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Abstract. Experimental evidences and theoretical motivations lead to consider the curved
space-time relativity based on the de Sitter group SO0(1, 4) or Sp(2, 2) as an appealing
substitute to the flat space-time Poincaré relativity. Quantum elementary systems are then
associated to unitary irreducible representations of that simple Lie group. At the lowest
limit of the discrete series lies a remarkable family of scalar representations involving Krein
structures and related undecomposable representation cohomology which deserves to be
thoroughly studied in view of quantization of the corresponding carrier fields. The purpose
of this note is to present the mathematical material needed to examine the problem and to
indicate possible extensions of an exemplary case, namely the so-called de Sitterian massless
minimally coupled field, i.e. a scalar field in de Sitter space-time which does not couple to
the Ricci curvature.
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1 Introduction

De Sitter and anti de Sitter space-times are, with Minkowski space-time, the only maximally
symmetric space-time solutions in general relativity. Their respective invariance (in the rela-
tivity or kinematical sense) groups are the ten-parameter de Sitter SO0(1, 4) and anti de Sitter
SO0(2, 3) groups. Both may be viewed as deformations of the proper orthochronous Poincaré
group P1,3 o SO0(1, 3), the kinematical group of Minkowski space-time.

The de Sitter (resp. anti de Sitter) space-times are solutions to the vacuum Einstein’s equa-
tions with positive (resp. negative) cosmological constant Λ. This constant is linked to the
(constant) Ricci curvature 4Λ of these space-times. The corresponding fundamental length is
given by

R =

√
3
|Λ|

= cH−1, (1.1)

where H is the Hubble constant1.
Serious reasons back up any interest in studying Physics in such constant curvature space-

times with maximal symmetry. The first one is the simplicity of their geometry, which makes us

?This paper is a contribution to the Proceedings of the 5-th Microconference “Analytic and Algebraic Me-
thods V”. The full collection is available at http://www.emis.de/journals/SIGMA/Prague2009.html

1Throughout this text, for convenience, we will mostly work in units c = 1 = ~, for which R = H−1, while
restoring physical units when is necessary.
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consider them as an excellent laboratory model in view of studying Physics in more elaborate
universes, more precisely with the purpose to set up a quantum field theory as much rigorous
as possible [18, 11, 31]. In this paper we are only interested in the de Sitter space-time. Indeed,
since the beginning of the eighties, the de Sitter space, specially the spatially flat version of it,
has been playing a much popular role in inflationary cosmological scenarii where it is assumed
that the cosmic dynamics was dominated by a term acting like a cosmological constant. More
recently, observations on far high redshift supernovae, on galaxy clusters, and on cosmic mic-
rowave background radiation suggested an accelerating universe. Again, this can be explained
with such a term. For updated reviews and references on the subject, we recommend [21, 7]
and [28]. On a fundamental level, matter and energy are of quantum nature. But the usual
quantum field theory is designed in Minkowski spacetime. Many theoretical and observational
arguments plead in favour of setting up a rigorous quantum field theory in de Sitter, and of com-
paring with our familiar minkowskian quantum field theory. As a matter of fact, the symmetry
properties of the de Sitter solutions may allow the construction of such a theory (see [13, 5] for
a review on the subject). Furthermore, the study of de Sitter space-time offers a specific interest
because of the regularization opportunity afforded by the curvature parameter as a “natural”
cutoff for infrared or other divergences.

On the other hand, some of our most familiar concepts like time, energy, momentum, etc,
disappear. They really require a new conceptual approach in de Sitterian relativity. However,
it should be stressed that the current estimate on the cosmological constant does not allow any
palpable experimental effect on the level of high energy physics experiments, unless (see [14]) we
deal with theories involving assumptions of infinitesimal masses like photon or graviton masses.

As was stressed by Newton and Wigner [26], the concept of an elementary system (. . . ) is
a description of a set of states which forms, in mathematical language, an irreducible repre-
sentation space for the inhomogeneous Lorentz (' Poincaré) group. We naturally extend this
point of view by considering elementary systems in the de Sitter arena as associated to ele-
ments of the unitary dual of SO0(1, 4) or Sp(2, 2). The latter was determined a long time ago
[30, 25, 10, 29] and is compounded of principal, complementary, and discrete series. Note that
the de Sitter group has no unitary irreducible representation (UIR) analogous to the so-called
“massless infinite spin” UIR of the Poincaré group. As the curvature parameter (or cosmological
constant) goes to zero, some of the de Sitter UIR’s have a minskowskian limit that is physi-
cally meaningful, whereas the others have not. However, it is perfectly legitimate to study all
of them within a consistent de Sitter framework, on both mathematical (group representation)
and physical (field quantization) sides. It should be noticed that some mathematical questions
on this unitary dual remain open, like the decomposition of the tensor product of two elements
of the discrete series, or should at least be more clarified, like the explicit realization of repre-
sentations lying at the lowest limit of the discrete series. Also, the quantization of fields for the
latter representations is not known, at the exception of one of them, which is associated with the
so-called “massless minimally coupled field” (mmc) in de Sitter2 [15, 16] and references therein.

The present paper is mainly concerned with this particular family of discrete series of repre-
sentations. Their carrier spaces present or may display remarkable features: invariant subspace
of null-norm states, undecomposable representation features, Gupta–Bleuler triplet, Krein space
structure, and underlying cohomology [27]. In Section 2 is given the minimal background to

2Note that this current terminology about a certain field in de Sitter space-time might appear as confusing.
In fact the most general action on a fixed, i.e. non dynamical, curved space-time that will yield a linear equation
of motion for the field φ is given by S =

∫
d4x
√
−g

[
1
2
gµν∂µφ∂νφ−m2φ− ξR(x)φ2

]
, where gµν is the space-time

metric, g = det gµν , and R(x) is the scalar curvature. On an arbitrary curved background, m and ξ are just two
real parameters in the theory. In particular the symbol m does not stand for a physical mass in the minkowskian
sense. The equation of motion of this theory is 2gφ+(m2 + ξR)φ = 0. What is called a minimally coupled theory
is a theory where ξ = 0. It is however clear that on a maximally symmetric space-time for which R(x) = R is
just a constant the quantity m2 + ξR alone really matters.
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make the reader familiar with de Sitter symmetries and the unitary dual of Sp(2, 2). In Sec-
tion 3 we give a short account of the minkowskian content of elements of the unitary dual through
group representation contraction procedures. Section 4 is devoted to the scalar representations
of the de Sitter group and the associated wave equation. Then, in Section 5 we construct and
control the normalizability of a class of scalar solutions or “hyperspherical modes” through de
Sitter wave plane solutions [3, 5, 4] viewed as generating functions. The infinitesimal and global
actions of the de Sitter group in its scalar unitary representations is described in Section 7. We
then give a detailed account of the mmc case in Section 8. Finally a list of directions are given
in Section 9 in view of future work(s). An appendix is devoted to the root system B2 which
corresponds to the de Sitter Lie algebra so(1, 4).

2 de Sitter space-time: geometric and quantum symmetries

We first recall that the de Sitter space-time is conveniently described as the one-sheeted hyper-
boloid embedded in a 4+1-dimensional Minkowski space, here denoted M5:

MH ≡
{
x ∈M5; x2 := x · x = ηαβx

αxβ = −H2
}
,

α, β = 0, 1, 2, 3, 4, (ηαβ) = diag(1,−1,−1,−1,−1),

with the so-called ambient coordinates notations

x :=
(
x0, ~x, x4

)
.

