1 − 9
4℘66(v)λ3

6λ0

+ 4
3℘66(u)λ3λ1 − 3℘66(v)λ5λ4λ2 + 3

4℘66(v)λ2
6λ4λ2 + 1

3℘66(u)λ2
2 + 9℘66(v)λ6λ5λ0

+ 1
12℘66(u)λ2

6λ5λ1 + 7
6℘66(v)λ6λ4λ1 − 41

21℘66(v)λ2
4λ3 − 25

42℘66(u)λ6λ
3
4

+ 5
21℘66(v)λ2

5λ
2
4 + 1

63℘66(u)λ6λ
3
5λ4 − 1

252℘66(u)λ3
6λ

2
5λ4 − 25

252℘66(u)λ2
6λ5λ

2
4,

P5(u,v) =
[

25
42℘56(u)℘66(v)− 3

2℘46(v)
]
λ6λ4λ2 +

[
20
21℘66(u)℘56(v)− ℘46(u)

]
λ3λ2

+ 5
84℘56(u)℘66(v)λ2

6λ5λ2 +
[

15
2 ℘56(u)℘66(v)− 3℘46(u)

]
λ5λ0 + 13

6 ℘46(v)λ6λ5λ1

+
[

5
3℘56(u)℘66(v) + 11

3 ℘46(v)
]
λ4λ1 +

[
9
2℘46(v)− 15

8 ℘66(u)℘56(v)
]
λ2

6λ0

− 2
63℘46(u)λ2

6λ
2
5λ4 − 11

42℘46(v)λ6λ5λ
2
4 −

[
1
2℘46(v) + 5

21℘56(u)℘66(v)
]
λ2

5λ2

− 25
14℘46(v)λ3

4 − 5
2℘46(v)λ5λ4λ3,

P8(u,v) = −
[

221
126℘45(v)℘66(u) + 8

63℘36(u)℘66(v)
]
λ6λ4λ3 + 5

7℘45(u)℘66(v)λ2
5λ3

+
[

1
4℘45(v)℘66(u) + 1

4Q5555(u) + 3
4℘44(u) + 103

42 ℘46(u)℘56(v)
]
λ4λ2 +

[
5
12℘44(u)

+ 3℘36(u)℘66(v) + 1
36Q5555(u)− 4℘45(u)℘66(v) + 7

3℘56(v)℘46(u)
]
λ5λ1

+
[
℘45(u)℘66(v)− 3

4℘36(u)℘66(v)
]
λ2

6λ1 +
[

2
63℘36(u)℘66(v)− 1

126℘45(u)℘66(v)

− 1
756Q5555(u)− 1

84℘44(v)
]
λ6λ

2
5λ4 −

[
5
28℘44(v) + 5

252Q5555(v)
]
λ5λ

2
4 +

[
− 3

4Q5555(v)

+ 15
4 ℘56(u)℘46(v)

]
λ6λ0 − 5

28℘66(u)℘45(v)λ2
6λ5λ3 −

[
5℘55(u)℘55(v) + 33

4 ℘44(u)
]
λ6λ0

+
[

5
252℘66(v)℘45(u)− 5

63℘66(u)℘36(v)
]
λ2

6λ
2
4 + 10

21℘46(u)℘56(v)λ6λ5λ2

+
[

1
504℘66(u)℘45(v)− 1

126℘36(u)℘66(v)
]
λ3

6λ5λ4 − 20
7 ℘45(u)℘66(v)λ2

3,

P11(u,v) = − 1
252

[
℘66(u)℘34(v) + ℘26(u)℘66(v)

]
λ2

5λ
3
6 +

([
1
63Q3466(u) + 1

63Q4456(u)
− 4

63℘36(u)℘46(v)− 41
504℘26(u)℘66(v) + 1

63℘46(u)℘45(v)− 37
252℘66(u)℘34(v)

]
λ4λ5

+
[

1
2℘34(u)℘66(v)− 1

8℘66(u)℘26(v)
]
λ2

)
λ2

6 +
([

5
21Q3466(v)− 5

12℘66(u)℘26(v)

− 3
28℘45(u)℘46(v) + 5

21Q4456(v)− 15
14℘66(u)℘34(v) + 3

7℘46(u)℘36(v)
]
λ2

4

+
[

1
63℘66(u)℘34(v) + 1

63℘26(u)℘66(v)
]
λ3

5 +
[

1
12℘26(u)℘66(v)− ℘45(u)℘46(v)

