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1 Introduction

Let Φ(x; y) be a meromorphic function on Cm × Cn in the variables x = (x1, . . . , xm) and
y = (y1, . . . , yn), and consider two operators Ax, By which act on meromorphic functions in x
and y, respectively. We say that Φ(x; y) is a kernel function for the pair (Ax,By) if it satisfies
a functional equation of the form

AxΦ(x; y) = ByΦ(x; y).

In the theory of Jack and Macdonald polynomials [14], certain explicit kernel functions play
crucial roles in eigenfunction expansions and integral representations. Recently, kernel functions
in this sense have been studied systematically by Langmann [12, 13] in the analysis of eigenfunc-
tions for the elliptic quantum integrable systems of Calogero–Moser type, and by Ruijsenaars
[21, 22, 23] for the relativistic elliptic quantum integrable systems of Ruijsenaars–Schneider type.

In this paper we investigate two kinds of kernel functions, of Cauchy type and of dual Cauchy
type, which intertwine pairs of Ruijsenaars difference operators. In the cases of elliptic difference
operators, kernel functions of Cauchy type for the (An−1, An−1) and (BCn, BCn) cases were
found by Ruijsenaars [22, 23]. Extending his result, we present kernel functions of Cauchy type,
as well as those of dual Cauchy type, for the (BCm, BCn) cases with arbitrary m, n (under certain
balancing conditions on the parameters in the elliptic cases). For the trigonometric difference
operators of type A, kernel functions both of Cauchy and dual Cauchy types were already
discussed by Macdonald [14]. Kernel functions of dual Cauchy type for the trigonometric BCn

cases are due to Mimachi [15]. In this paper we develop a unified approach to kernel functions
for Ruijsenaars operators of type A and of type BC, with rational, trigonometric and elliptic
coefficients, so as to cover all these known examples in the difference cases. We expect that our
framework could be effectively applied to the study of eigenfunctions for difference operators of
Ruijsenaars type.

As such an application of kernel functions in the trigonometric BC cases, we derive new
explicit formulas for Koornwinder polynomials attached to single columns and single rows. This
provides with a direct construction of those special cases of the binomial expansion formula for
the Koornwinder polynomials as studied by Okounkov [18] and Rains [19]. We also remark that,
regarding explicit formulas for Macdonald polynomials attached to single rows of type B, C, D,
some conjectures have been proposed by Lassalle [11]. The relationship between his conjectures
and our kernel functions will be discussed in a separate paper.

Our main results on the kernel functions for Ruijsenaars difference operators of type A and
of type BC will be formulated in Section 2. In Section 3 we give a unified proof for them on the
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basis of two key identities. After giving remarks in Section 4 on the passage to the q-difference
operators of Macdonald and Koornwinder, as an application of our approach we present in
Section 5 explicit formulas for Koornwinder polynomials attached to single columns and single
rows. We also include three sections in Appendix. We will give some remarks in Appendix A
on higher order difference operators, and in Appendix B make an explicit comparison of our
kernel functions in the elliptic cases with those constructed by Ruijsenaars [23]. In Appendix C,
we will give a proof of the fact that certain Laurent polynomials, which appear in our explicit
formulas for Koornwinder polynomials attached to single columns and single rows, are special
cases of the BCm interpolation polynomials of Okounkov [18].

2 Kernel functions for Ruijsenaars operators

2.1 Variations of the gamma function

In order to specify the class of Ruijsenaars operators which we shall discuss below, by the
symbol [u] we denote a nonzero entire function in one variable u, satisfying the following Riemann
relation:

[x + u][x− u][y + v][y − v]− [x + v][x− v][y + u][y − u]
= [x + y][x− y][u + v][u− v] (2.1)

for any x, y, u, v ∈ C. Under this condition, it is known that [u] must be an odd function
([−u] = −[u], and hence [0] = 0), and the set Ω of all zeros of [u] forms an additive subgroup
of C. Furthermore such functions are classified into the three categories, rational, trigonometric
and elliptic, according to the rank of the additive subgroup Ω ⊂ C of all zeros of [u]. In fact,
up to multiplication by nonzero constants, [u] coincides with one of the following three types of
functions:

(0) rational case: e
(
au2
)
u (Ω = 0),

(1) trigonometric case: e
(
au2
)
sin(πu/ω1) (Ω = Zω1),

(2) elliptic case: e
(
au2
)
σ(u; Ω) (Ω = Zω1 ⊕ Zω2),

where a ∈ C and e(u) = exp(2π
√
−1u). Also, σ(x; Ω) denotes the Weierstrass sigma function

σ(u; Ω) = u
∏

ω∈Ω; ω 6=0

(
1− u

ω

)
e

u
ω

+ u2

2ω2

associated with the period lattice Ω = Zω1 ⊕ Zω2, generated by ω1, ω2 which are linearly
independent over R.

We start with some remarks on gamma functions associated with the function [u]. Fixing
a nonzero scaling constant δ ∈ C, suppose that a nonzero meromorphic function G(u|δ) on C
satisfies the difference equation

G(u + δ|δ) = [u]G(u|δ) (u ∈ C). (2.2)

Such a function G(u|δ), determined up to multiplication by δ-periodic functions, will be called
a gamma function for [u]. We give typical examples of gamma functions in this sense for the
rational, trigonometric and elliptic cases.

(0) Rational case: For any δ ∈ C (δ 6= 0), the meromorphic function

G(u|δ) = δu/δΓ(u/δ),

defined with the Euler gamma function Γ(u), is a gamma function for [u] = u.
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(1) Trigonometric case: We set z=e(u/ω1) and q=e(δ/ω1), and suppose that Im(δ/ω1)>0
so that |q| < 1. We now consider the function

[u] = z
1
2 − z−

1
2 = 2

√
−1 sin(πu/ω1).

For this [u] two meromorphic functions

G−(u|δ) =
e
(
− δ

2ω1

(
u/δ
2

))
(z; q)∞

, G+(u|δ) = e
(

δ
2ω1

(
u/δ
2

))
(q/z; q)∞, (2.3)

where (z; q)∞ =
∞∏
i=0

(1− qiz), satisfy the difference equations

G−(u + δ|δ) = −[u]G−(u|δ), G+(u + δ|δ) = [u]G+(u|δ),

respectively. Namely, for ε = ±, Gε(u|δ) is a gamma function for ε[u]. (Note that the quadratic
function

(
u
2

)
= 1

2u(u− 1) satisfies
(
u+1

2

)
=
(
u
2

)
+ u.) Another set of gamma functions for ε[u] of

this case is given by

G+(u|δ) =

(
q

1
2 z−

1
2 ; q

1
2

)
∞(

− z
1
2 ; q

1
2

)
∞

, G−(u|δ) =

(
− q

1
2 z−

1
2 ; q

1
2

)
∞(

z
1
2 ; q

1
2

)
∞

by means of the infinite products with base q
1
2 .

(2) Elliptic case: Let p, q be nonzero complex numbers with |p| < 1, |q| < 1. Then the
Ruijsenaars elliptic gamma function

Γ(z; p, q) =
(pq/z; p, q)∞

(z; p, q)∞
, (z; p, q)∞ =

∞∏
i,j=0

(
1− piqjz

)
satisfies the q-difference equation

Γ(qz; p, q) = θ(z; p)Γ(z; p, q), θ(z; p) = (z; p)∞(p/z; p)∞.

Note also Γ(pq/z; p, q) = Γ(z; p, q)−1. We set p = e(ω2/ω1), q = e(δ/ω1) and z = e(u/ω1), and
suppose that Im(ω2/ω1) > 0, Im(δ/ω1) > 0 so that |p| < 1, |q| < 1. Instead of θ(z; p) above, we
consider the function

[u] = −z−
1
2 θ(z; p) = 2

√
−1 sin(πu/ω1)(pz; p)∞(p/z; p)∞

which is a constant multiple of the odd Jacobi theta function with modulus ω2/ω1, so that [u]
should satisfy the Riemann relation. Then the two meromorphic functions

G−(u|δ) = e
(
− δ

2ω1

(
u/δ
2

))
Γ(z; p, q) = e

(
− δ

2ω1

(
u/δ
2

))(pq/z; p, q)∞
(z; p, q)∞

,

G+(u|δ) = e
(

δ
2ω1

(
u/δ
2

))
Γ(pz; p, q) = e

(
δ

2ω1

(
u/δ
2

))(q/z; p, q)∞
(pz; p, q)∞

. (2.4)

satisfy the difference equations

G−(u + δ|δ) = −[u]G−(u|δ), G+(u + δ|δ) = [u]G+(u|δ),

respectively. Another set of gamma functions for ε[u] is given by

Gε(u|δ) = θ
(
εz

1
2 ; q

1
2
)
Γ(z; p, q) = Γ

(
εp

1
2 z

1
2 ; p

1
2 , q

1
2
)
Γ
(
− εz

1
2 ; p

1
2 , q

1
2
)

(ε = ±).

In the limit as p → 0, these examples recover the previous ones in the trigonometric case.
We remark that, if G(u|δ) is a gamma function for [u], then G(δ−u|δ)−1 is a gamma function

for −[u]. Also, when we transform [u] to [u]′ = ce(au2)[u], a gamma function for [u]′ is obtained
for instance as G′(u|δ) = cu/δe(ap(u))G(u|δ), where p(u) = 1

3δu3 − 1
2u2 + δ

6u.
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2.2 Kernel functions of type A

The elliptic difference operator which we will discuss below was introduced by Ruijsenaars [20]
together with the commuting family of higher order difference operators. In order to deal with
rational, trigonometric and elliptic cases in a unified manner, we formulate our results for this
class of (first order) difference operators in terms of an arbitrary function [u] satisfying the
Riemann relation. (As to the commuting family of higher order difference operators, we will
give some remarks later in Appendix A.)

Fix a nonzero entire function [u] satisfying the Riemann relation (2.1). For type A, we
consider the difference operator

D(δ,κ)
x =

m∑
i=1

Ai(x;κ)T δ
xi

, Ai(x;κ) =
∏

1≤j≤m; j 6=i

[xi − xj + κ]
[xi − xj ]

in m variables x = (x1, . . . , xm), where δ, κ ∈ C are complex parameters /∈ Ω, and T δ
xi

stands for
the δ-shift operator

T δ
xi

f(x1, . . . , xm) = f(x1, . . . , xi + δ, . . . , xm) (i = 1, . . . ,m).

Note that this operator remains invariant if one replaces the function [u] with its multiple by
any nonzero constant.

By taking a gamma function G(u|δ) for (any constant multiple of) [u] as in (2.2), we define
a function ΦA(x; y|δ, κ) by

ΦA(x; y|δ, κ) =
m∏

j=1

n∏
l=1

G(xj + yl + v − κ|δ)
G(xj + yl + v|δ)

(2.5)

with an extra parameter v. We also consider the function

ΨA(x; y) =
m∏

j=1

n∏
l=1

[xj − yl + v]. (2.6)

These two functions ΦA(x; y|δ, κ) and ΨA(x; y) are kernel functions of Cauchy type and of dual
Cauchy type for this case, respectively.

Theorem 2.1. Let [u] be any nonzero entire function satisfying the Riemann relation.

(1) If m = n, then the function ΦA(x; y|δ, κ) defined as (2.5) satisfies the functional equation

D(δ,κ)
x ΦA(x; y|δ, κ) = D(δ,κ)

y ΦA(x; y|δ, κ).