The following intrinsic coordinates

x =
(
x0 = H−1 tan ρ, (H cos ρ)−1u

)
, ρ ∈

]
−π

2 ,
π
2

[
, u ∈ S3 (2.1)

are global. They are usually called “conformal”.
There exist ten Killing vectors in de Sitterian kinematics. They generate the Lie algebra

so(1, 4), which gives by exponentiation the de Sitter group SO0(1, 4) or its universal covering
Sp(2, 2). In unitary irreducible representations of the latter, they are represented as (essen-
tially) self-adjoint operators in Hilbert space of (spinor-) tensor valued functions on MH , square
integrable with respect to some invariant inner (Klein–Gordon type) product:

Kαβ → Lαβ = Mαβ + Sαβ , (2.2)

where

Mαβ = −i(xα∂β − xβ∂α)

is the “orbital part”, and Sαβ (spinorial part) acts on indices of functions in a certain permuta-
tional way.

There are two Casimir operators, the eigenvalues of which determine the UIR’s:

C2 = −1
2LαβL

αβ (quadratic),

C4 = −WαW
α, Wα = −1

8εαβγδηL
βγLδη (quartic).

In a given UIR, and with the Dixmier notations [10], these two Casimir operators are fixed
as

C2 = (−p(p+ 1)− (q + 1)(q − 2))I, (2.3)
C4 = (−p(p+ 1)q(q − 1))I (2.4)

with specific allowed range of values assumed by parameters p and q for the three series of UIR,
namely discrete, complementary, and principal.
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“Discrete series” Π±
p,q

Parameter q has a spin meaning. We have to distinguish between

(i) the scalar case Πp,0, p = 1, 2, . . . . These representations lie at the “lowest limit” of the
discrete series and are not square integrable,

(ii) the spinorial case Π±
p,q, q > 0, p = 1

2 , 1,
3
2 , 2, . . . , q = p, p − 1, . . . , 1 or 1

2 . For q = 1
2 the

representations Π±
p, 1

2

are not square-integrable.

“Principal series” Us,ν

q = 1
2 ± iν.

p = s has a spin meaning and the two Casimir are fixed as

C2 =
(

9
4 + ν2 − s(s+ 1)

)
I, C4 =

(
1
4 + ν2

)
s(s+ 1)I.

We have to distinguish between

(i) ν ∈ R, s = 1, 2, . . . , for the integer spin principal series,

(ii) ν 6= 0, s = 1
2 ,

3
2 ,

5
2 , . . . , for the half-integer spin principal series.

In both cases, Us,ν and Us,−ν are equivalent. In the case ν = 0, i.e. q = 1
2 , s = 1

2 ,
3
2 ,

5
2 , . . . , the

representations are not irreducible. They are direct sums of two UIR’s belonging to the discrete
series:

Us,0 = Π+
s, 1

2

⊕
Π−

s, 1
2

.

“Complementary series” Vs,ν

q = 1
2 ± ν.

p = s has a spin meaning and the two Casimir are fixed as

C2 =
(

9
4 − ν

2 − s(s+ 1)
)
I, C4 =

(
1
4 − ν

2
)
s(s+ 1)I.

We have to distinguish between

(i) the scalar case V0,ν , ν ∈ R, 0 < |ν| < 3
2 ,

(ii) the spinorial case Vs,ν , 0 < |ν| < 1
2 , s = 1, 2, 3, . . . .

In both cases, Vs,ν and Vs,−ν are equivalent.

3 Contraction limits or de Sitterian physics
from the point of view of a Minkowskian observer

At this point, it is crucial to understand the physical content of these representations in terms of
their null curvature limit, i.e., from the point of view of local (“tangent”) minkowskian observer,
for which the basic physical conservation laws are derived from Einstein–Poincaré relativity
principles. We will distinguish between those representations of the de Sitter group which
contract to Poincaré massive UIR’s, those which have a massless content, and those which do
not have any flat limit at all. Firstly let us explain what we mean by null curvature limit on
a geometrical and algebraic level.
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On a geometrical level: lim
H→0

MR = M4, the Minkowski spacetime tangent to MH at, say,

the de Sitter “origin” point O def= (0,~0,H−1).

On an algebraic level:

• lim
R→∞

Sp(2, 2) = P↑+(1, 3) = M4 o SL(2,C), the Poincaré group.

• The ten de Sitter Killing vectors contract to their Poincaré counterparts Kµν , Πµ, µ =
0, 1, 2, 3, after rescaling the four K4µ −→ Πµ = HK4µ.

3.1 de Sitter UIR contraction: the massive case

For what we consider as the “massive” case, principal series representations only are involved
(from which the name “de Sitter massive representations”). Introducing the Poincaré mass
m = ν/R [23, 12, 14], we have:

Us,ν −→
R→∞,ν→∞

c>P>(m, s)⊕ c<P<(m, s),

where one of the “coefficients” among c<, c> can be fixed to 1 whilst the other one vanishes

and where P
>
<(m, s) denotes the positive (resp. negative) energy Wigner UIR’s of the Poincaré

group with mass m and spin s.

3.2 de Sitter UIR contraction: the massless case

Here we must distinguish between

• the scalar massless case, which involves the unique complementary series UIR V0,1/2 to be
contractively Poincaré significant,

• and the helicity s 6= 0 case where are involved all representations Π±
s,s, s > 0 lying at the

lower limit of the discrete series.

The arrows ↪→ below designate unique extension. Symbols P
>
<(0, s) denote the Poincaré

massless representations with helicity s and with positive (resp. negative) energy. Conformal
invariance involves the discrete series representations (and their lower limits) of the (universal
covering of the) conformal group or its double covering SO0(2, 4) or its fourth covering SU(2, 2).

These UIR’s are denoted by C
>
<(E0, j1, j2), where (j1, j2) ∈ N/2 × N/2 labels the UIR’s of

SU(2)× SU(2) and E0 stems for the positive (resp. negative) conformal energy.

• Scalar massless case:
C>(1, 0, 0) C>(1, 0, 0) ←↩ P>(0, 0)

V0,1/2 ↪→ ⊕ R→∞−→ ⊕ ⊕
C<(−1, 0, 0) C<(−1, 0, 0) ←↩ P<(0, 0).

• Spinorial massless case:

C>(s+ 1, s, 0) C>(s+ 1, s, 0) ←↩ P>(0, s)

Π+
s,s ↪→ ⊕ R→∞−→ ⊕ ⊕

C<(−s− 1, s, 0) C<(−s− 1, s, 0) ←↩ P<(0, s),

C(s+ 1, 0, s) C>(s+ 1, 0, s) ←↩ P>(0,−s)
Π−

s,s ↪→ ⊕ R→∞−→ ⊕ ⊕
C<(−s− 1, 0, s) C<(−s− 1, 0, s) ←↩ P<(0,−s).
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4 Scalar representations

In the present study, we are concerned with scalar fields only, for which the value of the quartic
Casimir vanishes. Two cases are possible: p = 0 for the principal and complementary series, and
q = 0 for the discrete series. In both cases, the fields carrying the representations are solutions
of the scalar quadratic “wave equations” issued from equation (2.4):

C2ψ(x) ≡ Q0ψ(x) = −(p− 1)(p+ 2)ψ(x), (4.1)

for the scalar discrete series, and

C2ψ(x) ≡ Q0ψ(x) = −(q + 1)(q − 2)ψ(x), (4.2)

for the scalar principal and complementary series. Let us define the symmetric, “transverse
projector”

θαβ = ηαβ +H2xαxβ

which satisfies θαβx
α = θαβx

β = 0. It is the transverse form of the de Sitter metric in ambient
space notations and it is used in the construction of transverse entities like the transverse
derivative

∂̄α = θαβ∂
β = ∂α +H2xαx.∂.