− 5
6Q3466(u) + 4℘36(u)℘46(v)− 4℘35(u)℘55(v)− 2

3℘34(u)℘66(v)− 5
6Q4456(u)

]
λ1

−
[

4
63℘26(u)℘66(v) + 4

63℘34(u)℘66(v) + 10
7 ℘45(u)℘46(v)

]
λ3λ5

)
λ6 +

[
3
2Q4456(u)

− 1
2℘34(u)℘66(v) + 5℘46(u)℘45(v)− 5

8Q5555(u)℘56(v)− 47
8 ℘44(u)℘56(v)

+ 5
3Q5556(u)℘55(v)− 4℘26(u)℘66(v)− 5

2℘35(u)℘55(v) + 17
2 ℘46(u)℘36(v)

+ 1
2Q3466(u)

]
λ0 +

[
1
6℘26(u)℘66(v) + 3

7℘34(u)℘66(v)
]
λ4λ

2
5 +

[
1
6℘36(u)℘46(v)

+ 5
252℘56(u)Q5555(v) + 7

12℘26(u)℘66(v)− 5
6℘45(u)℘46(v) + 5

28℘56(u)℘44(v)
− 5

3℘34(u)℘66(v) + 1
6Q4456(v) + 1

6Q3466(v)
]
λ2λ5 +

[
1
3℘66(u)℘26(v) + 1

2Q4456(v)
− ℘36(u)℘46(v)− 19

7 ℘34(u)℘66(v) + 1
2Q3466(u)− 199

28 ℘46(u)℘45(v)
]
λ3λ4,

P14(u,v) =
[

1
84℘24(u)℘66(v)− 1

84℘16(u)℘66(v)
]
λ5λ

4
6 +

[
5
42℘24(u)℘66(v)

− 5
42℘16(v)℘66(u)

]
λ4λ

3
6 +

([
95
168℘24(u)℘66(v) + 47

84℘16(u)℘66(v)
]
λ3

−
[

1
21℘16(v)℘66(u) + 2

63℘34(v)℘46(u) + 5
84℘24(v)℘66(u) + 2

63℘46(v)℘26(u)
]
λ2

5

)
λ2

6

+
([

9
4℘25(u)℘55(v)− 5

12Q4466(u)℘55(v)− 5
21℘56(u)Q4456(v)− 5

21℘56(u)Q3466(v)
− 1

2℘24(v)℘66(u) + 3
2℘16(u)℘66(v)− 1

2℘46(u)℘26(v)− ℘55(u)℘33(v)
− ℘34(v)℘46(u)

]
λ2 +

[
1

1512℘45(u)Q5555(v)− 5
42℘46(v)℘26(u)− 9

14℘34(v)℘46(u)
− 1

21Q3446(v)− 1
42℘36(u)℘44(v) + 1

27Q4445(u)− 1
378℘36(u)Q5555(v) + 1

126Q3355(v)
− 5

42℘24(v)℘66(u)− 20
21℘16(v)℘66(u) + 1

168℘45(u)℘44(v)
]
λ4λ5

)
λ6
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+
[

8
21℘16(u)℘66(v) + 1

21℘24(u)℘66(v)
]
λ3

5 +
[

2
3℘16(v)℘66(u)− 4

9Q4445(u)
+ 2

7Q3446(u)− 107
42 ℘34(v)℘46(u)− 4

3℘24(v)℘66(u)− 25
4 ℘46(v)℘26(u)

+ 5
42Q3355(v)

]
λ2

4 +
[

1
4℘46(v)℘26(u)− 95

21℘16(u)℘66(v)− 71
42℘24(u)℘66(v)

− 5
2℘46(v)℘34(u)− 5

84Q5555(u)℘45(v)− 15
28℘45(u)℘44(v)

]
λ3λ5 +

[
5
9Q4445(v)

− 1
6Q3355(u) + 5

4℘25(v)℘55(u)− 1
4Q4466(u)℘55(v)− 3℘35(u)℘35(v)− 2

3Q3446(u)
− 1

3℘16(u)℘66(v)− 8
3℘46(v)℘34(u)− 11

12℘36(v)℘44(u)− 1
4℘36(u)Q5555(v)