(2) Under the balancing condition mκ+nδ = 0, the function ΨA(x; y) defined as (2.6) satisfies
the functional equation

[κ]D(δ,κ)
x ΨA(x; y) + [δ]D(κ,δ)

y ΨA(x; y) = 0.

Statement (1) of Theorem 2.1 is due to Ruijsenaars [22, 23]. (See Appendix B.1 for an
explicit comparison between ΦA(x; y) and Ruijsenaars’ kernel function of [23].) In the scope of
the present paper, the balancing conditions (m = n in (1), and mκ + nδ = 0 in (2)) seem to be
essential in the elliptic cases. In the context of elliptic differential operators of Calogero–Moser
type, however, Langmann [13] has found a natural generalization of the kernel identities of
Cauchy type, which include the differentiation with respect to the elliptic modulus, to arbitrary
pair (m,n). It would be a intriguing problem to find a generalization of this direction for elliptic
difference operators of Ruijsenaars type.

In trigonometric and rational cases, these functions ΦA(x; y|δ, κ) and ΨA(x; y) satisfy more
general functional equations without balancing conditions.
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Theorem 2.2. Suppose that [u] is a constant multiple of sin(πu/ω1) or u.

(1) For arbitrary m and n, the function ΦA(x; y|δ, κ) satisfies the functional equation

D(δ,κ)
x ΦA(x; y|δ, κ)−D(δ,κ)

y ΦA(x; y|δ, κ) =
[(m− n)κ]

[κ]
ΦA(x; y|δ, κ).

(2) The function ΨA(x; y) satisfies the functional equation

[κ]D(δ,κ)
x ΨA(x; y) + [δ]D(κ,δ)

y ΨA(x; y) = [mκ + nδ]ΨA(x; y).

These results for the trigonometric (and rational) cases are essentially contained in the dis-
cussion of Macdonald [14].

A unified proof of Theorems 2.1 and 2.2 will be given in Section 3. We will also explain in
Section 4 how Theorem 2.2 is related with the theory of Macdonald polynomials.

2.3 Kernel functions of type BC

The (first-order) elliptic difference operator of type BC was first proposed by van Diejen [2]. It
is also known by Komori–Hikami [9] that it admits a commuting family of higher order difference
operators. In the following we use the expression of the first-order difference operator due to [9],
with modification in terms of [u]. (In Appendix B, we will give some remarks on the comparison
of our difference operator with other expressions in the literature.)

For type BC, we consider difference operators of the form

E(µ|δ,κ)
x =

m∑
i=1

A+
i (x;µ|δ, κ)T δ

xi
+

m∑
i=1

A−
i (x;µ|δ, κ)T−δ

xi
+ A0(x;µ|δ, κ) (2.7)

including 2ρ parameters µ = (µ1, . . . , µ2ρ) besides (δ, κ), where ρ = 1, 2 or 4 according as
rank Ω = 0, 1, or 2. In the trigonometric and rational cases of type BC, we assume that the
function [u] does not contain exponential factors. Namely, we assume that [u] is a constant
multiple of one of the functions

u (ρ = 1), sin(πu/ω1) (ρ = 2), e
(
au2
)
σ(u; Ω) (ρ = 4). (2.8)

In each case we define ω1, . . . , ωρ ∈ Ω as

(0) rational case: Ω = 0, ω1 = 0,

(1) trigonometric case: Ω = Zω1, ω2 = 0,

(2) elliptic case: Ω = Zω1 ⊕ Zω2, ω3 = −ω1 − ω2, ω4 = 0.

Then the quasi-periodicity of [u] is described as

[u + ωr] = εre
(
ηr

(
u + 1

2ωr

))
[u] (r = 1, . . . , ρ)

for some ηr ∈ C and εr = ±1. In the trigonometric and rational cases (without exponential
factors), one can simply take ηr = 0 (r = 1, . . . , ρ). Note also that [u] admits the duplication
formula of the form

[2u] = 2[u]
ρ−1∏
s=1

[u− 1
2ωs]

[−1
2ωs]

,
[2u + c]

[2u]
=

ρ∏
s=1

[u + 1
2(c− ωs)]

[u− 1
2ωs]

. (2.9)
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(In the trigonometric and rational cases, these formulas fail for [u] containing nontrivial expo-
nential factors e(au2).) In relation to the parameters µ = (µ1, . . . , µ2ρ), we introduce

c(µ|δ,κ) =
2ρ∑

s=1

µs − ρ
2(δ + κ) +

ρ∑
s=1

ωs.

This parameter is related to quasi-periodicity of the coefficients of the Ruijsenaars operator,

and plays a crucial role in various places of our argument. Note that the last term
ρ∑

s=1
ωs is

nontrivial only in the trigonometric case: it is ω1 when ρ = 2, and 0 when ρ = 1, 4.
With these data, we define the coefficients of the Ruijsenaars operator E

(µ|δ,κ)
x of type BC

as follows:

A+
i (x;µ|δ, κ) =

2ρ∏
s=1

[xi + µs]

ρ∏
s=1

[xi − 1
2ωs][xi + 1

2(δ − ωs)]

∏
1≤j≤m; j 6=i

[xi ± xj + κ]
[xi ± xj ]

,

A−
i (x;µ|δ, κ) = A+

i (−x;µ|δ, κ) (i = 1, . . . ,m), (2.10)

with an abbreviated notation [x± y] = [x + y][x− y] of products, and

A0(x;µ|δ, κ) =
ρ∑

r=1

A0
r(x;µ|δ, κ),

A0
r(x;µ|δ, κ) =

e(−(mκ + 1
2c(µ|δ,κ))ηr)

2ρ∏
s=1

[12(ωr − δ) + µs]

[κ]
∏
s 6=r

[12(ωr − ωs)]
ρ∏

s=1
[12(ωr − ωs + κ− δ)]

m∏
j=1

[12(ωr − δ)± xj + κ]
[12(ωr − δ)± xj ]

. (2.11)

This operator E
(µ|δ,κ)
x is one of the expressions for the first-order Ruijsenaars operator of type

BCm due to Komori–Hikami [9, (4.21)]. We remark that this difference operator E
(µ|δ,κ)
x has

symmetry

E(µ|−δ,−κ)
x = E(−µ|δ,κ)

x (2.12)

with respect to the sign change of parameters. (This property can be verified directly by using

the quasi-periodicity of [u] and the fact that
ρ∏

s=1
εs = 1,−1,−1 according as ρ = 1, 2, 4.) Note

also that it remains invariant if one replace the function [u] with its multiple by a nonzero
constant. By the duplication formula (2.9), one can also rewrite the operator E

(µ|δ,κ)
x in the

form

1
4

ρ−1∏
s=1

[12ωs]2E(µ|δ,κ)
x =

m∑
i=1

2ρ∏
s=1

[xi + µs]

[2xi][2xi + δ]

∏
1≤j≤m; j 6=i

[xi ± xj + κ]
[xi ± xj ]

T δ
xi

+
m∑

i=1

2ρ∏
s=1

[−xi + µs]

[−2xi][−2xi + δ]

∏
1≤j≤m; j 6=i

[−xi ± xj + κ]
[−xi ± xj ]

T−δ
xi

+
ρ∑

r=1

Kr

2ρ∏
s=1

[12(ωr − δ) + µs]

2[κ][κ− δ]

m∏
j=1

[12(ωr − δ)± xj + κ]
[12(ωr − δ)± xj ]

, (2.13)

where Kr = e
(
− (ωr + (m + 1)κ− δ + 1

2c(µ|δ,κ))ηr

)
.
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By using any gamma function G(u|δ) for (a constant multiple of) [u], we define a function
ΦBC(x; y|δ, κ) of Cauchy type, either by

ΦBC(x; y|δ, κ) =
m∏

j=1

n∏
l=1

G(xj ± yl + 1
2(δ − κ)|δ)

G(xj ± yl + 1
2(δ + κ)|δ)

, (2.14)

or by

ΦBC(x; y|δ, κ) =
m∏

j=1

n∏
l=1

∏
ε1,ε2=±

G(ε1xj + ε2yl + 1
2(δ − κ)|δ). (2.15)

Note that the function (2.15) differs from (2.14), only by a multiplicative factor which is δ-
periodic in all the variables xj (j = 1, . . . ,m) and yl (l = 1, . . . , n). We also introduce the
function

ΨBC(x; y) =
m∏

j=1

n∏
l=1

[xj ± yl] (2.16)

of dual Cauchy type.

Theorem 2.3. Suppose that [u] is a constant multiple of any function in (2.8).

(1) Under the balancing condition

2(m− n)κ + c(µ|δ,κ) = 0,

the function ΦBC(x; y|δ, κ) defined as (2.14) or (2.15) satisfies the functional equation

E(µ|δ,κ)
x ΦBC(x; y|δ, κ) = E(ν|δ,κ)

y ΦBC(x; y|δ, κ),

where the parameters ν = (ν1, . . . , ν2ρ) for the y variables are defined by

νr = 1
2(δ + κ)− µr (r = 1, . . . , 2ρ).

(2) Under the balancing condition

2mκ + 2nδ + c(µ|δ,κ) = 0,

the function ΨBC(x; y) defined as (2.16) satisfies the functional equation

[κ]E(µ|δ,κ)
x ΨBC(x; y) + [δ]E(µ|κ,δ)

y ΨBC(x; y) = 0.

Statement (1) for the cases m = n is due to Ruijsenaars [21, 23]. An explicit comparison
will be made in Appendix B.2 between our ΦBC(x; y|δ, κ) and Ruijsenaars’ kernel function of
type BC in [23].

In the case of 0 variables, the Ruijsenaars operator E
(µ|δ,κ)
x with m = 0 reduces to the

multiplication operator by the constant

C(µ|δ,κ) =
ρ∑

r=1

e(−1
2c(µ|δ,κ)ηr)

2ρ∏
s=1

[12(ωr − δ) + µs]

[κ]
∏
s 6=r

[12(ωr − ωs)]
ρ∏

s=1
[12(ωr − ωs + κ− δ)]

.
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We remark that Theorem 2.3, (2) for n = 0 implies that, when 2mκ + c(µ|δ,κ) = 0, the constant
function 1 is an eigenfunction for E

(µ|δ,κ)
x :

[κ]E(µ|δ,κ)
x (1) = −[δ]C(µ|κ,δ).

(Statement (1) for n = 0 gives the same formula since C(ν|δ,κ) = −[δ]C(µ|κ,δ)/[κ].)
In the trigonometric and rational cases, these functions ΦBC(x; y|δ, κ) and ΨBC(x; y) satisfy

the following functional equations without balancing conditions.

Theorem 2.4. Suppose that [u] is a constant multiple of sin(πu/ω1) (ρ = 2) or u (ρ = 1).

(1) The function ΦBC(x; y|δ, κ) satisfies the functional equation

[κ]E(µ|δ,κ)
x ΦBC(x; y|δ, κ)− [κ]E(ν|δ,κ)

y ΦBC(x; y|δ, κ)

= [2(m− n)κ + c(µ|δ,κ)]ΦBC(x; y|δ, κ),

where νr = 1
2(δ + κ)− µr (r = 1, . . . , 2ρ).

(2) The function ΨBC(x; y) satisfies the functional equation

[κ]E(µ|δ,κ)
x ΨBC(x; y) + [δ]E(µ|κ,δ)

y ΨBC(x; y) = [2mκ + 2nδ + c(µ|δ,κ)]ΨBC(x; y).

