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Abstract. We prove the reality of the perturbed eigenvalues of some PT symmetric
Hamiltonians of physical interest by means of stability methods. In particular we study
2-dimensional generalized harmonic oscillators with polynomial perturbation and the one-
dimensional x2(ix)ε for −1 < ε < 0.
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1 Introduction and statement of the results

A basic mathematical question in the framework of PT symmetric quantum mechanics concerns
the reality of the spectrum of the considered Hamiltonian. One crucial issue is to formulate con-
ditions for the reality of (part of) the spectrum of Hamiltonians depending on a real parameter ε
of the form

H(ε) = H0 + εV, ε ∈ R. (1)

In [1, 2] results have been obtained in the case when the unperturbed Hamiltonian H0 is self-
adjoint with discrete spectrum, and in [3] in the more general case when H0 is PT symmetric but
not necessarily selfadjoint, with discrete spectrum. The common framework of these papers is
perturbation theory, which allows to obtain the reality result only for small values of the coupling
constant ε. However this is not a limitation: in many cases as ε varies, critical phenomena occur,
such as a spontaneous breaking of the PT symmetry and the appearance of complex eigenvalues
caused by the crossing of energy levels of H0. The most elementary example of this phenomenon
is represented by a 2× 2 matrix of the form

H1(ε) =
(

e1 iε
iε e2

)
(2)

with e1, e2 ∈ R, recently examined in [4, 5]. H1(ε) is PT symmetric, i.e. H1(ε)(PT ) =
(PT )H1(ε), if the parity operator P is the unitary involution defined by

P =
(

1 0
0 −1

)
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and T is the antilinear involution of complex conjugation. The eigenvalues of H1(ε) are

λ(ε) = 1
2(e1 + e2)± 1

2

√
(e1 − e2)2 − 4ε2

and they are real if and only if |ε| ≤ |e1−e2|
2 . The matrix (2) can be rewritten in the perturbative

form (1)

H1(ε) =
(

e1 0
0 e2

)
+ iε

(
0 1
1 0

)
,

so that it can be put in the framework of Theorem 1.2 of [1], whose applicability goes far beyond
the case of finite dimensional operators (it includes in fact classes of Schrödinger operators with
bounded perturbation potentials, also in dimension greater than one): this theorem ensures the
reality of the spectrum of H1(ε) for |ε| < |e1−e2|

2‖W‖ where ‖W‖ denotes the norm of the bounded

perturbation operator W , which in the present case is 1 since W =
(

0 1
1 0

)
. The conclusion

is that the perturbation argument of [1] yields actually the reality of the spectrum for all the
allowed values of ε.

In a similar way one can analyze PT symmetric matrices of the form

H ′
1(ε) =

(
e + iε b

b e− iε

)
=

(
e b
b e

)
+ iε

(
1 0
0 −1

)
(3)

with e, b ∈ R, which are PT symmetric with

P =
(

0 1
1 0

)
.

For a physical interpretation of these matrices see [4, 5] for applications to optics, and Section 4
of the present paper for an application to classical mechanics. Complex Hamiltonians of type (2)
are a particular case of those considered in [6]. In turn the Hamiltonians (3) are a particular
case of those examined in [7].

The results obtained in [1, 2] deal with the case when the perturbation potential V is bounded
and, under suitable assumptions on H0 and V , they guarantee the reality of the entire spectrum
of H(ε) for |ε| < δ/‖W‖, where δ = 1

2 inf
n6=m

|λn − λm| and σ(H0) = {λn : n ∈ N} is the (discrete)

spectrum of H0. In some cases, not only the reality of the eigenvalues can be proved, but also
the similarity to a selfadjoint operator [8, 9]. In [3] the authors analyze the case when V is
unbounded (and in general not even relatively bounded with respect to H0), obtaining a weaker
result which guarantees that the perturbed eigenvalues of H(ε), converging to those of H0 as
ε → 0, are real for |ε| sufficiently small. In [10] this result has been extended to classes of
Hamiltonians of the form