− 5
6Q3466(u)℘56(v) + 1

12Q4455(u)℘66(v)− 2
3Q4456(u)℘56(v)− ℘46(v)℘26(u)

+ 4
3Q5556(u)℘35(v) + 11

3 ℘44(u)℘45(v) + 11
4 ℘24(u)℘66(v) + 1

3Q5555(u)℘45(v)
]
λ1,

P17(u,v) =
[

1
504Q3346(u)℘66(v)− 2

21℘16(u)℘46(v)− 19
252℘66(v)℘14(u)

+ 2
21℘24(v)℘46(u)

]
λ5λ

3
6 +

[
5

252℘66(u)Q3346(v)− 1
126Q3466(u)℘45(v) + ℘15(u)℘55(v)

+ 47
63℘66(v)℘14(u)− 9

14℘24(u)℘46(v) + 9
14℘16(u)℘46(v) + 2

63Q4456(u)℘36(v)

− 1
126Q4456(u)℘45(v) + 2

63Q3466(u)℘36(v)
]
λ4λ

2
6 +

([
19
63℘66(v)℘14(u)

− 1
126Q3346(u)℘66(v)− 1

756℘34(v)Q5555(u)− 16
21℘16(u)℘46(v)− 1

84℘34(u)℘44(v)

− 2
21℘24(u)℘46(v)− 1

84℘44(u)℘26(v)− 1
756℘26(u)Q5555(v)

]
λ2

5 +
[

1
3Q4446(u)℘55(v)

+ 2
63Q3346(u)℘66(v)− 6℘16(u)℘46(v)− 76

63℘66(v)℘14(u) + 5
7℘45(u)Q3466(v)

+ 3
2℘23(u)℘55(v) + 5

7Q4456(u)℘45(v) + 3
4℘24(v)℘46(u) + 2℘15(u)℘55(v)

]
λ3

)
λ6

+
[

1
3Q2446(u)− 1

8℘44(u)℘26(v)− 1
28℘34(v)Q5555(u)− 1

72℘26(u)Q5555(v)
− 28

3 ℘66(u)℘14(v)− 9
28℘34(u)℘44(v)− 55

7 ℘16(u)℘46(v)− 11
21℘24(u)℘46(v)

− 1
9Q1555(v)

]
λ4λ5 +

[
1
6Q3466(u)℘36(v) + 1

3℘33(u)Q5556(v) + 1
6Q3466(u)℘45(v)

− 2℘15(u)℘55(v) + 1
6℘34(u)Q5555(v) + 9

4℘25(u)℘35(v)− 5
12Q4455(u)℘46(v)

− 3
4Q4466(v)℘35(u)− ℘33(u)℘35(v)− 5

2℘66(v)℘14(u)− 1
24℘26(u)Q5555(v)

+ 1
3Q4446(u)℘55(v)− 1

8℘44(v)℘26(u) + 7
2℘16(u)℘46(v) + 5

18Q4445(u)℘56(v)
+ 1

4℘24(u)℘46(v)− 1
6Q4456(u)℘36(v)− 2

7Q3446(u)℘56(v) + 1
2℘34(u)℘44(v)

+ 5
36Q4466(v)Q5556(u)− 1

6Q3445(u)℘66(v)− 5
42Q3355(u)℘56(v) + 1

3Q2446(u)
− 1

12Q3346(u)℘66(v) + 2
3Q4456(u)℘45(v)− 3

4℘25(u)Q5556(v)
]
λ2,

P20(u,v) =
[

1
84℘66(u)Q3344(v) + 1

28℘66(u)Q2445(v) + 1
63Q4456(u)℘34(v)

− 38
63℘46(u)℘14(v) + 1

63℘46(u)Q3346(v) + 1
63Q3466(u)℘34(v) + 1

252℘24(u)Q5555(v)
+ 1

28℘24(u)℘44(v) + 1
63Q3466(u)℘26(v) + 1

84℘66(u)Q2346(v)− 1
252℘16(v)Q5555(u)