With these notations, the scalar Casimir operator reads as Q0 = −H−2∂̄2 and equations (4.1)
and (4.2) become

(Q0 + σ(σ + 3))ψ(x) = −H−2∂̄2ψ(x) + σ(σ + 3)ψ(x) = 0, (4.3)

where we have introduced the unifying complex parameter σ. As is shown in Fig. 1, σ = p− 1
or = −p− 2 for the scalar discrete series, σ = −q− 1 = −3/2− iν for the scalar principal series,
and σ = −q− 1 = −3/2− ν for the scalar complementary series. Actually, we will examine this
equation for any complex value of the parameter σ, proceeding with appropriate restrictions
when is necessary. Just note that the scalar discrete series starts with the so-called massless
minimally coupled” (mmc) case, exactly there where the complementary series ends on its left.

5 de Sitter wave planes as generating functions

There exists a continuous family of simple solutions (“de Sitter plane waves”) to equation (4.3).
These solutions, as indexed by vectors ξ lying in the null-cone in M5:

ξ = (ξ0, ξξξ) ∈ C def=
{
ξ ∈M5 : ξ2 = 0

}
,

read

ψ(x) = (Hx · ξ)σ.

Putting ξξξ = ‖ξξξ‖v ∈ R4, v ∈ S3, and |ξ0| = ‖ξξξ‖, we rewrite the dot product Hx · ξ as follows

Hx · ξ = (tan ρ) ξ0 − 1
cos ρ

u · ξξξ =
ξ0eiρ

2i cos ρ
(
1 + z2 − 2zt

)
with z = ie−iρsgn ξ0, t = u · v =: cos$.
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Figure 1. Indexing the set of scalar UIR with complex parameter σ. It should be remembered that
representations U0,ν and U0,−ν with σ = −3/2 − iν in the principal series, and V0,ν and V0,−ν with
σ = −3/2−ν in the complementary series (i.e. under symmetry σ 7→ −3−σ) are equivalent. The “massless
minimally coupled” representation corresponds to σ = −3. The “conformally invariant massless” scalar
representation corresponds to σ = −2, or equivalently to σ = −1. The case σ = 0 can be viewed as
corresponding to the trivial representation.

By using the generating function for Gegenbauer polynomials,

(
1 + z2 − 2zt

)−λ =
∞∑

n=0

znCλ
n(t), |z| < 1, (5.1)

we get the expansion

(Hx · ξ)σ =
(

ξ0eiρ

2i cos ρ

)σ (
1 + z2 − 2zt

)σ =
(

ξ0eiρ

2i cos ρ

)σ ∞∑
n=0

znC−σ
n (t), <σ < 1

2
. (5.2)

This expansion is actually not valid in the sense of functions since |z| = 1. However, giving
a negative imaginary part to the angle ρ ensures the convergence. This amounts to extend
ambient coordinates to the forward tube [5]:

T + =
{
M5 − iV

+
5 ∩MC

H

}
, V

+
5 =

{
x ∈M5 : x2 ≥ 0, x0 > 0

}
.

We now make use of two expansion formulas involving Gegenbauer polynomials [17] and S3

normalized hyperspherical harmonics:

Cλ
n(t) =

1
Γ(λ)Γ(λ− 1)

bn
2
c∑

k=0

ckC
1
n−2k(t),

ck =
(n− 2k + 1)Γ(k + λ− 1)Γ(λ+ n− k)

k!Γ(n− k + 2)
, (5.3)

C1
L(v · v′) =

2π2

L+ 1

∑
lm

YLlm(v)Y∗
Llm(v′), v, v′ ∈ S3. (5.4)

We recall here the expression of the hyperspherical harmonics:

YLlm(u) =
(

(L+ 1)(2l + 1)(L− l)!
2π2(L+ l + 1)!

) 1
2

2ll! (sinα)l C l+1
L−l (cosα)Ylm(θ, φ), (5.5)
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for (L, l,m) ∈ N×N×Z with 0 ≤ l ≤ L and −l ≤ m ≤ l. In this equation the Ylm’s are ordinary
spherical harmonics:

Ylm(θ, φ) = (−1)m

(
(l −m)!
(l +m)!

) 1
2

Pm
l (cos θ)eimφ,

where the Pm
l ’s are the associated Legendre functions. With this choice of constant factors, the

YLlm’s obey the orthogonality (and normalization) conditions:∫
S3

Y∗
Llm(u)YL′l′m′(u) du = δLL′δll′δmm′ .

Combining (5.1), (5.3) and (5.4) we get the expansion formula:(
1 + z2 − 2zv · v′

)−λ = 2π2
∑
Llm

zLpλ
L

(
z2
)
YLlm(v)Y∗

Llm(v′), (5.6)

where

pλ
L

(
z2
)

=
1

(L+ 1)!
Γ(λ+ L)

Γ(λ) 2F1

(
L+ λ, λ− 1;L+ 2; z2

)
and the integral representation,

zLpλ
L

(
z2
)
YLlm(v) =

1
2π2

∫
S3

(
1 + z2 − 2zv · v′

)−λYLlm(v′)dµ(v′).

Let us apply the above material to the de Sitter plane waves (Hx · ξ)σ. In view of equa-
tions (5.2) and (5.6) with λ = −σ, we introduce the set of functions on the de Sitter hyperboloid:

Φσ
Llm(x) =

iL−σe−i(L−σ)ρ

(2 cos ρ)σ
p−σ

L

(
−e−2iρ

)
YLlm(u)

=
iL−σe−i(L−σ)ρ

(2 cos ρ)σ

Γ(L− σ)
(L+ 1)!Γ(−σ) 2F1

(
L− σ,−σ − 1;L+ 2;−e−2iρ

)
YLlm(u). (5.7)

By using the well-known relation between hypergeometric functions [22],

2F1(a, b; c; z) = (1− z)c−a−b
2F1(c− a, c− b; c; z),

we get the alternative form of (5.7)

Φσ
Llm(x) = iL−σ e−i(L+σ+3)ρ(2 cos ρ)σ+3 Γ(L− σ)

(L+ 1)!Γ(−σ)
× 2F1

(
σ + 2, L+ σ + 3;L+ 2;−e−2iρ

)
YLlm(u). (5.8)

We then have the expansion of the de Sitter plane waves:

(Hx · ξ)σ = 2π2
∑
Llm

Φσ
Llm(x)

(
ξ0
)σ(sgn ξ0

)LY∗
Llm(v).

From the linear independence of the hyperspherical harmonics, it is clear that the functions
Φσ

Llm(x) are solutions to the scalar wave equation (4.3) once one has proceeded with the ap-
propriate separation of variables, a question that we examine in the next section. From the or-
thonormality of the set of hyperspherical harmonics we have the integral representation (“Fourier
transform” on S3),

Φσ
Llm(x) =

(
sgn ξ0

)L
2π2(ξ0)σ

∫
S3

dµ(v)(Hx · ξ)σYLlm(v).
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We notice that the functions Φσ
Llm(x) are well defined for all σ such that <σ < 0, so for all

scalar de Sitter UIR, and are infinitely differentiable in the conformal coordinates (ρ, u) in their
respective ranges. At the infinite de Sitter “past” and “future”, i.e. at the limit ρ = ±π/2, their
behavior is ruled by the factor (cos ρ)σ+3:

Φσ
Llm(x) 'ρ→±π/2 i

L−σe−i(L+σ+3)ρ(2 cos ρ)σ+3 Γ(−2σ − 1)
(L+ 1)!Γ(−σ)Γ(−σ − 1)

YLlm(u),

where we have used the formula [22]

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

valid for <(c− a− b) > 0 and c 6= −1,−2, . . . . The singularity that appears for <σ < −3, which
is the case for the scalar discrete series with p ≥ 2, is due to the choice of conformal coordinates
in expressing the dot product ξ · x.