H(ε) = H + iWε, ε ≥ 0

acting in L2(R), where H = − d2

dx2 +x2 denotes the operator associated with the one dimensional
harmonic oscillator and Wε ∈ C0(R) is an odd real-valued function: Wε(−x) = −Wε(x) ∈ R,
∀x ∈ R, ∀ ε ≥ 0. Such generalization of the result of [3] is based on the fact that in Wε the
dependence on the perturbation parameter ε is the most general one and not only of linear type
as in (1). The aim of this paper is to show how simple extensions of the results of [3, 10] allow
us to treat models of considerable interest in the context of PT symmetric quantum mechanics.
More precisely, extending the results of [3] to the case of Schrödinger operators in dimension
greater than 1 it is possible to examine models of the following type

H2(ε) = − d2

dx2
1

− d2

dx2
2

+ ω2
1x

2
1 + ω2

2x
2
2 + iεxr

1x
s
2, x = (x1, x2) ∈ R2, (4)



PT Symmetric Schrödinger Operators: Reality of the Perturbed Eigenvalues 3

where we assume r, s ∈ N, r + s odd, and ω1, ω2 > 0. This type of Hamiltonians, which
represent a natural generalization of the quantum Henon–Heiles model, has been studied also
in [11, 12]. We will analyze the Hamiltonian (4) in Section 2 and we will prove the reality of
the eigenvalues λn1,n2(ε) of H2(ε) generated by the unperturbed ones, i.e. by the eigenvalues
λn1,n2(0) = (2n1 + 1)ω1 + (2n2 + 1)ω2, ∀n1, n2 ∈ N0 := {0, 1, 2, . . . }, such that λn1,n2(ε) →
λn1,n2(0) as ε → 0, in the case of non-resonant frequencies ω1, ω2.

Then, generalizing also the results of [10] we will examine the basic model

H3(ε) = − d2

dx2
+ x2(ix)ε, −1 < ε < 1. (5)

The Hamiltonian (5) has been examined and its physical interest discussed by several authors
[13, 14, 15, 16] and the reality of its spectrum for ε > 0 has been proved in [17] (see also [18]); for
ε < 0 numerical results indicate the appearance of complex eigenvalues (for a recent discussion
see e.g. [14]), in the sense that, as |ε| increases while ε moves from 0 to −1, the perturbed
eigenvalues of H3(ε), generated by the unperturbed ones λn(0) = 2n + 1, ∀n ∈ N0, become
complex. In Section 3 we will prove that as long as |ε| stays sufficiently small, those eigenvalues
remain real. We will actually treat the case of small |ε| independently of the sign of ε: for ε > 0
we recover the known result proved in [17].

Remark 1. As in [3, 10], the results of Sections 2 and 3 are obtained by proving the stability
of the unperturbed eigenvalues. For the notion of stability see e.g. [19, 20]. In particular, let us
recall that if {H(ε) : |ε| < ε0} is a family of closed PT symmetric operators in a Hilbert space H
and if a simple (i.e., non degenerate) eigenvalue λ of H(0) is stable with respect to the family
{H(ε) : |ε| < ε0}, then for |ε| sufficiently small there exists one and only one eigenvalue λ(ε)
of H(ε) near λ such that

λ(ε) → λ, as ε → 0.

Now, recalling that the eigenvalues of a PT symmetric operator come in pairs of complex
conjugate values, we can assert that the uniqueness of λ(ε) implies its reality: in fact, if λ(ε) is
not real then there are two distinct eigenvalues, λ(ε) and λ(ε), and not just one as stated above.

Assume now that H= L2(Rd), d ≥ 1, and that H(ε), |ε| < ε0, is formally given by

H(ε) = p2 + V1 + Wε,

where p2 = −∆ = −
d∑

k=1

d2

dx2
k
, x = (x1, . . . , xk) ∈ Rd and V1,Wε ∈ L2

loc(Rd). Moreover we assume

that H(ε) has discrete spectrum, i.e. each point in the spectrum is an isolated eigenvalue with
finite multiplicity (for a review of the notion of multiplicity of an eigenvalue see also [3]). Let
H∗(ε) denote the adjoint of H(ε) and assume that both H(ε) and H∗(ε) have C∞

0 (Rd) as a core.
As recalled in [10] the stability of the eigenvalues of H(0) in the framework of the stabil-

ity theory developed by Hunziker and Vock in [21] holds if the following three conditions are
satisfied.