− 1
28℘16(u)℘44(v) + 1

63Q4456(u)℘26(v)
]
λ5λ

2
6 +

[
1
6Q4456(u)℘26(v)− 1

3Q1446(v)
+ 3

7Q3466(u)℘34(v) + 5
14℘66(u)Q2445(v) + 1

42Q3446(v)℘45(u) + ℘15(v)℘35(u)
+ 2

27Q4445(u)℘36(v)− 2
21Q3446(u)℘36(v)− 3

28Q3346(u)℘46(v)− 139
14 ℘14(u)℘46(v)

− 1
3℘15(u)Q5556(v) + 5

42Q2346(u)℘66(v) + 1
6℘26(u)Q3466(v)− 1

3Q1556(v)℘55(u)
− 1

252Q3355(u)℘45(v) + 1
63Q3355(u)℘36(v) + 4

3℘13(u)℘55(v) + 3
7Q4456(v)℘34(u)

+ ℘22(u)℘55(v)− 1
54Q4445(u)℘45(v) + 5

42℘66(u)Q3344(v)
]
λ4λ6 −

[
11
3 ℘14(u)℘46(v)

+ 1
21℘66(v)Q3344(u) + 1

252℘24(v)Q5555(u) + 2
63℘16(u)Q5555(v) + 1

21Q2346(u)℘66(v)

+ 1
28℘24(u)℘44(v) + 1

7Q2445(u)℘66(v) + 2
7℘16(u)℘44(v)

]
λ2

5

+
[

4
21℘66(u)Q2346(v)− 3

4℘25(u)℘25(v) + 3
2℘23(u)℘35(v) + 3

8℘24(u)℘44(v)
+ 5

4℘16(u)℘44(v) + 1
8℘24(u)Q5555(v) + 1

2Q3466(v)℘34(u)− 1
2Q3466(u)℘26(v)

− 1
2Q5556(u)℘23(v) + 6

7Q3446(u)℘45(v) + Q4466(u)℘25(v) + 5
14℘45(u)Q3355(v)

+ 4
21℘66(v)Q3344(u)− 1

6℘35(v)Q4446(u) + 3℘15(u)℘35(v)− 1
9Q5556(u)Q4446(v)
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+ 1
2Q4456(u)℘34(v)− 1

12Q4466(u)Q4466(v)− 13
2 ℘46(u)℘14(v)− 2

3℘15(u)Q5556(v)
− 5

6℘45(u)Q4445(v) + 1
4℘16(u)Q5555(v) + 1

4℘46(u)Q3346(v) + 4
7℘66(u)Q2445(v)

]
λ3,

P23(u,v) =
[

1
21℘16(u)Q4456(v)− 1

21Q3466(u)℘24(v)− 1
21Q4456(u)℘24(v)

+ 1
21Q3466(u)℘16(v)

]
λ3

6 +
[

1
3Q4466(u)℘15(v) + 2

21℘46(u)Q3344(v)− ℘12(u)℘55(v)
+ 8

21℘16(u)Q3466(v) + 1
1512Q3346(u)Q5555(v) + 1

27Q4445(u)℘26(v) + ℘25(v)℘15(u)
− 19

84℘14(u)℘44(v) + 1
126Q3355(u)℘26(v) + 2

21℘46(v)Q2346(u) + 1
126Q3355(u)℘34(v)

− 1
21Q3446(u)℘26(v)− 1

21℘34(u)Q3446(v) + 1
27℘34(v)Q4445(u) + 2

7℘46(u)Q2445(v)
+ 8

21℘16(u)Q4456(v)− 19
756℘14(u)Q5555(v) + 1

21℘24(u)Q4456(v)
+ 1

21℘24(u)Q3466(v) + 1
168Q3346(u)℘44(v)

]
λ5λ6 +

[
8
21Q3446(u)℘34(v) + 1

3Q1255(v)
− 2

9Q1555(u)℘36(v) + ℘35(u)℘22(v)− 1
3Q4446(v)℘33(u)− 1

3℘66(u)Q2246(v)
+ 1

6Q4466(u)℘15(v) + 1
12Q3355(u)℘26(v) + 2

3Q3446(u)℘26(v) + 4
3℘35(u)℘13(v)

− 1
3℘35(u)Q1556(v)− 7

9℘26(u)Q4445(v) + 1
2Q5555(u)℘14(v) + 17

6 ℘44(u)℘14(v)
+ 1

18Q1555(u)℘45(v) + 1
3℘66(u)Q2344(v)− 3

2Q4446(v)℘25(u)− 3
2℘23(u)℘25(v)