As a special case n = 0 of this theorem, we see that the constant function 1 is a eigenfunction
of E

(µ|δ,κ)
x for arbitrary values of the parameters. Theorems 2.3 and 2.4 will be proved in

Section 3.
In the trigonometric and rational BC cases, it is convenient to introduce another difference

operator

D(µ|δ,κ)
x =

m∑
i=1

A+
i (x;µ|δ, κ)

(
T δ

xi
− 1
)

+
m∑

i=1

A−
i (x;µ|δ, κ)

(
T−δ

xi
− 1
)

with the same coefficients Aε
i(x;µ|δ, κ) (i = 1, . . . ,m; ε = ±) as those of the Ruijsenaars opera-

tor E
(µ|δ,κ)
x . In the trigonometric case, this operator D

(µ|δ,κ)
x is a constant multiple of Koorn-

winder’s q-difference operator expressed in terms of additive variables. By using the relation

D(µ|δ,κ)
x = E(µ|δ,κ)

x − E(µ|δ,κ)
x (1),

one can rewrite the functional equations in Theorem 2.4 into those for D
(µ|δ,κ)
x .

Theorem 2.5. Suppose that [u] = 2
√
−1 sin(πu/ω1), ρ = 2 (resp. [u] = u, ρ = 1).

(1) The function ΦBC(x; y|δ, κ) satisfies the functional equation

[κ]D(µ|δ,κ)
x ΦBC(x; y|δ, κ)− [κ]D(ν|δ,κ)

y ΦBC(x; y|δ, κ)

= [mκ][−nκ][(m− n)κ + c(µ|δ,κ)]ΦBC(x; y|δ, κ) (resp. = 0),

where νr = 1
2(δ + κ)− µr (r = 1, . . . , 2ρ).

(2) For arbitrary m, n, the function ΨBC(x; y) satisfies the functional equation

[κ]D(µ|δ,κ)
x ΨBC(x; y) + [δ]D(µ|κ,δ)

y ΨBC(x; y)

= [mκ][nδ][mκ + nδ + c(µ|δ,κ)]ΨBC(x; y) (resp. = 0).

Statement (2) of Theorem 2.5 recovers a main result of Mimachi [15]. A proof of Theorem 2.5
will be given in Section 3.4. Also, we will explain in Section 4 how Theorem 2.5 is related to
the theory of Koornwinder polynomials.
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3 Derivation of kernel functions

3.1 Key identities

We start with a functional identity which decomposes a product of functions expressed by [u]
into partial fractions.

Proposition 3.1. Let [u] be any nonzero entire function satisfying the Riemann relation. Then,
for variables z, (x1, . . . , xN ), and parameters (c1, . . . , cN ), we have

[c]
N∏

j=1

[z − xj + cj ]
[z − xj ]

=
N∑

i=1

[ci]
[z − xi + c]

[z − xi]

∏
1≤j≤N ; j 6=i

[xi − xj + cj ]
[xi − xj ]

, (3.1)

where c = c1 + · · ·+ cN .

This identity can be proved by the induction on the number of factors by using the Riemann
relation for [u]. Note that, by setting yj = xj − cj , this identity can also be rewritten as

[c]
N∏

j=1

[z − yj ]
[z − xj ]

=
N∑

i=1

[xi − yi]
[z − xi + c]

[z − xi]

∏
1≤j≤N ; j 6=i

[xi − yj ]
[xi − xj ]

,

where c =
N∑

j=1
(xj − yj).

From this proposition, we obtain the following lemma, which provides key identities for our
proof of kernel relations.

Lemma 3.1. Consider N variables x1, . . . , xN and N complex parameters c1, . . . , cN .

(1) Let [u] be any nonzero function satisfying the Riemann relation. Then under the balancing

condition
N∑

j=1
cj = 0, we have an identity

N∑
i=1

[ci]
∏

1≤j≤N ; j 6=i

[xi − xj + cj ]
[xi − xj ]

= 0. (3.2)

as a meromorphic function in (x1, . . . , xN ).

(2) Suppose that [u] is a constant multiple of sin(πu/ω1) or u. Then for any c1, . . . , cN ∈ C,
we have an identity

N∑
i=1

[ci]
∏

1≤j≤N ; j 6=i

[xi − xj + cj ]
[xi − xj ]

=

[
N∑

i=1

ci

]
(3.3)

as a meromorphic function in (x1, . . . , xN ).

When [z] = sin(πz/ω1), we have [z + a]/[z + b] → e(−(a − b)/2ω1) as Im(z/ω1) → ∞. This
implies in (3.1)

N∏
j=1

[z − xj + cj ]
[z − xj ]

→ e(−c/2ω1),
[z − xi + c]

[z − xi]
→ e(−c/2ω1) (i = 1, . . . ,m),

as Im(z/ω1) →∞. Hence we obtain (3.3) from (3.1). In the rational case [z] = z, formula (3.3)
is derived by a simple limiting procedure z →∞.
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3.2 Case of type A

We apply the key identities (3.2) and (3.3) for studying kernel functions. For two sets of variables
x = (x1, . . . , xm) and y = (y1, . . . , yn), we consider the following meromorphic function:

F (z) =
m∏

j=1

[z − xj + κ]
[z − xj ]

n∏
l=1

[z − yl + v + λ]
[z − yl + v]

where κ, λ and v are complex parameters. Then by Proposition 3.1 this function F (z) is
expanded as

[c]F (z) = [κ]
m∑

i=1

[z − xi + c]
[z − xi]

∏
1≤j≤m; j 6=i

[xi − xj + κ]
[xi − xj ]

n∏
l=1

[xi − yl + v + λ]
[xi − yl + v]

+ [λ]
n∑

k=1

[z − yk + v + c]
[z − yk + v]

∏
1≤l≤n; l 6=k

[yk − yl + λ]
[yk − yl]

m∏
j=1

[yk − xj − v + κ]
[yk − xj − v]

= [κ]
m∑

i=1

[z − xi + c]
[z − xi]

Ai(x;κ)
n∏

l=1

[xi − yl + v + λ]
[xi − yl + v]

+ [λ]
n∑

k=1

[z − yk + v + c]
[z − yk + v]

Ak(y;λ)
m∏

j=1

[yk − xj − v + κ]
[yk − xj − v]

,

where c = mκ+nλ, with the coefficients Ai(x;κ), Ak(y;λ) of Ruijsenaars operators in x variables
and y variables. By Lemma 3.1, under the balancing condition c = mκ + nλ = 0, we have

[κ]
m∑

i=1

Ai(x;κ)
n∏

l=1

[xi − yl + v + λ]
[xi − yl + v]

+ [λ]
n∑

k=1

Ak(y;λ)
m∏

j=1

[yk − xj − v + κ]
[yk − xj − v]

= 0.

Also, when [u] is a constant multiple of sin(πu/ω1) or u, we always have

[κ]
m∑

i=1

Ai(x;κ)
n∏

l=1

[xi − yl + v + λ]
[xi − yl + v]

+ [λ]
n∑

k=1

Ak(y;λ)
m∏

j=1

[yk − xj − v + κ]
[yk − xj − v]

= [mκ + nλ].

We now try to find a function Φ(x; y) satisfying the system of first-order difference equations

T δ
xi

Φ(x; y) =
n∏

l=1

[xi − yl + v + λ]
[xi − yl + v]

Φ(x; y) (i = 1, . . . ,m),

T τ
yk

Φ(x; y) =
m∏

j=1

[yk − xj − v + κ]
[yk − xj − v]

Φ(x; y) (k = 1, . . . , n), (3.4)

where τ stands for the unit scale of difference operators for y variables. In order to fix the idea,
assume that the balancing condition mκ+nλ = 0 is satisfied. Then, any solution of this system
should satisfy the functional equation

[κ]
m∑

i=1

Ai(x;κ)T δ
xi

Φ(x; y) + [λ]
n∑

k=1

Ak(y;λ)T τ
yk

Φ(x; y) = 0,

namely,

[κ]D(δ,κ)
x Φ(x; y) + [λ]D(τ,λ)

y Φ(x; y) = 0.
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The compatibility condition for the system (3.4) of difference equations is given by

[xi − yk − τ + v + λ][xi − yk + v]
[xi − yk − τ + v][xi − yk + v + λ]

=
[yk − xi − δ − v + κ][yk − xi − v]
[yk − xi − δ − v][yk − xi − v + κ]

for i = 1, . . . ,m and k = 1, . . . , n. From this we see there are (at least) two cases where the
difference equation (3.4) becomes compatible:

(case 1) : τ = −δ, λ = −κ, v : arbitrary,

(case 2) : τ = κ, λ = δ, v : arbitrary.

In the first case, the difference equation to be solved is:

T δ
xi

Φ(x; y) =
n∏

l=1

[xi − yl + v − κ]
[xi − yl + v]

Φ(x; y) (i = 1, . . . ,m),

T−δ
yk

Φ(x; y) =
m∏

j=1

[yk − xj − v + κ]
[yk − xj − v]

Φ(x; y) (k = 1, . . . , n).

This system is solved by

Φ−
A(x; y|δ, κ) =

m∏
j=1

n∏
l=1

G(xj − yl + v − κ|δ)
G(xj − yl + v|δ)

.

Hence we see that Φ−
A(x; y|δ, κ) satisfies the functional equation

D(δ,κ)
x Φ−

A(x; y|δ, κ)−D(−δ,−κ)
y Φ−

A(x; y|δ, κ) = 0,

under the balancing condition (m− n)κ = 0, namely, m = n. By setting ΦA(x; y) = Φ−
A(x;−y),

we obtain

D(δ,κ)
x ΦA(x; y|δ, κ)−D(δ,κ)

y ΦA(x; y|δ, κ) = 0

as in Theorem 2.1. The second case

T δ
xi

Φ(x; y) =
n∏

l=1

[xi − yl + v + δ]
[xi − yl + v]

Φ(x; y) (i = 1, . . . ,m),

T κ
yk

Φ(x; y) =
m∏

j=1

[yk − xj − v + κ]
[yk − xj − v]

Φ(x; y) (k = 1, . . . , n)

is solved by

ΨA(x; y) =
m∏

j=1

n∏
l=1

[xj − yl + v].

Hence, under the balancing condition mκ + nδ = 0, we have

[κ]D(δ,κ)
x ΨA(x; y) + [δ]D(κ,δ)

y ΨA(x; y) = 0.

This completes the proof of Theorem 2.1.
When [u] is a constant multiple of sin(πu/ω1) or u, for any solution Φ(x; y) of the system (3.4)

of difference equations we have

[κ]
m∑

i=1

Ai(x;κ)T δ
xi

Φ(x; y) + [λ]
n∑

k=1

Ak(y;λ)T κ
yk

Φ(x; y) = [mκ + nλ]Φ(x; y),
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namely,

[κ]D(δ,κ)
x Φ(x; y) + [λ]D(τ,λ)

y Φ(x; y) = [mκ + nλ]Φ(x; y)

without imposing the balancing condition. This implies that the functions ΦA(x; y|δ, κ) and
ΨA(x; y) in these trigonometric and rational cases satisfy the functional equations

D(δ,κ)
x ΦA(x; y|δ, κ)−D(δ,κ)

y ΦA(x; y|δ, κ) =
[(m− n)κ]

[κ]
ΦA(x; y|δ, κ)

and

[κ]D(δ,κ)
x ΨA(x; y) + [δ]D(κ,δ)

y ΨA(x; y) = [mκ + nδ]ΨA(x; y).

respectively, as stated in Theorem 2.2.

3.3 Case of type BC

In this BC case, we assume that [u] is a constant multiple of one of the following functions:

u (ρ = 1), sin(πu/ω1) (ρ = 2), e
(
au2
)
σ(u; Ω) (ρ = 4).