(1) For all u ∈ C∞
0 (Rd)

lim
ε→0

‖H(ε)u−H(0)u‖ = 0 (6)

and

lim
ε→0

‖H∗(ε)u−H∗(0)u‖ = 0. (7)
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(2) There exist constants a, b > 0 and γ, |γ| < π/2, such that

〈u, p2u〉 ≤ a{cos γ<〈u, H(ε)u〉+ sin γ=〈u, H(ε)u〉+ b〈u, u〉} (8)

for all u ∈ C∞
0 (Rd).

(3) For any z ∈ C, there exist positive constants δ, n0 and ε1 such that

dn(z,H(ε)) ≥ δ > 0, (9)

for all n > n0 and |ε| < ε1, where dn(z,H(ε)) := dist(z,Nn(ε)) and

Nn(ε) := {〈u, H(ε)u〉 : u ∈ D(H(ε)), ‖u‖ = 1, u(x) = 0 for |x| < n}

is the so called “numerical range at infinity” (see [3]).

Here D(H(ε)) denotes the domain of H(ε) and 〈u, v〉 :=
∫

Rd u(x)v(x)dx denotes the standard
scalar product in L2(Rd). For future reference we summarize this result in the following criterion,
proved in [21] (see also [10]).

Proposition 1. The eigenvalues of H(0) are stable w.r.t. the family H(ε), |ε| < ε0, if the above
conditions (1)–(3) are satisfied.

In Sections 2 and 3 we will prove that the operator families H2(ε) and H3(ε) satisfy this
criterion and, in view of Remark 1 above, this is enough to ensure the reality of the perturbed
eigenvalues of H2(ε) and H3(ε).

2 The operator family H2(ε): stability and reality
of the perturbed eigenvalues

The Schrödinger operator H2(ε), ε ∈ R, introduced in Section 1 is defined as the closure in L2(R2)
of the minimal operator defined on C∞

0 (R2), we denote its domain D(H2(ε)), and its adjoint
is given by H2(−ε). It has discrete spectrum (see e.g. [20], Theorem XIII.64; we note that the
extension to the present non-selfadjoint case is straightforward) and the unperturbed eigenvalues,
i.e. the eigenvalues of H2(0), are given by

λn1,n2(0) = (2n1 + 1)ω1 + (2n2 + 1)ω2, ∀n1, n2 ∈ N0.

We assume that the frequencies ω1, ω2 > 0 are non-resonant, i.e. the equation k1ω1 + k2ω2 = 0,
k1, k2 ∈ Z, is satisfied if and only if k1, k2 = 0. Then each eigenvalue λn1,n2(0) is simple, i.e.
the corresponding eigenspace has dimension 1. Moreover we assume that r, s ∈ N are not both
even. Then H2(ε) is PT symmetric, where T is complex conjugation and the parity operator P
is defined as follows: if r and s are both odd P changes the sign of one coordinate, i.e. it
can be either (P1u)(x1, x2) = u(−x1, x2) or (P2u)(x1, x2) = u(x1,−x2), ∀x = (x1, x2) ∈ R2,
∀u ∈ L2(R2). If r and s are not both odd a suitable choice for P is (P3u)(x) = u(−x), ∀x ∈ R2,
∀u ∈ L2(R2).

We now prove that conditions (1)–(3) are satisfied.

Proposition 2. Conditions (1)–(3) are satisfied by the operator family H2(ε), ε ∈ R.