+ 3
14Q3355(u)℘34(v) + 29

14℘46(v)Q2445(u) + 2
3Q3466(u)℘24(v) + 9

2℘25(v)℘15(u)
+ 1

3Q4456(u)℘16(v)− 2
3℘34(v)Q4445(u) + 1

2Q4466(u)℘23(v) + 2℘15(u)℘33(v)
+ 1

9Q4446(v)Q4466(u) + 71
42℘46(v)Q2346(u)− 1

3℘22(u)Q5556(v)
+ 2

3Q4456(u)℘24(v)− 1
3℘16(u)Q3466(v) + 7

12℘45(u)Q2446(v) + 4
21℘46(u)Q3344(v)

+ 1
3℘36(v)Q2446(u)− 4

9Q5556(u)℘13(v) + 1
9Q1556(u)Q5556(v) + 1

3Q1335(u)
]
λ4,

P26(u,v) =
[

1
2℘46(u)Q2344(v) + 1

252Q5555(u)Q3344(v) + 6
7℘16(u)Q3446(v)

+ 1
3Q5556(u)℘12(v)− 1

9Q4466(u)Q1556(v) + 1
42℘24(u)Q3355(v) + ℘15(u)℘15(v)

+ 1
9℘13(u)Q4466(v)− 1

2℘46(u)Q2246(v)− 13
42℘24(u)Q3446(v) + 1

4℘22(u)℘25(v)
− 1

9℘34(u)Q1555(v) + 1
28℘44(u)Q2346(v) + 3

28℘44(u)Q2445(v)− 5
3℘25(u)℘13(v)

+ 5
18℘24(u)Q4445(v)− 1

9Q4446(u)Q4446(v)− 1
12℘22(v)Q4466(u)− ℘35(u)℘12(v)

− 1
9℘26(u)Q1555(v) + 1

12Q2446(u)℘26(v) + 1
3℘34(u)Q2446(v) + 1

2℘66(u)Q2244(v)
+ 1

252Q5555(u)Q2346(v) + ℘66(u)Q1344(v) + 1
28℘44(u)Q3344(v) + ℘15(u)℘23(v)

+ 1
84Q5555(u)Q2445(v) + ℘14(u)Q4456(v)− 1

6Q4446(u)℘23(v)− 1
3Q1556(v)℘25(u)

+ 5
3℘14(v)Q3466(u)− 10

9 ℘16(u)Q4445(v) + 4
21℘16(u)Q3355(v)

]
λ5 +

[
6℘15(u)℘15(v)

+ 1
7Q3446(u)℘24(v)− 1

42℘24(v)Q3355(u)− 1
126Q3466(u)Q3346(v)− 4

3Q4446(u)℘15(v)
− 1

7Q3446(u)℘16(v)− 1
8℘66(u)Q2244(v) + 1

9℘16(u)Q4445(v)− 1
4℘66(u)Q1344(v)

+ 19
63℘14(v)Q3466(u)− 3℘55(u)℘11(v) + 19

63Q4456(u)℘14(v)

− 1
126Q4456(u)Q3346(v)− 1

9℘24(u)Q4445(v) + 1
42Q3355(u)℘16(v)

]
λ2

6,

P29(u,v) =
[

1
4Q2244(u)℘46(v)− 1

54Q3346(v)Q4445(u) + 1
42Q3446(v)Q3346(u)

+ 19
126℘14(v)Q3355(u) + 1

3℘22(v)Q4446(u) + 5
9℘13(v)Q4446(u)− 1

2℘55(v)Q2234(u)
− 1

21Q4456(u)Q2346(v)− 1
21Q3344(v)Q4456(u)− 1

7Q2445(v)Q3466(u)
− 1

252Q3346(v)Q3355(u)− 1
7Q4456(v)Q2445(u)− 1

21Q2346(v)Q3466(u)
+ 1

3℘24(v)Q1555(u)− 8
27℘14(v)Q4445(u)− 1

2Q2446(v)℘24(u)− 1
3℘34(u)Q1446(v)

− 1
3Q1555(v)℘16(u)− 1

2℘12(v)Q4466(u)− ℘15(v)Q2356(u) + 1
6℘26(v)Q1446(u)