In order to discuss difference operators of type BC, we consider the meromorphic function

F (z) =

2ρ∏
s=1

[z + µs]

ρ∏
s=1

[z + 1
2(δ − ωs)][z + 1

2(κ− ωs)]

m∏
j=1

[z ± xj + κ]
[z ± xj ]

n∏
l=1

[z ± yl + v + λ]
[z ± yl + v]

. (3.5)

By Proposition 3.1 it can be expanded as

[c]F (z) =
m∑

i=1

[z − xi + c]
[z − xi]

P+
i +

m∑
i=1

[z + xi + c]
[z + xi]

P−
i

+
n∑

k=1

[z − yk + v + c]
[z − yk + v]

Q+
k +

n∑
k=1

[z + yk + v + c]
[z + yk + v]

Q−
k

+
ρ∑

r=1

[z + 1
2(δ − ωr) + c]

[z + 1
2(δ − ωr)]

Rr +
ρ∑

r=1

[z + 1
2(κ− ωr) + c]

[z + 1
2(κ− ωr)]

Sr (3.6)

into partial fractions, where

c = 2mκ + 2nλ +
2ρ∑

s=1

µs − ρ
2(δ + κ) +

ρ∑
s=1

ωs = 2mκ + 2nλ + c(µ|δ,κ).

Also by Lemma 3.1, we see that expression∑
1≤i≤m; ε=±

P ε
i +

∑
1≤k≤n; ε=±

Qε
k +

∑
1≤r≤ρ

Rr +
∑

1≤r≤ρ

Sr

reduces to 0 when the balancing condition c = 0 is satisfied, or to [c] when [u] is trigonometric
or rational. A remarkable fact is that, if the parameter v is chosen appropriately, then the
expansion coefficients of F (z) are expressed in terms of the coefficients of Ruijsenaars operators
of type BC.
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Proposition 3.2. When v = 1
2(δ−λ), the function F (z) defined by (3.5) is expressed as follows

in terms of the coefficients of Ruijsenaars operators:

[c]F (z) =
[c]

2ρ∏
s=1

[z + µs]

ρ∏
s=1

[z + 1
2(δ − ωs)][z + 1

2(κ− ωs)]

m∏
j=1

[z ± xj + κ]
[z ± xj ]

n∏
l=1

[z ± yl + v + λ]
[z ± yl + v]

= [κ]
∑

1≤i≤m; ε=±

[z − εxi + c]
[z − εxi]

Aε
i(x;µ|δ, κ)

n∏
l=1

[εxi ± yl + 1
2(δ + λ)]

[εxi ± yl + 1
2(δ − λ)]

+ [κ]
ρ∑

r=1

e
(

1
2cηr

) [z + 1
2(δ − ωr) + c]

[z + 1
2(δ − ωr)]

A0
r(x;µ|δ, κ)

+ [λ]
∑

1≤k≤n; ε=±

[z − εyk + v + c]
[z − εyk + v]

Aε
k(y; ν|τ, λ)

m∏
j=1

[εyk ± xj + 1
2(τ + κ)]

[εyk ± xj + 1
2(τ − κ)]

+ [λ]
ρ∑

r=1

e
(

1
2cηr

) [z + 1
2(κ− ωr) + c]

[z + 1
2(κ− ωr)]

A0
r(y; ν|τ, λ),

where

c = 2mκ + 2nλ + c(µ|δ,κ), τ = κ + λ− δ, ν = (µ1 − v, . . . , µ2ρ − v).

Proof. The expansion coefficients in (3.6) are determined from the residues at the correspond-
ing poles. We first remark that

P+
i =

[κ]
2ρ∏

s=1
[xi + µs]

ρ∏
s=1

[xi + 1
2(δ − ωs)][xi + 1

2(κ− ωs)]

[2xi + κ]
[2xi]

m∏
j 6=i

[xi ± xj + κ]
[xi ± xj ]

n∏
l=1

[xi ± yl + v + λ]
[xi ± yl + v]

.

Since

[2xi + κ]
[2xi]

=
ρ∏

s=1

[xi + 1
2(κ− ωs)]

[xi − 1
2ωs]

,

we obtain

P+
i =

[κ]
2ρ∏

s=1
[xi + µs]

ρ∏
s=1

[xi − 1
2ωs][xi + 1

2(δ − ωs)]

m∏
j 6=i

[xi ± xj + κ]
[xi ± xj ]

n∏
l=1

[xi ± yl + v + λ]
[xi ± yl + v]

= [κ]A+
i (x;µ|δ, κ)

n∏
l=1

[xi ± yl + v + λ]
[xi ± yl + v]

.

Note that P−
i is obtained from P+

i by replacing xj with −xj (j = 1, . . . ,m). We next look at
the coefficient Q+

k :

Q+
k =

[λ]
2ρ∏

s=1
[yk + µs − v]

ρ∏
s=1

[yk + 1
2(δ − ωs)− v][yk + 1

2(κ− ωs)− v]

[2yk + λ]
[2yk]
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×
∏
l 6=k

[yk ± yl + λ]
[yk ± yl]

m∏
j=1

[yk ± xj + κ− v]
[yk ± xj − v]

.

In view of

[2yk + λ]
[2yk]

=
ρ∏

s=1

[yk + 1
2(λ− ωs)]

[yk − 1
2ωs]

we set 1
2δ − v = 1

2λ, namely, v = 1
2(δ − λ). Then we have

Q+
k =

[λ]
2ρ∏

s=1
[yk + µs − v]

ρ∏
s=1

[yk − 1
2ωs][yk + 1

2(τ − ωs)]

∏
l 6=k

[yk ± yl + λ]
[yk ± yl]

m∏
j=1

[yk ± xj + κ− v]
[yk ± xj − v]

= [λ]A+
k (y; ν|τ, λ)

m∏
j=1

[yk ± xj + κ− v]
[yk ± xj − v]

,

v = 1
2(δ − λ), τ = κ + λ− δ, ν = (µ1 − v, . . . , µ2ρ − v).

The coefficient Q−
k is obtained from Q+

k by the sign change yl → −yl. The coefficient Rr is
given by

Rr =

2ρ∏
s=1

[12(ωr − δ) + µs]∏
s 6=r

[12ωrs]
ρ∏

s=1
[12ωrs + 1

2(κ− δ)]

m∏
j=1

[12(ωr − δ)± xj + κ]
[12(ωr − δ)± xj ]

n∏
l=1

[12(ωr − δ)± yl + v + λ]
[12(ωr − δ)± yl + v]

,

where ωrs = ωr − ωs. When v = 1
2(δ − λ), we have

[12(ωr − δ)± yl + v + λ]
[12(ωr − δ)± yl + v]

=
[12(ωr + λ)± yl]
[12(ωr − λ)± yl]

= e(ληr)

by the quasi-periodicity of [u]. In this way y variables disappear from Rr:

Rr =
e(nληr)

2ρ∏
s=1

[12(ωr − δ) + µs]∏
s 6=r

[12ωrs]
ρ∏

s=1
[12ωrs + 1

2(κ− δ)]

m∏
j=1

[12(ωr − δ)± xj + κ]
[12(ωr − δ)± xj ]

.

Note that the exponential factor e(nληr) is nontrivial only in the elliptic case. In any case, from
2nλ = c− 2mκ− c(µ|δ,κ) we have

Rr = [κ]e
(

1
2cηr

)
A0

r(x;µ|δ, κ).

Finally, when v = 1
2(δ − λ) and τ = κ + λ− δ, we can rewrite Sr as

Sr =

2ρ∏
s=1

[12(ωr − κ) + µs]∏
s 6=r

[12ωrs]
ρ∏

s=1
[12ωrs + 1

2(δ − κ)]

m∏
j=1

[12(ωr + κ)± xj ]
[12(ωr − κ)± xj ]

n∏
l=1

[12(ωr − κ)± yl + v + λ]
[12(ωr − κ)± yl + v]
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=
e(mκηr)

8∏
s=1

[12(ωr − τ) + µs − v]

∏
s 6=r

[12ωrs]
4∏

s=1
[12ωrs + 1

2(λ− τ)]

n∏
l=1

[12(ωr − τ)± yl + λ]
[12(ωr − τ)± yl]

.

Note that x variables have disappeared again by the quasi-periodicity of [u]. Since 2mκ =
c− 2nλ− c(µ|δ,κ) and c(µ|δ,κ) = c(ν|τ,λ), we have

Sr = [λ]e
(

1
2cηr

)
A0

r(y; ν|τ, λ).

This completes the proof of proposition. �

In what follows we set v = 1
2(δ−λ) and τ = κ + λ− δ. Then Proposition 3.2, combined with

Lemma 3.1, implies

[κ]
∑

1≤i≤m; ε=±
Aε

i(x;µ|δ, κ)
n∏

l=1

[εxi ± yl + 1
2(δ + λ)]

[εxi ± yl + 1
2(δ − λ)]

+ [κ]
ρ∑

s=1

A0
r(x;µ|δ, κ)

+ [λ]
∑

1≤k≤n; ε=±
Aε

k(y; ν|τ, λ)
m∏

j=1

[εyk ± xj + 1
2(τ + κ)]

[εyk ± xj + 1
2(τ − κ)]

+ [λ]
ρ∑

r=1

A0
r(y; ν|τ, λ)

= 0, (resp. = [2mκ + 2nλ + c(µ|δ,κ)]),

when the balancing condition 2mκ+2nλ+c(µ|δ,κ) = 0 is satisfied (resp. when [u] is trigonometric
or rational.) Hence we have

Proposition 3.3. Suppose that the parameters δ, κ, τ , λ satisfy the relation δ + τ = κ+λ, and
define ν = (ν1, . . . , ν2ρ) by

νs = µs − 1
2(δ − λ) = µs + 1

2(τ − κ) (s = 1, . . . , 2ρ).

Let Φ(x; y) any meromorphic function in the variables x = (x1, . . . , xm) and y = (y1, . . . , yn)
satisfying the system of first-order difference equations

T δ
xi

Φ(x; y) =
n∏

l=1

[xi ± yl + 1
2(δ + λ)]

[xi ± yl + 1
2(δ − λ)]

Φ(x; y) (i = 1, . . . ,m),

T τ
yk

Φ(x; y) =
m∏

j=1

[yk ± xj + 1
2(τ + κ)]

[yk ± xj + 1
2(τ − κ)]

Φ(x; y) (k = 1, . . . , n). (3.7)

(1) If the balancing condition 2mκ + 2nλ + c(µ|δ,κ) = 0 is satisfied, then Φ(x; y) satisfies the
functional equation

[κ]E(µ|δ,κ)
x Φ(x; y) + [λ]E(ν|τ,λ)

y Φ(x; y) = 0.

(2) If [u] is a constant multiple of sin(πu/ω1) or u, then Φ(x; y) satisfies the functional equation

[κ]E(µ|δ,κ)
x Φ(x; y) + [λ]E(ν|τ,λ)

y Φ(x; y) = [2mκ + 2nλ + c(µ|δ,κ)]Φ(x; y).

In fact there are essentially two cases where the system of first-order linear difference equa-
tions (3.7) become compatible:

(case 1): τ = −δ, λ = −κ, νs = µs − 1
2(δ + κ) (s = 1, . . . , 2ρ);

(case 2): τ = κ, λ = δ, νs = µs (s = 1, . . . , 2ρ). (3.8)
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In the first case, the system (3.7) of difference equations to be solved is:

T δ
xi

Φ(x; y) =
n∏

l=1

[xi ± yl + 1
2(δ − κ)]

[xi ± yl + 1
2(δ + κ)]

Φ(x; y) (i = 1, . . . ,m),

T δ
yk

Φ(x; y) =
m∏

j=1

[yk ± xj + 1
2(δ − κ)]

[yk ± xj + 1
2(δ + κ)]

Φ(x; y) (k = 1, . . . , n).