We now ask the question about the nature of the above functions as basis elements of some
specific vector space of solutions to equation (4.3). For that we first introduce the so-called
Klein–Gordon inner product in the space of solutions to (4.3), defined for solutions Φ1, Φ2 by

〈Φ1,Φ2〉 = i

∫
Σ

Φ∗1(x)
(−→
∂ µ −

←−
∂ µ

)
Φ2(x) dσµ ≡ i

∫
Σ

Φ∗1
↔
∂ µ Φ2 dσ

µ, (5.9)

where Σ is a Cauchy surface, i.e. a space-like surface such that the Cauchy data on Σ define
uniquely a solution of (4.3), and dσµ is the area element vector on Σ. This product is de Sitter
invariant and independent of the choice of Σ. In accordance with our choice of global coordinate
system, the Klein–Gordon product (5.9) reads as

〈Φ1,Φ2〉 =
i

H2

∫
ρ=0

Φ∗1(ρ, u)
↔
∂ ρ Φ2(ρ, u) du,

where du = sin2 α sin θ dα dθ dφ is the invariant measure on S3. Due to the orthogonality of the
hyperspherical harmonics, the set of functions Φσ

Llm(x) is orthogonal:

〈Φσ
L1l1m1

,Φσ
L2l2m2

〉 = δL1L2δl1l2δm1m2‖Φσ
L1l1m1

‖2,

in case of normalizable states. Let us calculate this norm:

‖Φσ
Llm‖2 =

π 22−2L

H2
e−π=σ

∣∣∣∣(Γ(L− σ)
(Γ(−σ)

∣∣∣∣2
×<

[
Γ∗
(
L− σ + 1

2

)
Γ
(
L− σ

2

)
Γ∗
(
L+ σ + 4

2

)
Γ
(
L+ σ + 3

2

)]−1

. (5.10)

For real values of σ, in particular for the complementary series and, with restrictions for the
discrete series (see below), the norm simplifies to:

‖Φσ
Llm‖2 =

23

H2

Γ(L− σ)
(Γ(−σ))2Γ(L+ σ + 3)

. (5.11)

We see that for the scalar principal and complementary series all these functions are normalizable
and are suitable candidates for scalar fields in de Sitter space-time carrying their respective UIR.

For the discrete series, σ = −p − 2, p = 1, 2, . . . , the hypergeometric functions reduce to
polynomials of degree p, 2F1(−p, L − p + 1;L + 2;−e−2iρ), and the norm vanishes for states
with L = 0, 1, . . . , p − 1. We will interpret this invariant N -dimensional null-norm subspace,



10 J.-P. Gazeau, P. Siegl and A. Youssef

N = p(p+ 1)(2p+ 1)/6, as a space of “gauge” states, carrying the irreducible (non-unitary!) de
Sitter finite-dimensional representation (n1 = 0, n2 = p−1) (with the notations of Appendix A),
which is “Weyl equivalent” to the UIR Πp,0, i.e. shares with it the same eigenvalue of the Casimir
operator C2.

For the regular case L ≥ p, one can re-express the ρ-dependent part of the functions Φσ
Llm ≡

Φp;Llm in terms of Gegenbauer polynomials:

Φp;Llm(x) = −iL+p21−p (L+ p+ 1)!(L− p)!
(L!)2(L+ 1)(p+ 1)

× e−i(L+1)ρ(cos ρ)1−pCL−p+1
p (sin ρ)YLlm(u).

In the allowed ranges of parameters, the normalized functions [8] are defined as:

Ψσ
Llm(x) = N σ

L i
L−σe−i(L+σ+3)ρ(cos ρ)σ+3

2F1(σ + 1, L+ σ + 3;L+ 2;−e−2iρ)YLlm(u),

N σ
L =

H√
π

2L+σ+2e
π
2
=σ Γ(L− σ)
|Γ(L− σ)|

|Γ(−σ)|
Γ(−σ)

1
(L+ 1)!

×
[
<
(

Γ∗
(
L− σ + 1

2

)
Γ
(
L− σ

2

)
Γ∗
(
L+ σ + 4

2

)
Γ
(
L+ σ + 3

2

))]1/2

. (5.12)

In the complementary and discrete series, σ is real and, due to the duplication formula for the
gamma function, the expression between brackets reduces to π22−2L−3Γ(L − σ)Γ(L + σ + 3).
Then the normalization factor simplifies to:

N σ
L = H2σ+1/2

√
Γ(L− σ)Γ(L+ σ + 3)

(L+ 1)!
.

Finally, in the scalar discrete series, with σ = −p−2, one gets for L ≥ p the orthonormal system:

Ψσ
Llm(x) ≡ Ψp;Llm(x) = −Np;Li

L+pe−i(L+1−p)ρ(cos ρ)1−p

× 2F1

(
− p, L+ 1− p;L+ 2;−e−2iρ

)
YLlm(u),

Np;L = 2−p−1/2

√
Γ(L− p+ 1)Γ(L+ p+ 2)

(L+ 1)!
, L ≥ p.

As noticed above, those functions become singular at the limits ρ = ±π/2 at the exception of
the lowest case (“minimally coupled massless field”) p = 1. Going back to the de Sitter plane
waves as generating functions, one gets the expansion in terms of orthonormal sets for the scalar
principal or complementary series:

(Hx · ξ)σ = 2π2
∑
Llm

‖Φσ
Llm‖Ψσ

Llm(x)
(
ξ0
)σ(sgn ξ0

)L
Y ∗Llm(v),

where ‖Φσ
Llm‖ is given by (5.10) (principal) and by (5.11) (complementary). For the scalar

discrete series, we have to split the sum into two parts:

(Hx · ξ)−p−2 = 2π2
p−1∑
L=0

∑
lm

Φp;Llm(x)
(
ξ0
)−p−2(sgn ξ0

)LY∗
Llm(v)

+ 2π2
∞∑

L=p

∑
lm

‖Φp;Llm‖Ψp;Llm(x)
(
ξ0
)−p−2(sgnξ0

)L
Y ∗Llm(v).

These formulae make explicit the “spherical” modes in de Sitter space-time in terms of de Sitter
plane waves.
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6 Wave equation for scalar de Sitter representations

Let us check how we recover the functions Φσ
Llm or Ψσ

Llm by directly solving the wave equation.
The scalar Casimir operator Q0 introduced in (4.1) and (4.2) is just proportional to the Laplace–
Beltrami operator on de Sitter space: Q0 = −H−2�. In terms of the conformal coordinates (2.1)
the latter is given by

� =
1
√
g
∂ν
√
ggνµ∂µ = H2 cos4 ρ

∂

∂ρ

(
cos−2 ρ

∂

∂ρ

)
−H2 cos2 ρ∆3,

where

∆3 =
∂2

∂α2
+ 2 cotα

∂

∂α
+

1
sin2 α

∂2

∂θ2
+ cot θ

1
sin2 α

∂

∂θ
+

1
sin2 α sin2 θ

∂2

∂φ2

is the Laplace operator on the hypersphere S3. Equation (4.2) can be solved by separation of
variable [8, 20]. We put

ψ(x) = χ(ρ)D(u),

where u ∈ S3, and obtain

[∆3 + C]D(u) = 0, (6.1)(
cos4 ρ

d

dρ
cos−2 ρ

d

dρ
+ C cos2 ρ− σ(σ + 3)

)
χ(ρ) = 0. (6.2)

We begin with the angular part problem (6.1). For C = L(L + 2), L ∈ N we find the
hyperspherical harmonics D = YLlm which are defined in (5.5).