+ 23
21Q3446(v)℘14(u)− 4

3℘15(v)Q1556(u) + 1
2Q1344(u)℘46(v)− 2℘22(u)℘15(v)

+ 4
9Q4446(u)Q1556(v)− 1

3℘55(v)Q2226(u) + Q5556(v)℘11(u) + Q2446(v)℘16(u)
+ 3

2℘12(v)℘25(u)− 3℘35(v)℘11(u)− 1
21Q3344(v)Q3466(u)− 8

3℘15(v)℘13(u)
]
λ6,
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P32(u,v) = −1
6Q113666(u)℘66(v) + 1

6Q223466(v)℘46(u)− 5
21Q2445(u)Q3446(v)

+ 4
3℘12(v)Q4446(u)− 1

9Q1555(v)℘14(u)− 1
3Q3334(v)℘15(u) + 1

3Q1335(u)℘34(v)
− 1

6Q2446(u)Q3445(v) + 1
18Q3334(u)Q4446(v)− 1

42Q2346(u)Q3355(v)
− 1

2℘16(u)Q2255(v) + 1
2Q1135(u)℘56(v)− 11

3 ℘16(u)Q1446(v) + 3
2Q2446(v)℘14(u)

+ 1
18Q3344(u)Q4445(v) + 1

18Q1555(u)Q3346(v)− 1
6Q3466(u)Q2344(v)

− 1
6Q2226(u)℘35(v) + 1

2Q1136(u)℘55(v) + 1
4℘25(u)Q2334(v) + 2

9Q2346(u)Q4445(v)
− 2

9℘13(u)Q1556(v)− 1
12Q2446(u)Q3346(v)− 1

6Q4456(u)Q2344(v) + ℘13(v)℘22(u)
− 2

9Q1556(u)Q1556(v) + 3
2Q1446(u)℘24(v)− 1

2Q2234(v)℘35(u) + 2
3Q2356(v)℘13(u)

− 1
42Q3344(u)Q3446(v)− 4

21Q2346(u)Q3446(v)− 1
12Q4466(u)Q2334(v) + 1

2Q1133(v)
− 1

2Q1155(u)℘36(v)− 1
24Q2244(u)Q5555(v)− 1

12Q1344(u)Q5555(v) + ℘33(v)℘11(u)
+ 1

6Q2445(u)Q4445(v)− 2
3Q4466(u)℘11(v) + 1

3℘26(u)Q1255(v) + 1
3Q1255(u)℘34(v)

− 7
12Q1344(u)℘44(v) + 1

6Q1446(u)Q4455(v) + 1
9Q2226(v)Q5556(u)− 5

9℘13(u)℘13(v)
− 1

14Q2445(u)Q3355(v)− 1
6Q1335(u)℘26(v)−Q2345(u)℘15(v)−Q1235(u)℘45(v)

+ 1
6Q2234(u)Q5556(v) + 1

6Q3466(u)Q2246(v)− 1
6Q4466(u)Q2245(v)− ℘12(v)℘23(u)

− 1
8Q2244(u)℘44(v) + 1

3Q2345(u)Q4446(v)− 1
42Q3344(u)Q3355(v)− 4℘12(v)℘15(u)

+ 1
3Q1556(u)Q2356(v)−Q1355(u)℘24(v) + Q2355(v)℘14(u) + ℘16(u)Q1355(v).

C Solving the Jacobi inversion problem

In Section 3 we explicitly solved the Jacobi inversion problem for the (3,7)-curve using equations
derived from the Kleinian formula, equation (12). We repeated this method of solution in
Section 7.2 for the (3,8)-curve and commented that this method can be easily repeated for
trigonal curves of even higher genus. We demonstrate this here.

Let {(x1, y1), . . . , (xg, yg)} ∈ Cg be an arbitrary set of distinct points on a trigonal curve of
genus g and let (z, w) be any point of this set. Then for an arbitrary point (x, y) and base
point ∞ on C we have (see [10]) the Kleinian formula

g∑
i,j=1

℘ij

(∫ t

∞
du−

g∑
k=1

∫ xk

∞
du

)
gi(x, y)gj(z, w) =

F
(
(x, y), (z, w)

)
(x− z)2

.

Here the gi are the numerators of in the basis of holomorphic differentials and F is a symmetric
function calculated as the numerator of the fundamental differential of the second kind.