It is solved either by the function

ΦBC(x; y|δ, κ) =
m∏

j=1

n∏
l=1

G(xj ± yl + 1
2(δ − κ)|δ)

G(xj ± yl + 1
2(δ + κ)|δ)

,

or by

ΦBC(x; y|δ, κ) =
m∏

j=1

n∏
l=1

∏
ε1,ε2=±

G(ε1xj + ε2yl + 1
2(δ − κ)|δ).

Hence we see that, under the balancing condition 2(m−n)κ+c(µ|δ,κ) = 0, ΦBC(x; y|δ, κ) satisfies
the functional equation

E(µ|δ,κ)
x ΦBC(x; y|δ, κ)− E(ν|−δ,−κ)

y ΦBC(x; y|δ, κ) = 0,

for νs = µs − 1
2(δ + κ) (s = 1, . . . , 2ρ). By symmetry (2.12) with respect to the sign change of

parameters, we obtain

E(µ|δ,κ)
x ΦBC(x; y|δ, κ)− E(ν|δ,κ)

y ΦBC(x; y|δ, κ) = 0,

for νs = 1
2(δ + κ)− µs (s = 1, . . . , 2ρ). The second case

T δ
xi

Φ(x; y) =
n∏

l=1

[xi ± yl + δ]
[xi ± yl]

Φ(x; y) (i = 1, . . . ,m),

T κ
yk

Φ(x; y) =
m∏

j=1

[yk ± xj + κ]
[yk ± xj ]

Φ(x; y) (k = 1, . . . , n)

is solved by

ΨBC(x; y) =
m∏

j=1

n∏
l=1

[xj ± yl].

Hence, under the balancing condition 2mκ + 2nδ + c(µ|δ,κ) = 0, this function satisfies the func-
tional equation

[κ]E(µ|δ,κ)
x ΨBC(x; y) + [δ]E(µ|κ,δ)

y ΨBC(x; y) = 0.

This completes the proof of Theorem 2.3. When [u] is trigonometric or rational, Proposi-
tion 3.3, (2) implies that these functions ΦBC(x; y|δ, κ) and ΨBC(x; y) satisfy the functional
equations as stated in Theorem 2.4.
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3.4 Difference operators of Koornwinder type

In the rest of this section, we confine ourselves to the trigonometric and rational BC cases and
suppose that [u] is a constant multiple of sin(πu/ω1) or u. We rewrite our results on kernel
functions for these cases, in terms of difference operator

D(µ|δ,κ)
x =

m∑
i=1

A+
i (x;µ|δ, κ)

(
T δ

xi
− 1
)

+
m∑

i=1

A−
i (x;µ|δ, κ)

(
T−δ

xi
− 1
)

of Koornwinder type. We remark that this operator has symmetry

D(µ|−δ,−κ)
x = D(−µ|δ,κ)

x

with respect to the sign change, as in the case of E
(µ|δ,κ)
x . We show first that D

(µ|δ,κ)
x differs

from E
(µ|δ,κ)
x only by an additive constant in the 0th order term.

Lemma 3.2.

(1) The constant function 1 is an eigenfunction of E
(µ|δ,κ)
x :

E(µ|δ,κ)
x (1) = C(µ|δ,κ) +

1
[κ]
(
[2mκ + c(µ|δ,κ)]− [c(µ|δ,κ)]

)
.

(2) The two difference operators D
(µ|δ,κ)
x and E

(µ|δ,κ)
x are related as

E(µ|δ,κ)
x = D(µ|δ,κ)

x + C(µ|δ,κ) +
1
[κ]
(
[2mκ + c(µ|δ,κ)]− [c(µ|δ,κ)]

)
.

Proof. Since D
(µ|κ)
x = E

(µ|δ,κ)
x − E

(µ|δ,κ)
x (1), statement (2) follows from statement (1). For the

proof of (1), we make use of our Theorem 2.4. This theorem is valid even in the case where the
dimension m or n reduces to zero. When n = 0, Theorem 2.4, (1) implies

[κ]E(µ|δ,κ)
x (1)− [κ]C(ν|δ,κ) = [2mκ + c(µ|δ,κ)],

with νs = 1
2(δ + κ)− µs (s = 1, . . . , 2ρ), since ΦBC(x; y) in this case is the constant function 1.

Also from the case m = n = 0 we have

[κ]C(µ|δ,κ) − [κ]C(ν|δ,κ) = [c(µ|δ,κ)].

Combining these two formulas we obtain

[κ]E(µ|δ,κ)
x (1) = [κ]C(µ|δ,κ) + [2mκ + c(µ|δ,κ)]− [c(µ|δ,κ)]. �

Let us rewrite the functional equations in Proposition 3.3 in terms of the operator D
(µ|δ,κ)
x .

In the notation of Proposition 3.3, (2) we have

[κ]E(µ|δ,κ)
x Φ(x; y) + [λ]E(ν|τ,λ)

y Φ(x; y) = [2mκ + 2nλ + c(µ|δ,κ)]Φ(x; y). (3.9)

As special cases where (m,n) = (m, 0), (0, n) and (0, 0), we have

[κ]E(µ|δ,κ)
x (1) + [λ]C(ν|τ,λ) = [2mκ + c(µ|δ,κ)],

[κ]C(µ|δ,κ) + [λ]E(ν|τ,λ)
y (1) = [2nλ + c(µ|δ,κ)],

[κ]C(µ|δ,κ) + [λ]C(ν|τ,λ) = [c(µ|δ,κ)],
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and hence

−[κ]E(µ|δ,κ)
x (1)Φ(x; y)− [λ]C(ν|τ,λ)Φ(x; y) = −[2mκ + c(µ|δ,κ)]Φ(x; y),

−[κ]C(µ|δ,κ)Φ(x; y)− [λ]E(ν|τ,λ)
y (1)Φ(x; y) = −[2nλ + c(µ|δ,κ)]Φ(x; y),

[κ]C(µ|δ,κ)Φ(x; y) + [λ]C(ν|τ,λ)Φ(x; y) = [c(µ|δ,κ)]Φ(x; y), (3.10)

By taking the sum of the four formulas in (3.9) and (3.10), we obtain

[κ]D(µ|δ,κ)
x Φ(x; y) + [λ]D(ν|τ,λ)

y Φ(x; y) = CΦ(x; y),

C = [2mκ + 2nλ + c(µ|δ,κ)]− [2mκ + c(µ|δ,κ)]− [2nλ + c(µ|δ,κ)] + [c(µ|δ,κ)].

In the rational case, it is clear that C = 0. In the trigonometric case, this constant C can
be factorized. In fact, if we choose [u] = 2

√
−1 sin(πu/ω1) = e(u/2ω1) − e(−u/2ω1), we have

a simple expression

C = [mκ][nλ][mκ + nλ + c(µ|δ,κ)].

Hence, under the assumption of Proposition 3.3, (2), we have

[κ]D(µ|δ,κ)
x Φ(x; y) + [λ]D(ν|τ,λ)

y Φ(x; y) = [mκ][nλ][mκ + nλ + c(µ|δ,κ)]Φ(x; y) (resp. = 0),

when [u] = e(u/2ω1)− e(−u/2ω1) (resp. when [u] = u). Applying this to the two cases of (3.8),
one can easily derive functional equations as in Theorem 2.5.

4 Kernel functions for q-difference operators

In the trigonometric case, it is also important to consider q-difference operators passing to
multiplicative variables. Assuming that [u] = 2

√
−1 sin(πu/ω1) = e(u/2ω1) − e(−u/2ω1), we

define by z = e(u/ω1) the multiplicative variable associated with the additive variable u. When
we write [u] = z

1
2 −z−

1
2 = −z−

1
2 (1−z), we regard the square root z

1
2 as a multiplicative notation

for e(u/2ω1). We set q = e(δ/ω1) and t = e(κ/ω1), assuming that Im(δ/ω1) > 0, namely, |q| < 1.

4.1 Kernel functions for Macdonald operators

We introduce the multiplicative variables z = (z1, . . . , zm) and w = (w1, . . . , wn) corresponding
to the additive variables x = (x1, . . . , xm) and y = (y1, . . . , yn), by zi = e(xi/ω1) (i = 1, . . . ,m)
and wk = e(yk/ω1) (k = 1, . . . , n), respectively.

In this convention of the trigonometric case, the Ruijsenaars difference operator D
(δ,κ)
x of

type A is a constant multiple of the q-difference operator of Macdonald:

D(δ,κ)
x = t−

1
2
(m−1)D(q,t)

z , D(q,t)
z =

m∑
i=1

∏
1≤j≤m; j 6=i

tzi − zj

zi − zj
Tq,zi ,

where Tq,zi denotes the q-shift operator with respect to zi:

Tq,zif(z1, . . . , zm) = f(z1, . . . , qzi, . . . , zm) (i = 1, . . . ,m).

In what follows, we use the gamma function G−(u|δ) of Section 2, (2.3). Then our kernel function
ΦA(x; y|δ, κ) with parameter v = κ is expressed as follows in terms of multiplicative variables:

ΦA(x; y|δ, κ) = e
(

mnδ
2ω1

(
κ/δ
2

))
(z1 · · · zm)

nκ
2δ (w1 · · ·wn)

mκ
2δ Π(z;w|q, t),
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Π(z;w|q, t) =
m∏

j=1

n∏
l=1

(tzjwl; q)∞
(zjwl; q)∞

. (4.1)

The functional equation of Theorem 2.2, (1) thus implies

D(q,t)
z Π(z;w|q, t)− tm−nD(q,t)

w Π(z;w|q, t) =
1− tm−n

1− t
Π(z;w|q, t), (4.2)

which can also be proved by the expansion formula

Π(z;w|q, t) =
∑

l(λ)≤min{m,n}

bλ(q, t)Pλ(z|q, t)Pλ(w|q, t) (4.3)

of Cauchy type for Macdonald polynomials [14]. (Formula (4.2) already implies that Π(z;w|q, t)
has an expansion of this form, apart from the problem of determining the coefficients bλ(q, t).)
On the other hand, kernel function ΨA(x; y) with parameter v = 0 is expressed as

ΨA(x; y) = (z1 · · · zm)−
n
2 (w1 · · ·wn)−

m
2

m∏
j=1

n∏
l=1

(zj − wl).

Then the functional equation of Theorem 2.2, (2) implies

(
(1− t)D(q,t)

z − (1− q)D(t,q)
w − (1− tmqn)

) m∏
j=1

n∏
l=1

(zj − wl) = 0.

This formula corresponds to the dual Cauchy formula

m∏
j=1

n∏
l=1

(zj − wl) =
∑

λ⊂(nm)

(−1)|λ
∗|Pλ(z|q, t)Pλ∗(w|t, q),

where λ∗ = (m− λ′n, . . . , n− λ′1) is the partition representing the complement of λ in the m×n
rectangle.

These kernel functions for Macdonald operators have been applied to the studies of raising
and lowering operators (Kirillov–Noumi [7, 8], Kajihara–Noumi [5]) and integral representation
(Mimachi—Noumi [16], for instance). We also remark that, in this A type case, a kernel function
of Cauchy type for q-Dunkl operators has been constructed by Mimachi—Noumi [17].