For the ρ dependent part, and for σ we obtain the solutions in terms of Legendre functions
on the cut

χσ;L(ρ) = AL(cos ρ)
3
2

[
P λ

L+ 1
2

(sin ρ)− 2i
π
Qλ

L+ 1
2

(sin ρ)
]
.

Here λ = ±(σ + 3/2) and AL is given by

AL = H

√
π

2

(
Γ
(
L− λ+ 3

2

)
Γ
(
L+ λ+ 3

2

)) 1
2

.

We then obtain the set of solutions

Ψσ
Llm(x) = χλL(ρ)YLlm(u), x = (ρ, u) ∈MH ,

for the field equation (�−σ(σ+3))ψ = 0 Note that this family of solutions is orthonormal for the
scalar complementary series and for the discrete series in the allowed range. In the discrete series
and for L ≤ p − 1, the null-norm states Φp;Llm’s are orthogonal to all other elements Φp;L′l′m′ ,
whatever their normalizability. All elements satisfy also another orthogonality relation:

〈Φσ
L′l′m′ , (Φσ

Llm)∗〉 = 0.

The link with the hypergeometric functions appearing in (5.7) can be found directly from the
explicit expansions of the Legendre functions in their arguments. It can be also found from the
differential equation (6.1) through the change of variables ρ 7→ z = −e−2iρ, χ(ρ) = h(z):(

z2(1− z)2 d
2

dz2
+ 2z(1− z) d

dz
− 1

4
L(L+ 2)(1− z)2 − zσ(σ + 3)

)
h(z) = 0, (6.3)
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Frobenius solutions in the neighborhood of z = 0. The Frobenius indicial equation for
solutions of the type zc

∑
n≥0

anz
n has two solutions: c = c1 = L/2, which corresponds to what

we got in (5.7) or (5.8), and c = c2 = −(L+ 1)/2, i.e. a first solution is given by

h(z) = h1(z) = z
L
2 (1− z)σ+3

2F1(σ + 2, L+ σ + 3;L+ 2; z). (6.4)

Since c1− c2 = L+ 1 ∈ N, we have to deal with to degenerate case, which means that a linearly
independent solution has the form

h(z) = h2(z) = (log z)h1(z) +
+∞∑

n=−L−1

bnz
n+L/2, (6.5)

where coefficients bn are recurrently determined from (6.3). This second set of solutions takes
all its importance in the discrete case when we have to deal with the finite dimensional space
of null-norm solutions, as is shown in Section 8 for the simplest case p = 1. The respective
Klein–Gordon norms of these solutions are given by

‖h1‖2 =
23

H2

(L+ 1)!2

Γ(L− σ)Γ(L+ σ + 3)
, (6.6)

which corresponds to (5.10), and (for bn real)

‖h2‖2 = π2‖h1‖2 +
u

H2

√
π22−L(L+ 1)!

Γ
(

L−σ+1
2

)
Γ
(

L+σ+4
2

) + (−1)L 4uv
H2

, (6.7)

where we have introduced the following quantities

u =
∞∑

n=−L−1

(−1)nbn, v =
∞∑

n=−L−1

(−1)n(n+ L/2)bn.

We conjecture that in the cases σ = −p − 2, 0 ≤ L ≤ p − 1, the norms (6.7) vanish like the
norms (6.6).

Frobenius solutions in the neighborhood of z = 1 for the discrete series. The indicial
equation for solutions of the type (1 − z)d

∑
n≥0

cn(1 − z)n to equation (6.3) has two solutions:

d = d1 = −σ = p + 2, and d = d2 = σ + 2 = 1 − p. The latter corresponds to what we got
in (5.7) or (5.8). The former gives the following regular solution in the neighborhood of z = 1:

w(z) = w1(z) = z
L
2 (1− z)p+2

2F1(p+ 1, L+ p+ 2;L+ 2; 1− z),

or, in term of hypergeometric polynomial,

w(z) = w1(z) = z
L
2
−2p−1(1− z)p+2

2F1(−p, L− p+ 1;L+ 2; 1− z).

Since d1−d2 = 2p+1 ∈ N, we are again in presence of a degenerate case. A linearly independent
solution is given by

w(z) = w2(z) = log (1− z)w1(z) +
+∞∑

n=−2p−1

en(1− z)n+p+2,

where coefficients en are recurrently determined from (6.3) after change of variables z 7→ 1− z.
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7 de Sitter group actions

7.1 Infinitesimal actions

Let us express the infinitesimal generators (2.2) in terms of conformal coordinates.
The six generators of the compact SO(4) subgroup, contracting to the Euclidean subalgebra

when H → 0, read as follows

M12 = −i ∂
∂φ
,

M32 = −i
(

sinφ
∂

∂θ
+ cot θ cosφ

∂

∂φ

)
,

M31 = −i
(

cosφ
∂

∂θ
+ cot θ sinφ

∂

∂φ

)
,

M41 = −i
(

sin θ cosφ
∂

∂α
+ cotα cos θ cosφ

∂

∂θ
− cotα

sinφ
sin θ

∂

∂φ

)
,

M42 = −i
(

sin θ sinφ
∂

∂α
+ cotα cos θ sinφ

∂

∂θ
+ cotα

cosφ
sin θ

∂

∂φ

)
,

M43 = −i
(

cos θ
∂

∂α
− cotα sin θ

∂

∂θ

)
.

The four generators contracting to time translations and Lorentz boosts when H → 0 read as
follows

M01 = −i
(

cos ρ sinα sin θ cosφ
∂

∂ρ

+ sin ρ cosα sin θ cosφ
∂

∂α
+

sin ρ cos θ cosφ
sinα

∂

∂θ

sin ρ sinφ
sinα sin θ

∂

∂φ

)
,

M02 = −i
(

cos ρ sinα sin θ sinφ
∂

∂ρ

+ sin ρ cosα sin θ sinφ
∂

∂α
+

sin ρ cos θ sinφ
sinα

∂

∂θ

sin ρ cosφ
sinα sin θ

∂

∂φ

)
,

M03 = −i
(

cos ρ sinα cos θ
∂

∂ρ
+ sin ρ cosα cos θ

∂

∂α
− sin ρ sin θ

sinα
∂

∂θ

)
,

M04 = −i
(

cos ρ cosα
∂

∂ρ
− sin ρ sinα

∂

∂α

)
.

The O(1, 4)-invariant measure on MH is

dµ =
√
−g dx0dx1dx2dx3 = (cos ρ)−4dρ du,

where du is the O(4)-invariant measure on S3.