For a specific curve we can use expansions of the variables in the local parameter at ∞ to
express the formula as a series in the parameter. Each coefficient is a polynomial in z, w and
the ℘-functions that must be zero. We label these polynomials in ascending order as ρi. In each
case, only the first two are required to solve the inversion problem. We take the resultant of ρ1

and ρ2, eliminating the variable w, to give a new polynomial ρ1,2 which must also equal zero.
The polynomial ρ1 always has degree one in w, while ρ1,2 always has degree g in z. We can
hence solve the Jacobi inversion problem using the method of Theorems 1 and 5.

We have performed these calculations for the next eight trigonal (n, s)-curves. In each case
the computational difficulty got only marginally higher and was trivial when compared to say
the (4,5)-curve. This has genus six but the corresponding calculations, detailed in [12], required
a much more involved method. So it is the trigonal nature of the curves which controls the
computational difficulty of this problem. We present the details for the (3,10) and (3,11) curves
below, and give the details for the next six online at [11].
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C.1 The (3,10)-curve

This curve has genus 9 and the first two polynomials derived from the Kleinian formula are,

ρ1 = −z6 + ℘89z
5 + ℘69z

4 + ℘49z
3 + (℘99w + ℘39)z2 + (℘29 + ℘79w)z + ℘59w + ℘19 = 0,

ρ2 = (℘88 − ℘899)z5 + (℘68 − ℘699)z4 + (℘48 − 2w − ℘499)z3 + (℘38 + ℘89w − ℘999w

− ℘399)z2 + (℘28 + ℘78w − ℘799w − ℘299)z + ℘58w − ℘599w + ℘18 − ℘199 = 0.

Taking the resultant we have

ρ12 = −2z9 + (3℘89 − ℘999)z8 + (℘78 − ℘799 + ℘89℘999 + ℘88℘99 − ℘899℘99 + 2℘69

− ℘2
89)z

7 + (2℘49 − ℘899℘79 − ℘89℘78 + ℘89℘799 − ℘69℘89 − ℘599 − ℘699℘99

+ ℘69℘999 + ℘58 + ℘68℘99 + ℘88℘79)z6 + (2℘39 − ℘499℘99 − ℘699℘79 − ℘899℘59

+ ℘89℘599 − ℘89℘58 − ℘49℘89 − ℘69℘78 + ℘88℘59 + ℘69℘799 + ℘68℘79 + ℘48℘99

+ ℘49℘999)z5 + (℘68℘59 − ℘69℘58 + ℘69℘599 − ℘699℘59 − ℘499℘79 + ℘38℘99 + ℘39℘999

+ 2℘29 − ℘39℘89 − ℘399℘99 + ℘49℘799 + ℘48℘79 − ℘49℘78)z4 + (2℘19 − ℘29℘89

+ ℘49℘599 − ℘499℘59 − ℘399℘79 − ℘49℘58 + ℘38℘79 − ℘39℘78 + ℘48℘59 − ℘299℘99

+ ℘28℘99 + ℘29℘999 + ℘39℘799)z3 + (℘18℘99 − ℘299℘79 + ℘38℘59 − ℘39℘58 − ℘19℘89

− ℘199℘99 + ℘29℘799 − ℘29℘78 + ℘39℘599 + ℘28℘79 − ℘399℘59 + ℘19℘999)z2

+ (℘29℘599 − ℘299℘59 − ℘29℘58 − ℘199℘79 + ℘28℘59 + ℘19℘799 − ℘19℘78 + ℘18℘79)z
+ ℘19℘599 − ℘199℘59 + ℘18℘59 − ℘19℘58 = 0.

Hence, to solve the Jacobi inversion problem we could find the nine points (zi, wi) by calculating
the nine zeros, zi of ρ1,2 and then the corresponding points wi from the equation ρ1 = 0.