4.2 Kernel functions for Koornwinder operators

We now consider the trigonometric BC case. Instead of the additive parameters (µ1, µ2, µ3, µ4)
(ρ = 2), we use the multiplicative parameters

(a, b, c, d) = (e(µ1/ω1), e(µ2/ω1), e(µ3/ω1), e(µ4/ω1)).

These four parameters are the Askey–Wilson parameters (a, b, c, d) for the Koornwinder polyno-
mials Pλ(z; a, b, c, d|q, t).

In this trigonometric BC case, the difference operator

D(µ|δ,κ)
x =

m∑
i=1

A+
i (x;µ|δ, κ)(T δ

xi
− 1) +

m∑
i=1

A−
i (x;µ|δ, κ)(T−δ

xi
− 1),
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which we have discussed in Section 3.4, is a constant multiple of Koornwinder’s q-difference
operator [10]. Let us consider the Koornwinder operator

D(a,b,c,d|q,t)
z =

m∑
i=1

A+
i (z)(Tq,zi − 1) +

m∑
i=1

A−
i (z)

(
T−1

q,zi
− 1
)

in the multiplicative variables, where the coefficients A+
i (z) = A+

i (z; a, b, c, d|q, t) are given by

A+
i (z) =

(1− azi)(1− bzi)(1− czi)(1− dzi)

(abcdq−1)
1
2 tm−1(1− z2

i )(1− qz2
i )

∏
1≤j≤m; j 6=i

1− tziz
±1
j

1− ziz
±1
j

and A−
i (z) = A+

i (z−1) for i = 1, . . . ,m. Then we have D
(µ|δ,κ)
x = −D(a,b,c,d|q,t)

z . Note that this
operatorD(a,b,c,d|q,t)

z is renormalized by dividing the one used in [10] by the factor (abcdq−1)
1
2 tm−1.

In what follows, we simply suppress the dependence on the parameters (a, b, c, d|q, t) as Dz =
D(a,b,c,d|q,t)

z , when we refer to operators or functions associated with these standard parameters.
In Section 2, we described two types of kernel functions (2.14) and (2.15) of Cauchy type.

Also, depending on the choice of G(u|δ) we obtain several kernel functions for each type. From
the gamma functions G∓(u|δ) of (2.3), we obtain two kernel functions of type (2.14); in the
multiplicative variables,

Φ0(z;w|q, t) = (z1 · · · zm)nβ
m∏

j=1

n∏
l=1

(
q

1
2 t

1
2 zjw

±1
l ; q

)
∞(

q
1
2 t−

1
2 zjw

±1
l ; q

)
∞

, (4.4)

and

Φ∞(z;w|q, t) = (z1 · · · zm)−nβ
m∏

j=1

n∏
l=1

(
q

1
2 t

1
2 z−1

j w±1
l ; q

)
∞(

q
1
2 t−

1
2 z−1

j w±1
l ; q

)
∞

,

respectively, where we put β = κ/δ so that t = qβ . Similarly, we obtain two kernel functions of
type (2.15) from G±(u|δ):

Φ+(z;w|q, t) = e
(f(x;y)

ω1δ

) m∏
j=1

n∏
l=1

∏
ε1,ε2=±

(
q

1
2 t

1
2 zε1

j wε2
l ; q

)
∞,

Φ−(z;w|q, t) = e
(
− f(x;y)

ω1δ

) m∏
j=1

n∏
l=1

∏
ε1,ε2=±

(
q

1
2 t−

1
2 zε1

j wε2
l ; q

)−1

∞ ,

where f(x; y) = n
m∑

j=1
x2

j + m
n∑

l=1

y2
l + mn

4 (κ2 − δ2). Each of these four functions differs from

the others by multiplicative factors which are δ-periodic in all the x variables and y variables,
It should be noted, however, that they have different analytic properties. In the following we
denote simply by Φ(z;w|q, t) one of these functions.

The kernel function Ψ(z;w) = ΨBC(x; y) of dual Cauchy type is given by

Ψ(z;w) =
m∏

j=1

n∏
l=1

(
zj + z−1

j − wl − w−1
l

)
=

m∏
j=1

n∏
l=1

(zj − wl)
(
1− z−1

j w−1
l

)
, (4.5)

which is precisely the kernel function introduced by Mimachi [15].
For the passage from additive variables to multiplicative variables, we introduce the multi-

plicative notation for the function [u]: For z = e(u/ω1), we write 〈z〉 = [u]. Namely, we set

〈z〉 = z
1
2 − z−

1
2 = −z−

1
2 (1− z), z = e(u/ω1),



22 Y. Komori, M. Noumi and J. Shiraishi

with the square root z
1
2 regarded as the multiplicative notation for e(u/2ω1). This function 〈z〉

is a natural object to be used in the case of BC type, because of the symmetry 〈z−1〉 = −〈z〉.
In this notation, the coefficients A+

i (z) of the Koornwinder operator Dz are expressed simply as

A+
i (z) =

〈azi〉〈bzi〉〈czi〉〈dzi〉
〈z2

i 〉〈qz2
i 〉

∏
1≤j≤m; j 6=i

〈tzi/zj〉〈tzizj〉
〈zi/zj〉〈zizj〉

(i = 1, . . . ,m).

It should be noted also that our parameter c(µ|δ,κ) =
4∑

s=1
µs−(δ+κ)+ω1 passes to multiplicative

variables as

[u + c(µ|δ,κ)] = −

[
u +

4∑
s=1

µs − δ − κ

]
= −〈zabcd/qt〉, z = e(u/ω1),

with a minus sign. Then, Theorem 2.5 can be restated as follows.

Theorem 4.1.

(1) The function Φ(z;w|q, t) defined as above satisfies the functional equation

〈t〉DzΦ(z;w|q, t)− 〈t〉D̃wΦ(z;w|q, t) = 〈tm〉〈t−n〉〈abcdq−1tm−n−1〉Φ(z;w|q, t),

where D̃w denotes the Koornwinder operator in w variables with parameters (a, b, c, d)
replaced by (

√
qt/a,

√
qt/b,

√
qt/c,

√
qt/d).

(2) The function Ψ(z;w) defined as (4.5) satisfies the functional equation

〈t〉DzΨ(z;w) + 〈q〉D̂wΨ(z;w) = 〈tm〉〈qn〉〈abcdtm−1qn−1〉Ψ(z;w),

where D̂w denotes the Koornwinder operator in w variables with parameters (a, b, c, d|t, q).

Statement (2) of Theorem 4.1 recovers the key lemma of Mimachi [15, Lemma 3.2], from
which he established the dual Cauchy formula

m∏
j=1

n∏
l=1

(
zj + z−1

j − wl − w−1
l

)
=

∑
λ⊂(nm)

(−1)|λ
∗|Pλ(z; a, b, c, d|q, t)Pλ∗(w; a, b, c, d|t, q)

for Koornwinder polynomials, where the summation is taken over all partitions λ = (λ1, . . . , λm)
contained in the m × n rectangle, and λ∗ = (m − λ′n, . . . ,m − λ′1). By this formula, he also
constructed an integral representation of Selberg type for Koornwinder polynomials attached
to rectangles (nm) (n = 0, 1, 2, . . .). We expect that our kernel function Φ(z;w|q, t) of Cauchy
type could be applied as well to the study of eigenfunctions of the q-difference operators of
Koornwinder. As a first step of such applications, in Section 5 we construct explicit formulas
for Koornwinder polynomials attached to single columns and single rows.

5 Application to Koornwinder polynomials

In this section, we apply our results on the kernel functions for Koornwinder operators to
the study of Koornwinder polynomials. In particular, we present new explicit formulas for
Koornwinder polynomials attached to single columns and single rows.

To be more precise, we make use of the kernel functions to express Koornwinder polyno-
mials P(1r)(z; a, b, c, d|q, t) (r = 0, 1, . . . ,m) and P(l)(z; a, b, c, d|q, t) (l = 0, 1, 2, . . .) in terms of
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certain explicitly defined Laurent polynomials Er(z; a|t) and Hl(z; a|q, t), respectively (Theo-
rems 5.1 and 5.2). We remark that these Laurent polynomials Er(z; a|t) are Hl(z; a|q, t) are in
fact constant multiples of the BCm interpolation polynomials of Okounkov [18] attached to the
partitions (1r) and (l), respectively. (This fact will be proved in Appendix C.) Namely, Theo-
rems 5.1 and 5.2 provide with two special cases of the binomial expansion of the Koornwinder
polynomials in terms of BCm interpolation polynomials as is discussed in Okounkov [18] and
Rains [19].

Once we establish the fact that Er(z; a|t) and Hl(z; a|q, t) are interpolation polynomials,
Theorems 5.1 and 5.2 can also be obtained from Okounkov’s binomial formula [18], together
with Rains’ explicit evaluation of the binomial coefficients for the cases of (1r) and (l) [19]1.

Before starting the discussion of Koornwinder polynomials, we introduce a notation

〈z;w〉 = 〈zw〉〈z/w〉 = z + z−1 − w − w−1

which corresponds to [u±v] = [u+v][u−v] in additive variables. This expression, which appears
frequently in the discussion of type BC, deserves a special attention. Note that

〈a−1; b〉 = 〈a; b−1〉 = 〈a; b〉, 〈b; a〉 = −〈a; b〉, 〈a; b〉+ 〈b; c〉 = 〈a; c〉,

as clearly seen by the definition. Also, the Riemann relation for [u] can be written as

〈z; a〉〈b; c〉+ 〈z; b〉〈c; a〉+ 〈z; c〉〈a; b〉 = 0,
〈z; a〉
〈z; b〉

− 〈w; a〉
〈w; b〉

=
〈z;w〉〈a; b〉
〈z; b〉〈w; b〉

.

5.1 Koornwinder polynomials

We briefly recall some basic facts about Koornwinder polynomials; for details, see Stokman [24]
for example.

Let K = Q
(
a

1
2 , b

1
2 , c

1
2 , d

1
2 , q

1
2 , t

1
2

)
be the field of rational functions in indeterminates, rep-

resenting the square roots of the parameters a, b, c, d, q, t, with coefficients in Q, and
K[z±1] = K[z±1

1 , . . . , z±1
m ] the ring of Laurent polynomials in m variables z = (z1, . . . , zm) with

coefficients in K. Then the Weyl group W = {±1}m oSm of type BC (hyperoctahedral group)
acts naturally on K[z±1] through the permutation of indices for the z variables and the individual
inversion of variables zi (i = 1, . . . ,m). The Koornwinder polynomial Pλ(z) = Pλ(z; a, b, c, d|q, t)
attached to a partition λ = (λ1, . . . , λm) is then characterized as a unique W -invariant Laurent
polynomial in K[z±1] satisfying the following two conditions:

(1) Pλ(z) is expressed in terms of orbit sums mµ(z) =
∑

ν∈W.µ

zν as

Pλ(z) = mλ(z) +
∑
µ<λ

cλ,µmµ(z) (cλ,µ ∈ K),

where ≤ stands for the dominance ordering of partitions.

(2) Pλ(z) is an eigenfunction of Koornwinder’s q-difference operator Dz:

DzPλ(z) = dλPλ(z) for some dλ ∈ K.