7.2 de Sitter group

The universal covering of the de Sitter group is the symplectic Sp(2, 2) group, which is needed
when dealing with half-integer spins. It is suitably described as a subgroup of the group of 2×2
matrices with quaternionic coefficients:

Sp(2, 2) =
{
g =

(
a b
c d

)
; a, b, c, d ∈ H, g†γ0g = γ0 ≡

(
1 0
0 −1

)}
. (7.1)
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We recall that the quaternion field as a multiplicative group is H ' R+ × SU(2). We write
the canonical basis for H ' R4 as (1 ≡ e4, ei (' (−1)i+1σi) (in 2 × 2-matrix notations), with
i = 1, 2, 3: any quaternion decomposes as q = (q4, ~q) (resp. qaea, a = 1, 2, 3, 4) in scalar-vector
notations (resp. in Euclidean metric notation). We also recall that the multiplication law expli-
citly reads in scalar-vector notation: qq′ = (q4q′4− ~q · ~q′, q′4~q+ q4~q′+ ~q× ~q′). The (quaternionic)
conjugate of q = (q4, ~q) is q̄ = (q4,−~q), the squared norm is ‖q‖2 = qq̄, and the inverse of
a nonzero quaternion is q−1 = q̄/‖q‖2. In (7.1) we have written g† = ḡt for the quaternionic
conjugate and transpose of the matrix g.

Note that the definition (7.1) implies the following relations between the matrix elements of
g ∈ Sp(2, 2):

g =
(
a b
c d

)
∈ Sp(2, 2)

⇔ g−1 =
(
a −c
−b d

)
⇔

{
‖a‖ = ‖d‖, ‖b‖ = ‖c‖,
‖a‖2 − ‖b‖2 = 1, ab = cd⇔ ac = bd,

and we also note that ‖a‖ = ‖d‖ > ‖b‖ = ‖c‖, and det4×4g = 1 for all g ∈ Sp(2, 2) when the
latter are viewed as 4× 4 complex matrices since H ' R+ × SU(2).

7.3 1+3 de Sitter Clifford algebra

The matrix

γ0 =
(

1 0
0 −1

)
is part of the Clifford algebra defined by γαγβ + γβγα = 2ηαβI, the four other matrices having
the following form in this quaternionic representation:

γ4 =
(

0 1
−1 0

)
, γk =

(
0 ek
ek 0

)
, k = 1, 2, 3.

These matrices allow the following correspondence between points of M5, or of the hyper-
boloid MH , and 2× 2 quaternionic matrices of the form below:

M5 or MH 3 x −→6x ≡ xαγα =
(
x0 −P
P −x0

)
←→ X ≡

(
x0 P
P x0

)
=6xγ0,

where P ≡ (x4, ~x) ∈ H. Note that we have

x · x =6x†γ0 6xγ0, xα = 1
4tr(γα 6x),

x · x′ = 1
4tr(6x 6x′), det4×4 6x = det4×4X = (x · x)2.

7.4 1+3 de Sitter group action

Let Λ ∈ SO0(1, 4) transform a wave plane as:

(Hx · ξ)σ → (H(Λ−1.x) · ξ)σ = (Hx · Λ.ξ)σ. (7.2)

Now, the action of SO0(1, 4) on 4+1 Minkowski M5 amounts to the following Sp(2, 2) action
on the de Sitter manifold or on the positive or negative null cone C± = {ξ ∈ C | ξ0 ≷ 0}.

Sp(2, 2) 3 g : 6x 7→6x′ = g 6xg−1 ⇔ X ′ = gX g†, (7.3)
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and this precisely realizes the isomorphism SO0(1, 4)→ Sp(2, 2)/Z2 through

SO0(1, 4) 3 Λ(g) : x 7→ x′ = Λ(g).x, Λα
β = 1

4tr
(
γαgγβg

−1
)
.

Suppose detX = 0, i.e. x ≡ ξ ∈ C. To any ξ = (ξ0, ~ξ, ξ4) ≡ (ξ0,P) ∈ C there corresponds
v = v(ξ) ∈ S3 through:

v =
P
ξ0
.

Then the action (7.3) amounts to the following projective (or Euclidean conformal) action on
the sphere S3

SO0(1, 4) 3 Λ : ξ 7→ ξ′ = Λ.ξ

⇔ Sp(2, 2) 3 g :
{
ξ0 7→ ξ0

′ = ξ0‖cv + d‖2,
v 7→ v′ = (av + b)(cv + d)−1 ≡ g.v,

and sgn(ξ′0) = sgn(ξ0).
Let us define matrix elements T−σ

L′l′m′,Llm (resp. T −σ
L′l′m′,Llm) of the scalar (at least for the

principal and complementary series) representations of SO0(1, 4) (resp. Sp(2, 2)) by

Ψσ
Llm(Λ−1.x) =

∑
L′l′m′

T−σ
L′l′m′,Llm(Λ)Ψσ

L′l′m′(x), (7.4)

‖cv + d‖2σYLlm(g−1.v) =
∑

L′l′m′

T −σ
L′l′m′,Llm(g)YL′l′m′(v), g−1 =

(
a b
c d

)
. (7.5)

One can determine rather easily the matrix elements (7.5), and consequently the elements (7.4)
through the two expansions of (7.2).

8 The massless minimally coupled field
as an illustration of a Krein structure

8.1 The “zero-mode” problem

We now turn our attention to the first element of the discrete series, which corresponds to
σ = −3, namely the massless minimally coupled field case. For L 6= 0, we obtain the normalized
modes Ψ−3;Llm that we write ΨLlm for simplicity:

ΨLlm(x) = χL(ρ)YLlm(Ω),

with

χL(ρ) =
H

2
[2(L+ 2)(L+ 1)L]−

1
2
(
Le−i(L+2)ρ + (L+ 2)e−iLρ

)
.

As was already noticed, the normalization factor breaks down at L = 0. This is the famous
“zero-mode” problem, examined by many authors [1, 2, 15]. In particular, Allen has shown that
this zero-mode problem is responsible for the absence of a de Sitter invariant vacuum state for
the mmc quantized field. The non-existence, in the usual Hilbert space quantization, of a de
Sitter invariant vacuum state for the massless minimally coupled scalar field was at the heart
of the motivations of [15]. Indeed, in order to circumvent this obstruction, a Gupta–Bleuler
type construction based on a Krein space structure was presented in [15] for the quantization of
the mmc field. One of the major advantages of this construction is the existence of a de Sitter
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invariant vacuum state. This is however not a Hilbert space quantization, in accordance with
Allen’s results. The rationale supporting the Krein quantization stems from de Sitter invariance
requirements as is explained in the sequel. The space generated by the ΨLlm for L 6= 0 is not
a complete set of modes. Moreover this set is not invariant under the action of the de Sitter
group. Actually, an explicit computation gives

(M03 + iM04)Ψ1,0,0 = −i 4√
6
Ψ2,1,0 + Ψ2,0,0 +

3H
4π
√

6
, (8.1)

and the invariance is broken due to the last term. As a consequence, canonical field quantization
applied to this set of modes yields a non covariant field, and this is due to the appearance of
the last term in (8.1). Constant functions are of course solutions to the field equation. So one
is led to deal with the space generated by the ΨLlm’s and by a constant function denoted here
by Ψg, this is interpreted as a “gauge” state. This space, which is invariant under the de Sitter
group, is the space of physical states. However, as an inner-product space equipped with the
Klein–Gordon inner product, it is a degenerate space because the state Ψg is orthogonal to the
whole space including itself. Due to this degeneracy, canonical quantization applied to this set
of modes yields a non covariant field (see [9] for a detailed discussion of this fact).

Now, for L = 0, as expected from equations (6.4) and (6.5), the equation (6.2) is easily
solved. We obtain two independent solutions of the field equation, including the constant
function discussed above:

Ψg =
H

2π
and Ψs = −i H

2π

[
ρ+

1
2

sin 2ρ
]
.