C.2 The (3,11)-curve

This curve has genus 10 and the first two polynomials derived from the Kleinian formula are,

ρ1 = ℘10,10z
6 + ℘8,10z

5 + ℘6,10z
4 + (℘4,10 − w)z3 + (℘9,10w + ℘3,10)z2 + (℘7,10w + ℘2,10)z

+ ℘5,10w + ℘1,10 = 0,

ρ2 = −2z7 + (℘9,10 − ℘10,10,10 − λ10)z6 + (℘8,9 − ℘8,10,10)z5 + (℘6,9 − ℘6,10,10)z4 + (℘4,9

− ℘4,10,10)z3 + (℘9,9w + ℘3,9 − ℘9,10,10w − ℘3,10,10)z2 + (℘7,9w + ℘2,9 − ℘7,10,10w

− ℘2,10,10)z + ℘1,9 − ℘1,10,10 − ℘5,10,10w + ℘5,9w = 0.

Taking the resultant we have

ρ12 = 2z10 + (λ10 − 3℘9,10 + ℘10,10,10)z9 + (℘10,10℘9,10,10 − ℘8,9 − ℘9,10λ10 − ℘10,10,10℘9,10

− 2℘7,10 + ℘8,10,10 + ℘2
9,10 − ℘10,10℘9,9)z8 + (℘8,10℘9,10,10 − λ10℘7,10 − ℘10,10℘7,9

+ ℘9,10℘7,10 − 2℘5,10 + ℘8,9℘9,10 − ℘8,10℘9,9 − ℘10,10,10℘7,10 − ℘8,10,10℘9,10 + ℘6,10,10

+ ℘10,10℘7,10,10 − ℘6,9)z7 + (℘6,9℘9,10 − ℘8,10℘7,9 − ℘10,10℘5,9 − λ10℘5,10

+ ℘10,10℘5,10,10 − ℘6,10℘9,9 − ℘8,10,10℘7,10 + ℘9,10℘5,10 + ℘6,10℘9,10,10 + ℘8,9℘7,10

+ ℘8,10℘7,10,10 − ℘6,10,10℘9,10 − ℘4,9 − ℘10,10,10℘5,10 + ℘4,10,10)z6 + (℘4,10℘9,10,10

− ℘4,10℘9,9 + ℘8,9℘5,10 − ℘4,10,10℘9,10 + ℘8,10℘5,10,10 + ℘3,10,10 − ℘8,10℘5,9

− ℘8,10,10℘5,10 + ℘4,9℘9,10 + ℘6,9℘7,10 + ℘6,10℘7,10,10 − ℘6,10℘7,9 − ℘6,10,10℘7,10

− ℘3,9)z5 + (℘6,9℘5,10 − ℘2,9 + ℘2,10,10 − ℘6,10,10℘5,10 − ℘3,10,10℘9,10 − ℘4,10,10℘7,10
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+ ℘6,10℘5,10,10 + ℘3,9℘9,10 + ℘4,9℘7,10 − ℘4,10℘7,9 + ℘3,10℘9,10,10 − ℘6,10℘5,9

+ ℘4,10℘7,10,10 − ℘3,10℘9,9)z4 + (℘1,10,10 − ℘4,10,10℘5,10 + ℘3,9℘7,10 − ℘2,10,10℘9,10

+ ℘2,9℘9,10 + ℘4,9℘5,10 + ℘4,10℘5,10,10 − ℘3,10,10℘7,10 − ℘2,10℘9,9 + ℘2,10℘9,10,10

+ ℘3,10℘7,10,10 − ℘4,10℘5,9 − ℘3,10℘7,9 − ℘1,9)z3 + (℘1,10℘9,10,10 − ℘2,10,10℘7,10

− ℘1,10℘9,9 − ℘2,10℘7,9 + ℘2,10℘7,10,10 + ℘3,9℘5,10 + ℘1,9℘9,10 − ℘3,10,10℘5,10

− ℘1,10,10℘9,10 + ℘3,10℘5,10,10 + ℘2,9℘7,10 − ℘3,10℘5,9)z2 + (℘1,10℘7,10,10 − ℘2,10℘5,9

− ℘1,10,10℘7,10 + ℘1,9℘7,10 + ℘2,10℘5,10,10 − ℘1,10℘7,9 − ℘2,10,10℘5,10 + ℘2,9℘5,10)z
+ ℘1,9℘5,10 + ℘1,10℘5,10,10 − ℘1,10℘5,9 − ℘1,10,10℘5,10 = 0.

Hence, to solve the Jacobi inversion problem we could find the ten points (zi, wi) by calculating
the ten zeros, zi of ρ1,2 and then the corresponding points wi from the equation ρ1 = 0.
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