1The authors thank Professor Eric Rains for pointing out this connection with the interpolation polynomials
and the binomial formula.
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These polynomials Pλ(z), indexed by partitions λ, form a K-basis of the ring of W -invariants
K[z±1]W . Also, the eigenvalues dλ are given by

dλ =
m∑

i=1

〈αtm−iqλi ;αtm−i〉 =
m∑

i=1

(
αtm−iqλi + α−1t−m+iq−λi

)
−

m∑
i=1

(
αtm−i + α−1t−m+i

)
,

in our notation 〈z;w〉 = z + z−1 − w − w−1, where α = (abcdq−1)
1
2 . (Note that P0(z) = 1, and

d0 = 0.)
We give below new explicit formulas for Koornwinder polynomials P(1r)(z) attached to sin-

gle columns (1r) (r = 0, 1, . . . ,m), and P(r)(z) attached to single rows (r = 0, 1, 2 . . .). As
we already mentioned, our explicit formulas provide with the two special cases of Okounkov’s
binomial expansion of the Koornwinder polynomials in terms of BCm interpolation polyno-
mials. We also remark that, in the cases of type B, C, D, some conjectures have been proposed
by Lassalle [11] on explicit formulas for Macdonald polynomials attached to single rows. The
relationship between his conjectures and our approach will be discussed in a separate paper.

In order to formulate our results, we define a set of W -invariant Laurent polynomials Er(z; a)
with reference point a (r = 0, 1, . . . ,m) by

Er(z; a|t) =
∑

1≤i1<···<ir≤m

〈zi1 ; t
i1−1a〉〈zi2 ; t

i2−2a〉 · · · 〈zir ; t
ir−ra〉. (5.1)

As we will see below, these Laurent polynomials are W -invariant in spite of their appearance,
and they can be considered as a variation of the orbit sums m(1r)(z) (r = 0, 1, . . . ,m) attached
to the fundamental weights. In fact, these Laurent polynomials Er(z; a|t) (r = 0, 1, . . . ,m) are
essentially the BCm interpolation polynomials of Okounkov attached to single columns (1r) (for
a proof, see Appendix C). We remark that these polynomials had appeared already in the work
of van Diejen [3] in relation to the eigenvalues of his commuting family q-difference operators
for this BCm case. They are also used effectively by a recent work of Aomoto–Ito [1] in their
study of Jackson integrals of type BC.

Theorem 5.1. The Koornwinder polynomials P(1r)(z; a, b, c, d|q, t) attached to columns (1r)
(r = 0, 1, . . . ,m) are expressed as follows in terms of Es(z; a|t) (s = 0, 1, . . . ,m):

P(1r)(z; a, b, c, d|q, t) =
r∑

l=0

〈tm−r+1, tm−rab, tm−rac, tm−rad〉t,l
〈t, t2(m−r)abcd〉t,l

Er−l(z; a|t), (5.2)

where 〈a〉t,l = 〈a〉〈ta〉 · · · 〈tl−1a〉, and 〈a1, . . . , ar〉t,l = 〈a1〉t,l · · · 〈ar〉t,l.

By using 〈a〉t,l = (−1)lt−
1
2

(
l
2

)
a−

l
2 (a; t)l, formula (5.2) can be rewritten as follows in terms of

ordinary t-shifted factorials of [4]:

P(1r)(z; a, b, c, d|q, t) =
r∑

l=0

(tm−r+1, tm−rab, tm−rac, tm−rad; t)l

t

(
l
2

)
+(m−r)lal(t, t2(m−r)abcd; t)l

Er−l(z; a|t).

For the description of Koornwinder polynomials attached to single rows, we introduce a se-
quence of W -invariant Laurent polynomials Hl(z; a|q, t) (l = 0, 1, 2, . . .) as follows:

Hl(z; a|q, t)

=
∑

ν1+···+νm=l

〈t〉q,ν1 · · · 〈t〉q,νm

〈q〉q,ν1 · · · 〈q〉q,νm

〈z1; a〉q,ν1〈z2; tqν1a〉q,ν2 · · · 〈zm; tm−1qν1+···+νm−1a〉q,νm , (5.3)
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where

〈z; a〉q,l = 〈z; a〉〈z; qa〉 · · · 〈z; ql−1a〉 = (−1)lq−
(

l
2

)
a−l
(
az, az−1; q

)
l
.

Note that 〈z; a〉q,l is a monic Laurent polynomial in z of degree l. (The W -invariance of
Hl(z; a|q, t) will be proved in Lemma 5.4 below.) These Laurent polynomials Hl(z; a|q, t) can
be regarded as a BCm analogue of the Am−1 Macdonald polynomials attached to single rows:

(t; q)r

(q; q)r
PA

(r)(z) = QA
(r)(z) =

∑
ν1+···+νm=r

(t; q)ν1 · · · (t; q)νm

(q; q)ν1 · · · (q; q)νm

zν1
1 · · · zνm

m .

Also, they are special cases of BCm interpolation polynomials attached to single rows (l) (see
Appendix C).

Theorem 5.2. The Koornwinder polynomials P(r)(z; a, b, c, d|q, t) attached to rows (r) (r =
0, 1, 2, . . .) are expressed as follows in terms of Hl(z; a|q, t) (l = 0, 1, 2, . . .):

〈t〉q,r

〈q〉q,r
P(r)(z; a, b, c, d|q, t) =

〈tm, tm−1ab, tm−1ac, tm−1ad〉q,r

〈q, t2(m−1)abcdqr−1〉q,r

×
r∑

l=0

(−1)l〈q−r, t2(m−1)abcdqr−1〉q,l

〈tm, tm−1ab, tm−1ac, tm−1ad〉q,l
Hl(z; a|q, t). (5.4)

Let us denote by pr(z; a, b, c, d|q) the Koornwinder polynomial P(r)(z; a, b, c, d|q, t) in the one
variable case (r = 0, 1, 2, . . .). Note that, when m = 1, Hl(z; a|q, t) reduces to 〈t〉q,l〈z; a〉q,l/〈q〉q,l.
Hence Theorem 5.2 for m = 1 implies

pr(z; a, b, c, d|q) =
〈ab, ac, ad〉q,r

〈abcdqr−1〉q,r

r∑
l=0

(−1)l〈q−r, abcdqr−1〉q,l

〈q, ab, ac, ad〉q,l
〈z; a〉q,l

=
(ab, ac, ad; q)r

ar(abcdqr−1; q)r
4φ3

[
q−r, abcdqr−1, az, a/z

ab, ac, ad
; q, q

]
,

which recovers the well-known 4φ3 representation of the (monic) Askey–Wilson polynomials.
We prove these Theorems 5.1 and 5.2 in Subsections 5.2 and 5.3, by means of the kernel

functions of dual Cauchy type, and of Cauchy type, respectively.

5.2 Case of a single column

We first explain some properties of the elementary Laurent polynomials Er(z; a|t) (r = 0, 1,
. . . , m).

Lemma 5.1. The Laurent polynomials Er(z; a|t) (r = 0, 1, . . . ,m) are characterized as the
expansion coefficients in

m∏
j=1

〈w; zj〉 =
m∑

r=0

(−1)rEr(z; a|t)〈w; a〉t,m−r,

where 〈w; a〉t,l = 〈w; a〉〈w; ta〉 · · · 〈w; tl−1a〉. In particular, Er(z; a|t) is W -invariant for each
r = 0, 1, . . . ,m.

Proof. Since the uniqueness of expansion in terms of 〈w; a〉t,r (r = 0, 1, . . . ,m) is obvious, we
show the validity of the expansion formula above. Note that Er(z; a|t) can be expressed as

Er(z; a|t) =
∑
|I|=r

∏
i∈I

〈zi; t|I
c
<i|a〉, Ic

<i = { j ∈ {1, . . . ,m}\I | j < i }.
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Hence we have the recurrence formula

Er(z; a|t) = 〈z1; a〉Er−1(z′; a|t) + Er(z′; ta|t), z′ = (z2, . . . , zm). (5.5)

By using this recurrence, one can inductively prove the expansion formula of lemma. In fact,
by 〈w; z1〉 = 〈w; a〉 − 〈z1; a〉, we compute

m∏
j=1

〈w; zj〉 = 〈w; a〉
m∏

i=2

〈w; zi〉 − 〈z1; a〉
m∏

i=2

〈w; zi〉

= 〈w; a〉
m−1∑
r=0

(−1)rEr(z′; ta|t)〈w; ta〉t,m−1−r

− 〈z1; a〉
m−1∑
s=0

(−1)sEs(z′; a|t)〈w; a〉t,m−1−s

=
m∑

r=0

(−1)r
(
Er(z′; ta|t) + 〈z1; a〉Er−1(z′; a|t)

)
〈w; a〉t,m−r

=
m∑

r=0

(−1)rEr(z; a|t)〈w; a〉t,m−r. �

We now proceed to the proof of Theorem 5.1. Mimachi’s dual Cauchy formula for Koorn-
winder polynomials can be written as

m∏
j=1

n∏
l=1

〈wl; zj〉 =
∑

λ⊂(nm)

(−1)|λ|Pλ(z; a, b, c, d|q, t)Pλ∗(w; a, b, c, d|t, q).

When n = 1, this formula implies
m∏

j=1

〈w; zj〉 =
m∑

r=0

(−1)rP(1r)(z|q, t)pm−r(w|t), (5.6)

where we have omitted the parameters (a, b, c, d). Namely, the Koornwinder polynomials at-
tached to single columns are determined as expansion coefficients of the kernel function for
n = 1 in terms of the monic Askey–Wilson polynomials pl(w|t) = pl(w; a, b, c, d|t) with base t.
On the other hand, we already have the expansion formula

m∏
j=1

〈w; zj〉 =
m∑

l=0

(−1)lEl(z; a|t)〈w; a〉t,m−l. (5.7)

Recalling that

pl(w|t) =
〈ab, ac, ad〉t,l
〈abcdtl−1〉t,l

l∑
r=0

(−1)r 〈t−l, abcdtl−1〉t,r
〈t, ab, ac, ad〉t,r

〈w; a〉t,r

=
l∑

r=0

〈tr+1, trab, trac, trad〉t,l−r

〈t, abcdtl+r−1〉t,l−r
〈w; a〉t,r (l = 0, 1, 2, . . .) (5.8)

we consider to express 〈w; a〉t,l in terms of Askey–Wilson polynomials pr(w|t).

Lemma 5.2. For each l = 0, 1, . . ., one has

〈w; a〉t,l =
l∑

r=0

(−1)l−r 〈tr+1, trab, trac, trad〉t,l−r

〈t, abcdt2r〉t,l−r
pr(w|t) (l = 0, 1, 2, . . .). (5.9)
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We omit the proof of this lemma, since it can be derived as a special case of the connection
formula for Askey–Wilson polynomials with different parameters (see [4]). Note that, if we set
d = t1−l/a in (5.8), then pl(w; a, b, c, t1−l/a|t) = 〈w; a〉t,l.

By substituting (5.9) into (5.7), we obtain

m∏
j=1

〈w; zj〉 =
∑

0≤l≤r≤m

(−1)r 〈tm−r+1, tm−rab, tm−rac, tm−rad〉r−l

〈t, abcdt2(m−r)〉t,r−l
El(z; a|t)pm−r(w|t).

Comparing this formula with (5.6) we obtain

P(1r)(z|q, t) =
r∑

l=0

〈tm−r+1, tm−rab, tm−rac, tm−rad〉r−l

〈t, abcdt2(m−r)〉t,r−l
El(z; a|t),

as desired.