Proof. (1) ∀u ∈ C∞
0 (R2) let K = supp(u) denote the support of u; since K is compact in R2,

there exists a constant M > 0 such that |xr
1x

s
2| ≤ M , ∀x = (x1, x2) ∈ K. Therefore

‖H2(ε)u−H2(0)u‖2 = ‖H∗
2 (ε)u−H∗

2 (0)u‖2 =
∫

K
|iεxr

1x
s
2u(x)|2dx

≤ ε2M2

∫
K
|u(x)|2dx = ε2M2‖u‖2, ∀ε ∈ R,

and this yields (6) and (7).
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(2) ∀u ∈ C∞
0 (R2) we have

<〈u, H2(ε)u〉 = 〈u, p2u〉+ ω2
1〈u, x2

1u〉+ ω2
2〈u, x2

2u〉 ≥ 〈u, p2u〉.

Thus, (8) is satisfied with γ = 0, a = 1, b = 0.
(3) Let z ∈ C and ω := min{ω1, ω2}. Let u ∈ D(H2(ε)) be such that ‖u‖ = 1 and u(x) = 0

for |x| < n, n ∈ N. Then

|z − 〈u, H2(ε)u〉| ≥ |〈u, H2(ε)u〉| − |z| ≥ <〈u, H2(ε)u〉 − |z|
≥ ω2

1〈u, x2
1u〉+ ω2

2〈u, x2
2u〉 − |z| ≥ ω2〈u, |x|2u〉 − |z| ≥ ω2n2 − |z|.

Thus, dist(z,Nn(ε)) ≥ ω2n− |z|, ∀ ε ∈ R, ∀n ∈ N, whence lim
n→∞

dn(z, H(ε)) = +∞, ∀ ε ∈ R and

this proves (9). �

Corollary 1. Near each unperturbed eigenvalue λn1,n2(0), n1, n2 ∈ N0, of H2(0) there exists
one and only one eigenvalue λn1,n2(ε) of H2(ε) for ε ∈ R, |ε| small, converging to λn1,n2(0) as
ε → 0. Moreover λn1,n2(ε) is real.

Proof. The first statement follows from Proposition 1 (applicable after Proposition 2), the
definition of stability of eigenvalues and the fact that each eigenvalue λn1,n2(0) of H2(0) is
simple. The reality of λn1,n2(ε) follows from its uniqueness, as anticipated in Remark 1. �

3 The operator family H3(ε): stability and reality
of the perturbed eigenvalues

We first consider the minimal operator in L2(R) defined on C∞
0 (R) by the formal expression (5)

for |ε| < 1, i.e. ∀u ∈ C∞
0 (R) we set

H3(ε)u = −u′′ + x2(ix)εu. (10)

Then (10) can be rewritten as follows

H3(ε)u = −u′′ + e(sign x)iε π
2 |x|2+εu = −u′′ + cos

(
π
2 ε

)
|x|2+εu + (signx)i sin

(
π
2 ε

)
|x|2+εu,

where signx =
{

1, if x ≥ 0
−1, if x < 0.

Then H3(ε) is closable and the domain of its closure (still denoted H3(ε)) is D(H3(ε)) =
H2(R) ∩D(|x|2+ε), ∀ ε: |ε| < 1. Moreover the closed operator H3(ε) has compact resolvent and
therefore discrete spectrum, and it is PT symmetric if T is, once again, the complex conjugation
operator and P is the parity operator defined by (Pu)(x) = u(−x), ∀u ∈ L2(R).

The unperturbed operator H3(0) = p2 + x2, where p2 = − d2

dx2 , corresponds to the one-
dimensional harmonic oscillator and its eigenvalues λn(0) = 2n + 1, n ∈ N0, are simple. Let
us now proceed in analogy with Section 2 and prove that the operator family H3(ε) satisfies
conditions (1)–(3).

Proposition 3. Conditions (1)–(3) are satisfied by the operator family H3(ε), −1 < ε < 1.

Proof. (1) ∀u ∈ C∞
0 (R) let K = supp(u). Then

‖H3(ε)u−H3(0)u‖2 =
∫

K

(
e(sign x)iε π

2 |x|2+ε − x2
)2|u(x)|2dx. (11)

Since K is compact there exists a constant c > 0 such that the integrand expression in the
right hand side of (11) can be bounded from above by c|u(x)|2, ∀x ∈ K, ∀ ε ∈]−1, 1[. Then,
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by Lebesgue’s dominated convergence theorem the r.h.s. of (11) converges to zero as ε → 0 and
this proves (6). A similar argument proves (7).