These two states are null norm. The constant factors have been chosen in order to have
〈Ψg,Ψs〉 = 1. We then define Ψ000 = Ψg + Ψs/2. This is the “true zero mode” of Allen.
We write Ψ000 = Ψ0 in the following. With this mode, one obtains a complete set of strictly
positive norm modes ΨLml for L ≥ 0, but the space generated by these modes is not de Sitter
invariant. For instance, we have

(M03 + iM04)Ψ0 = (M03 + iM04)Ψs

= −i
√

6
4 Ψ1,0,0 +−i

√
6

4 Ψ∗
1,0,0 −

√
6

4 Ψ1,1,0 −
√

6
4 Ψ∗

1,0,0. (8.2)

Note the appearance of negative norm modes in (8.2): this is the price to pay in order to
obtain a fully covariant theory. The existence of these non physical states has led authors of [15]
to adopt what they also called Gupta–Bleuler field quantization. One of the essential ingredient
of their procedure is the non vanishing inner products between Ψg, Ψs on one hand and ΨLml

and (ΨLlm)∗ for L > 0 on the other hand:

〈ΨLlm,ΨLlm〉 = 1, 〈Ψ∗
Llm,Ψ

∗
Llm〉 = −1, L > 0 and 〈Ψs,Ψg〉 = 1.

8.2 Gupta–Bleuler triplet and the mmc Krein structure

In order to simplify the previous notations, let K be the set of indices for the positive norm
modes, excluding the zero mode:

K = {(L, l,m) ∈ N× N× Z; L 6= 0, 0 ≤ l ≤ L, −l ≤ m ≤ l},

and let K ′ be the same set including the zero mode:

K ′ = K ∪ {0}.
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As illustrated by (8.1), the set spanned by the Ψk, k ∈ K is not invariant under the action of the
de Sitter group. On the other hand, we obtain an invariant space by adding Ψg. More precisely,
let us introduce the space,

K =

{
cgΨg +

∑
k∈K

ckΨk; cg, ck ∈ C,
∑
k∈K

|ck|2 <∞

}
.

Equipped with the Klein–Gordon-like inner product (5.9), K is a degenerate inner product space
because the above orthogonal basis satisfies to

〈Ψk,Ψk′〉 = δkk′ ∀ k, k′ ∈ K, 〈Ψk,Ψg〉 = 0 ∀ k ∈ K, and 〈Ψg,Ψg〉 = 0.

It can be proved by conjugating the action (8.1) under the SO(4) subgroup that K is invariant
under the natural action of the de Sitter group. As a consequence, K carries a unitary repre-
sentation of the de Sitter group, this representation is indecomposable but not irreducible, and
the null-norm subspace N = CΨg is an uncomplemented invariant subspace.

Let us recall that the Lagrangian

L =
√
|g|gµν∂µΨ∂νΨ

of the free minimally coupled field is invariant when adding to Ψ a constant function. As
a consequence, in the “one-particle sector” of the field, the space of “global gauge states” is
simply the invariant one dimensional subspace N = CΨg. In the following, the space K is called
the (one-particle) physical space, but stricto sensu physical states are defined up to a constant
and the space of physical states is K/N . The latter is a Hilbert space carrying the unitary
irreducible representation of the de Sitter group Π1,0.

If one attempts to apply the canonical quantization starting from a degenerate space of
solutions, then one inevitably breaks the covariance of the field [9]. Hence we must build
a non degenerate invariant space of solutions H admitting K as an invariant subspace. Together
with N , the latter are constituent of the so-called Gupta–Bleuler triplet N ⊂ K ⊂ H. The
construction of H is worked out as follows.

We first remark that the modes Ψk and Ψg do not form a complete set of modes. Indeed,
the solution Ψs does not belong to K nor K + K∗ (where K∗ is the set of complex conjugates
of K): in this sense, it is not a superposition of the modes Ψk and Ψg. One way to prove this is
to note that 〈Ψs,Ψg〉 = 1 6= 0.

So we need a complete, non-degenerate and invariant inner-product space containing K as
a closed subspace. The smallest one fulfilling these conditions is the following. Let H+ be the
Hilbert space spanned by the modes Ψk together with the zero-mode Ψ0:

H+ =

{
c0φ0 +

∑
k∈K

ckφk;
∑
k∈K

|ck|2 <∞

}
.

We now define the total space H by

H = H+ ⊕H∗+,

which is invariant, and we denote by U the natural representation of the de Sitter group on H
defined by: UgΨ(x) = Ψ(g−1x). The space H is defined as a direct sum of an Hilbert space
and an anti-Hilbert space (a space with definite negative inner product) which proves that H is
a Krein space. Note that neither H+ nor H∗+ carry a representation of the de Sitter group, so
that the previous decomposition is not covariant, although it is O(4)-covariant. The following
family is a pseudo-orthonormal basis for this Krein space:

Ψk, Ψ∗
k (k ∈ K), Ψ0, Ψ∗

0,
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for which the non-vanishing inner products are

〈Ψk,Ψk〉 = 〈Ψ0,Ψ0〉 = 1 and 〈Ψ∗
k,Ψ

∗
k〉 = 〈Ψ∗

0,Ψ
∗
0〉 = −1.

Let us once more insist on the presence of non physical states in H. Some of them have
negative norm, but, for instance, Ψ0 is not a physical state (Ψ0 6∈ K) in spite of the fact that
〈Ψ0,Ψ0〉 > 0: the condition of positivity of the inner product is not a sufficient condition
for selecting physical states. Moreover some non physical states go to negative frequency states
when the curvature tends to 0. Nevertheless mean values of observables are computed on physical
states and no negative energy appears.

We end this section by some general comments on the use of Krein space structures in
quantum field theory. Already at the flat space-time level, the usual Gupta–Bleuler treatment
of gauge theories can be put into a Krein space setting [19]. For the two-dimensional massless
scalar field in flat spacetime, which is a model that mimics some of the features of gauge theories,
Strocchi et al. have also followed in [24] a Krein space approach. Indeed Krein structures can be
viewed as a unified framework to treat gauge – and gauge-like – quantum field theories. Since
a massless scalar field theory possesses a gauge-like invariance under the addition of a constant
field, φ→ φ+const, our use of Krein structures to treat the “massless” scalar field on de Sitter
space-time can be viewed as belonging to the same type of ideas used in the works cited above.
Nevertheless, we apply the Krein space setting in a very different manner and the analogy ends
here.

9 Outline of future work

The example of the mmc case is limpid: behind the Gupta–Bleuler and Krein structures lies
the undecomposable nature of the involved de Sitter representation, the unitary irreducible Π1,0

being realized on the cosetH/N , the one-dimensional null-norm spaceN being trivially cancelled
under the action of the differential operator ∂ρ. This is the mark of an interesting cohomology
accompanying the simple Lie group Sp(2, 2) [27]. It is naturally appealing to approach the mmc
case with this algebraic point of view, and above all, to extend our analysis to all the elements of
the scalar discrete series, with the hope that the obtained results will allow a complete covariant
quantization of the corresponding fields.

Another interesting direction for future research is the question of determining localization
properties for these field theories through the use of modular localization techniques. In fact it
seems that the ideas developed in [6], render possible an effective exploration of the localization
properties of the de Sitterian fields carrying the discrete series.

A Lie algebra B2: a minimal glossary

Definition.

sp(2, 2) =
{(

~v p
p̃ ~w

)∣∣∣∣ (0, ~v), (0, ~w), p ∈ HC

}
.

Operations in HC:

• p, q ∈ HC, pq := (p0q0 − ~p~q, p0~q + q0~p+ ~p× ~q),
• z ∈ HC, z̃ := (z0,−~z),
• z ∈ HC, ‖z‖2 := zz̃ = z2

0 + z2
1 + z2

2 + z2
3 ,

• z ∈ HC, z 6= 0, z−1 = 1
‖z‖2 z̃.
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Cartan subalgebra h = span{H1, H2}.

H1 =
1
2

(
0 1
1 0

)
, H2 =

i

2

(
e3 0
0 e3

)
,

[H1,H2] = 0, N(h) = h,

[H1, X−1−1] = −X−1−1, [H2, X−1−1] = −X−1−1,

X−1−1 =
1
4

(
e1 − ie2 e1 − ie2
−e1 + ie2 −e1 + ie2

)
,

[H1, X−10] = −X−10, [H2, X−10] = 0, X−10 =
1
2

(
e3 e3
−e3 −e3

)
,

[H1, X−11] = −X−11, [H2, X−11] = X−11, X−11 =
1
4

(
e1 + ie2 e1 + ie2
−e1 − ie2 −e1 − ie2

)
,

[H1, X0−1] = 0, [H2, X0−1] = −X0−1, X0−1 =
1
2

(
e1 − ie2 0

0 e1 − ie2

)
,

[H1, X01] = 0, [H2, X01] = X01, X01 =
1
2

(
e1 + ie2 0

0 e1 + ie2

)
,

[H1, X1−1] = X1−1, [H2, X1−1] = −X1−1, X1−1 =
1
4

(
e1 − ie2 −e1 + ie2
e1 − ie2 −e1 + ie2

)
,

[H1, X10] = X10, [H2, X10] = 0, X10 =
1
2

(
e3 −e3
e3 −e3

)
,

[H1, X11] = X11, [H2, X11] = X11, X11 =
1
4

(
e1 + ie2 −e1 − ie2
e1 + ie2 −e1 − ie2

)
.

Root system R.

αij(H1) = i, αij(H2) = j,

α−1−1, α−10, α−11, α0−1, α01, α1−1, α10, α11.

Basis: B = (β1, β2) = (α10, α−1,1).

Simple roots: β1, β2.

Roots in the basis B: (β1)B = (1, 0), (β2)B = (0, 1), (α0,1)B = (1, 1), (α1,1)B = (2, 1),
(α−1,0)B = (−1, 0), (α1,−1)B = (0,−1), (α0,−1)B = (−1,−1), (α−1,−1)B = (−2,−1).

Positive roots: α−1,1, α1,0, α0,1, α1,1.

Highest root: Θ = 2β1 + β2.

[H,Xα] = α(H)Xα,

[Xα, Xβ] = 0 if α+ β /∈ R ∪ {0},
[Xα, X−α] = −Hα,

[Xα, Xβ ] = NαβXα+β if α+ β ∈ R,
α(Hα) = 2,

H01 = 2H2 = i

(
e3 0
0 e3

)
, H0−1 = −2H2 = −i

(
e3 0
0 e3

)
,
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H10 = 2H1 =
(

0 1
1 0

)
, H−10 = −2H1 = −

(
0 1
1 0

)
,

H11 = H1 +H2 =
1
2

(
ie3 1

1 ie3

)
, H−1−1 = −H1 −H2 = −1

2

(
ie3 1

1 ie3

)
,

H1−1 = H1 −H2 =
1
2

(
−ie3 1

1 −ie3

)
, H−11 = −H1 +H2 =

1
2

(
ie3 −1
−1 ie3

)
.

Killing form K(x, y) and duality. Restricted to the Cartan subalgebra h

x = a1H1 + a2H2, y = b1H1 + b2H2, a1,2, b1,2 ∈ C,

K(x, y)|h×h =
∑
α∈R

α(x)α(y) = 6a1b1 + 6a2b2.

Dual elements of h corresponding to roots

∀x ∈ B2 α(x) = K(hα, x),
h−1−1 = 1

6H−1−1, h−10 = 1
12H−10, h−11 = 1

6H−11, h0−1 = 1
12H0−1,

h11 = 1
6H11, h10 = 1

12H10, h1−1 = 1
6H1−1, h0−1 = 1

12H0−1.

Root geometry.

Length of simple roots, angle between them:

〈α, β〉 := K(hα, hβ), α, β ∈ R,
〈β1, β1〉 = 1

6 , 〈β2, β2〉 = 1
3 , 〈β1, β2〉 = −1

6 ,

cosϑ =
〈β1, β2〉√

〈β1, β1〉
√
〈β2, β2〉

= −
√

2
2 ⇒ ϑ = 3

4π.

Cartan matrix:

A =
(

2 −1
−2 2

)
.

Fundamental weights:

α∨ :=
2α
〈α, α〉

, α ∈ R, 〈β∨i , ωj〉 = δij ,

ω1 = β1 + 1
2β2, ω2 = β1 + β2.

Root system diagram. See Fig. 2.

Weyl orbit of a weight. (n1, n2) are coefficients in ω1, ω2 basis

(n1, n2), (−n1, n1 + n2), (n1 + 2n2,−n2), (−n1 − 2n2, n1 + n2),
(n1 + 2n2,−n1 − n2), (−n1 − 2n2, n2), (n1,−n1 − n2), (−n1,−n2).
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Figure 2. Root system of B2 and fundamental weights.

Dimension of representation.

Weyl formula:

dimV =
∏
α∈R

〈λ0 + %, α〉
〈%, α〉

,

where % = 1/2
∑

α∈R+

α = 2β1 + 3/2β2 and λ0 is a dominant weight, i.e. the weight with non-

negative integer coefficients in the basis of fundamental weights ω1,2, λ0 = (n1 +n2)β1 +(n1/2+
n2)β2, n1,2 ∈ N0.

dimV = 1
6(n1 + 1)(n2 + 1)(n1 + 2n2 + 3)(n1 + n2 + 2).

Eigenvalues of Casimir:

Qλ0(n1, n2) = −1
2

(
n2

1 + 2n2
2 + 2n1n2 + 4n1 + 6n2

)
. (A.1)

Weyl equivalence with UIR. Two irreps are Weyl equivalent if they share same Casimir
eigenvalue. Comparing (A.1) with (2.3) gives the possible solutions:

n1 = −2q, n2 = p+ q − 1, (A.2)
n1 = 2q − 2, n2 = p− q, (A.3)
n1 = q − 1, n2 = −2p− 2,
n1 = −2p− 2, n2 = p− q.

Only (A.2) for q = 0, p ≥ 1, and (A.3) for q ≥ 1, p ≥ 1, yield possible Weyl equivalence between
finite-dimensional irreps (n1, n2) and UIR’s Π±

p,q in the discrete series.

Characters:

ξ = m1ω1 +m2ω2,

χn1,n2(m1,m2) =
e

1
12

(−2m1n1−3m2n1−3m1n2−4m2n2)(
− 1 + em1/12

)(
− 1 + em2/6

)(
− 1 + e

m1+m2
6

)(
− 1 + e

1
12

(m1+2m2)
)
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×
(
− e

1
12

((m1+2m2)(3+2n1)+4m1n2+6m2n2) − e
1
12

(m1+2(m1+m2)(n1+n2))

+ e
1
12

(m1+4m2+2(m1+2m2)(n1+n2)) + e
1
12

(2m2(n1+n2)+m1(n1+2n2))

+ e
1
12

(3m1+2m2+2(m1+m2)(n1+2n2)) − e
1
12

(2m2+(m1+2m2)(n1+2n2))

+ e
1
12

m1(4+3n1+4n2)
(
− e

1
3
m2(1+n1+n2) + e

1
6
m2(3+2n1+3n2)

))
.
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