(2) ∀u ∈ C∞
0 (R2) we have

<〈u, H3(ε)u〉 = 〈u, p2u〉+ cos
(

π
2 ε

)
〈u, |x|2+εu〉 ≥ 〈u, p2u〉.

Thus, as for the case of H2(ε), (8) is satisfied with γ, b = 0 and a = 1.
(3) Again, in analogy with the argument used for H2(ε), let z ∈ C and u ∈ D(H3(ε)) be such

that ‖u‖ = 1 and u(x) = 0 for |x| < n, n ∈ N. Then

|z − 〈u, H3(ε)u〉| ≥ <〈u, H3(ε)u〉 − |z| ≥ cos
(

π
2 ε

)
〈u, |x|2+εu〉 − |z| ≥ n2

2 − |z|

for |ε| < ε1 := 2
3 . �

Now, with an argument analogous to that used to prove Corollary 1 we obtain the following
result.

Corollary 2. Near each eigenvalue λn(0) = 2n + 1, n ∈ N0, of H3(0) there exists one and only
one eigenvalue λn(ε) of H3(ε) for ε ∈]−1, 1[, |ε| small, converging to λn(0) as ε → 0. Moreover
λn(ε) is real.

4 Conclusions

Concerning Section 1 we remark that 2 × 2 matrices can characterize complexified classical
mechanical systems (see e.g. [22]) related to Schrödinger operators (4) for r = s = 1, i.e.

p2
1 + p2

2 + ω2
1x

2
1 + ω2

2x
2
2 + iεx1x2.

Indeed the classical equation of motion can be written as(
ẍ1

ẍ2

)
= −2

(
2ω2

1 iε
iε 2ω2

2

) (
x1

x2

)
, (12)

where ẍk, k = 1, 2, denotes the second time derivative of xk. It is straightforward to study the
eigenvalue problem for the 2×2 matrix in (12), which corresponds to (2) with εk = 2ω2

k, k = 1, 2.
The eigenvalues are

λ±(ε) =
(
ω2

1 + ω2
2

)
±

√(
ω2

1 − ω2
2

)2 − ε2.

We see that the condition |ε| < |ω2
1 − ω2

2|, which yields the reality of the spectrum in quantum
mechanics, also yields the reality of the frequencies of the normal oscillation modes in classical
mechanics. The quantum eigenvalues are given by

λn1,n2(ε) = (2n1 + 1)λ+(ε) + (2n2 + 1)λ−(ε), ∀n1, n2 ∈ N0.

Expanding the functions λ±(ε) in powers of ε we obtain the Rayleigh–Schrödinger pertur-
bation expansion (RSPE) for the eigenvalues λn1,n2(ε). All expansions clearly converge for
|ε| < |ω2

1 − ω2
2|, therefore the radius of convergence of the RSPE coincides with the threshold of

transition between real and complex spectrum.
In a similar way one proves that the complexified classical Hamiltonian corresponding to the

2× 2 matrix (3) for e, b ∈ R

p2
1 + p2

2 + 1
2(e + iε)x2

1 + 1
2(e− iε)x2

2 + bx1x2

admits real normal modes with real frequencies if |ε| < |b|.
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As far as Section 2 is concerned we remark that a suitable generalization regards polynomial
perturbations of the d-dimensional harmonic oscillator, d > 2. In addition, still in dimension
d = 2 one could try to study the case of resonant frequencies, not with stability methods (which
fail because of the degeneracy of the unperturbed eigenvalues), but proving the reality of the
Rayleigh–Schrödinger perturbation expansion and its summability.

Finally, concerning Section 3 an open question is the rigorous proof of the existence of complex
eigenvalues for −1 < ε < 0, supporting the existing numerical results, and the analysis of the
case ε < −1.
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