5.3 Case of a single row

Recall that the kernel function of Cauchy type

Φ(z;w|q, t) = (z1 · · · zm)nβ
m∏

j=1

n∏
l=1

(
q

1
2 t

1
2 zjw

±1
l ; q

)
∞(

q
1
2 t−

1
2 zjw

±1
l ; q

)
∞

,

defined in (4.4), satisfies the difference equation

〈t〉DzΦ(z;w|q, t)− 〈t〉D̃wΦ(z;w|q, t) = 〈tm〉〈t−n〉〈abcdq−1tm−n−1〉Φ(z;w|q, t),

where D̃w denotes the Koornwinder operator in w variables with parameters (a, b, c, d) replaced
by (

√
qt/a,

√
qt/b,

√
qt/c,

√
qt/d|q, t). We set hereafter

ã =
√

qt/a, b̃ =
√

qt/b, c̃ =
√

qt/c, d̃ =
√

qt/d.

Also, for any Laurent polynomial f(z) ∈ K[z±1], we denote by f̃(z) ∈ K[z±1] the Laurent
polynomial obtained from f(z) by replacing the parameters (a, b, c, d) with (ã, b̃, c̃, d̃).

Let us consider the special case where t = q−k (k = 0, 1, 2, . . .). Then the kernel function
Φ(z;w|q, q−k) reduces to a Laurent polynomial in (z, w):

Φ
(
z;w|q, q−k

)
= (z1 · · · zm)−kn

m∏
j=1

n∏
l=1

(
q

1
2
(1−k)zjw

±1
l ; q

)
k

= (−1)kmn
m∏

j=1

n∏
l=1

〈wl; q
1
2
(1−k)zj〉q,k.

Ignoring the sign factor, we set

Φ−k(z;w) =
m∏

j=1

n∏
l=1

〈wl; q
1
2
(1−k)zj〉q,k.

Note that

〈w; q
1
2
(1−k)z〉q,k = 〈w; q

1
2
(−k+1)z〉〈w; q

1
2
(−k+2)z〉 · · · 〈w; q

1
2
(k−1)z〉

is invariant under the inversion z → z−1. In what follows, we analyze the case where n = 1 and
t = q−k (k = 0, 1, 2, . . .). In this case, the kernel function

Φ−k(z;w) =
m∏

j=1

〈w; q
1
2
(1−k)zj〉k
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is a symmetric Laurent polynomial in w of degree km. Also, this kernel function satisfies the
functional equation

DzΦ−k(z;w)− D̃wΦ−k(z;w) = −〈tm〉〈abcdq−1tm−2〉Φ−k(z;w).

With α = (abcdq−1)
1
2 , this formula can be written as

DzΦ−k(z;w) =
(
D̃w − 〈αtm−1;αt−1〉

)
Φ−k(z;w). (5.10)

Noting that Φ−k(z;w) is a symmetric Laurent polynomial, we expand this kernel in terms of
the monic Askey–Wilson polynomials p̃l(w|q) = pl(w; ã, b̃, c̃, d̃|q) in w with the twisted parame-
ters, so that

Φ−k(z;w) =
m∏

j=1

〈w; q
1
2
(1−k)zj〉k =

km∑
l=0

Gl(z)p̃km−l(w|q).

The Laurent polynomials Gl(z) (0 ≤ l ≤ km) are uniquely determined by this expansion, and
hence W -invariant.

Lemma 5.3. When t = q−k (k = 0, 1, 2, . . .), the W -invariant Laurent polynomials Gl(z)
(0 ≤ l ≤ km) defined as above are eigenfunctions of Dz:

DzGl(z) = 〈αtm−1ql;αtm−1〉Gl(z) (0 ≤ l ≤ km).

Proof. Note that

Dwpkm−l(w|q) = 〈αqkm−l;α〉pkm−l(w|q) = 〈αt−mq−l;α〉pkm−l(w|q),

where α = (abcdq−1)
1
2 . Hence, by α̃ = tq

1
2 (abcd)−

1
2 = t/α, we obtain

D̃wp̃km−l(w|q) = 〈t1−mq−l/α; t/α〉p̃km−l(w|q) = 〈αtm−1ql;αt−1〉p̃km−l(w|q).

In view of (5.10), we compute(
D̃w − 〈αtm−1;αt−1〉

)
p̃km−l(w|q) =

(
〈αtm−1ql;αt−1〉 − 〈αtm−1;αt−1〉

)
p̃km−l(w|q)

= 〈αtm−1ql;αtm−1〉p̃km−l(w|q).

Hence, (5.10) implies

km∑
l=0

DzGl(z)p̃km−l(w|q) =
km∑
l=0

Gl(z)
(
D̃w − 〈αtm−1;αt−1〉

)
p̃km−l(w|q)

=
km∑
l=0

〈αtm−1ql;αtm−1〉Gl(z)p̃km−l(w|q).

Namely,

DzGl(z) = 〈αtm−1ql;αtm−1〉Gl(z) (l = 0, 1, . . . , km). �

As we have seen above, each Gl(z) (l = 0, 1, . . . , km) is an eigenfunction of Dz with precisely
the same eigenvalue as the one for the Koornwinder polynomial P(l)(z) attached to the single
row of length l. At this moment, however, we cannot conclude this Gl(z) is indeed a constant



Kernel Functions for Difference Operators of Ruijsenaars Type 29

multiple of the Koornwinder polynomial P(l)(z) specialized to the case t = q−k. This is because
different partitions λ may give the same eigenvalue

dλ =
m∑

i=1

〈αtm−iqλi ;αtm−i〉

under this specialization. This point will be discussed later after we determine an explicit
formula for Gl(z).

Since we already know the relationship between the Askey–Wilson polynomials pl(w|q) and
the Laurent polynomials 〈w; a〉q,l, we consider to expand the kernel function Φ−k(z;w) in terms
of 〈w; a〉q,l.

Lemma 5.4.

(1) When t = q−k (k = 0, 1, 2, . . .), the kernel function Φ−k(z;w) has the following expansion
formula:

Φ−k(z;w) =
m∏

j=1

〈w; q
1
2
(1−k)zj〉q,k =

km∑
l=0

Hl(z)〈w;
√

qt/a〉q,km−l, (5.11)

where Hl(z) stands for Hl(z; a|q, t) defined as (5.3) with t = q−k for l = 0, 1, . . . , km.

(2) The Laurent polynomials Hl(z; a|q, t) (l = 0, 1, 2, . . .) are W -invariant.

Proof. Statement (2) follows from the expansion formula (5.11) of statement (1). Since
Φ−k(z;w) is W -invariant in the z variables, formula (5.11) implies that Hl(z; a|q, q−k) is W -
invariant for k ≥ l/m. Hence we see that Hl(z; a|q, t) itself is W -invariant as a Laurent polyno-
mial in K[z±] for each l = 0, 1, 2, . . ..

In the following proof of statement (1), we omit the base q, and write 〈w; a〉l = 〈w; a〉q,l. We
first present a connection formula for the Laurent polynomials 〈w; a〉l and 〈w; b〉l with different
reference point a, b:

〈w; b〉l =
l∑

r=0

(−1)r

[
l
r

]
〈ql−rab, b/a〉r〈w; a〉l−r,

[
l
r

]
= (−1)r 〈q−l〉r

〈q〉r
,

which is equivalent to the q-Saalschütz sum [4]

(bw, b/w; q)l

(ba, b/a; q)l
= 3φ2

[
q−l, aw, a/w
ab, q1−la/b

; q, q
]

.

Let us rewrite the formula above in the form

〈w; b〉l =
l∑

r=0

(−1)r

[
l
r

]
〈q

1
2
(l−1)b; q

1
2
(1−l)/a〉r〈w; a〉l−r.

Hence,

〈w; q
1
2
(1−µ)z〉µ =

µ∑
ν=0

(−1)ν

[
µ
ν

]
〈z; q

1
2
(1−µ)/a〉ν〈w; a〉µ−ν .

This implies

〈w; q
1
2
(1−µ1)z1〉µ1〈w; q

1
2
(1−µ2)z2〉µ2
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=
µ1∑

ν1=0

(−1)ν1

[
µ1

ν1

]
〈z1; q

1
2
(1−µ1)/a〉ν1〈w; a〉µ1−ν1〈w; q

1
2
(1−µ2)z2〉µ2 .

Then in each term, we expand 〈w; q
1
2
(1−µ2)z2〉µ2 in terms of 〈w; qµ1−ν1a〉µ2−ν2 (0 ≤ ν2 ≤ µ2) to

get

〈w; q
1
2
(1−µ1)z1〉µ1〈w; q

1
2
(1−µ2)z2〉µ2

=
µ1∑

ν1=0

µ2∑
ν2=0

(−1)ν1+ν2

[
µ1

ν1

] [
µ2

ν2

]
〈z1; q

1
2
(1−µ1)/a〉ν1

× 〈z2; q
1
2
(1−µ2)−(µ1−ν1)/a〉ν2〈w; a〉µ1+µ2−ν1−ν2 .

By repeating this procedure, we finally obtain

m∏
j=1

〈w; q
1
2
(1−µj)zj〉µj =

∑
ν

(−1)|ν|
m∏

j=1

[
µj

νj

]
〈zj ; q

1
2
(1−µj)−

∑
i<j

(µi−νi)

/a〉νj 〈w; a〉|µ|−|ν|

for any µ = (µ1, . . . , µm), where the sum is taken over all multi-indices ν = (ν1, . . . , νm) such
that νi ≤ µi (i = 1, . . . ,m). As a special case of this formula where µ1 = · · · = µm = k,
|µ| = km, we get the expansion formula

Φ−k(z;w) =
m∏

j=1

〈w; q
1
2
(1−k)zj〉k =

km∑
l=0

H̃l(z)〈w; a〉km−l

for Φ−k(z;w). Here the coefficients are determined as

H̃l(z) =
∑
|ν|=l

(−1)|ν|
m∏

j=1

[
k
νj

]
〈zj ; q

1
2
(1−k)−k(j−1)+

∑
i<j

νi

/a〉νj

=
∑

ν1+···+νm=l

m∏
j=1

〈t〉νj

〈q〉νj

〈zj ; tj−1q

∑
i<j

νi√
qt/a〉νj

with t = q−k. Replacing the parameters a by ã =
√

qt/a, we obtain

Φ−k(z;w) =
m∏

j=1

〈w; q
1
2
(1−k)zj〉k =

km∑
l=0

Hl(z)〈w;
√

qt/a〉km−l,

where

Hl(z) =
∑

ν1+···+νm=l

m∏
j=1

〈t〉νj

〈q〉νj

〈zj ; tj−1q

∑
i<j

νi

a〉νj (t = q−k). �

We now have two expansions of the kernel function Φ−k(z;w):

Φ−k(z;w) =
km∑
r=0

Gr(z)p̃km−r(w|q) =
km∑
l=0

Hl(z)〈w;
√

qt/a〉q,km−l. (5.12)

Also, from Lemma 5.2 we see

〈w; a〉q,l =
l∑

r=0

(−1)l−r 〈qr+1, qrab, qrac, qrad〉q,l−r

〈q, abcdq2r〉q,l−r
pr(w|q),
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and hence,

〈w;
√

qt/a〉q,l =
l∑

r=0

(−1)l−r 〈qr+1, tqr+1/ab, tqr+1/ac, tqr+1/ad〉q,l−r

〈q, t2q2(r+1)/abcd〉q,l−r
p̃r(w|q)

for l = 0, 1, 2, . . .. Substituting this into (5.12), we obtain an expression of Gr(z) in term of Hl(z)
as follows:

Gr(z) =
r∑

l=0

(−1)r−l 〈qkm−r+1, tqkm−r+1/ab, tqkm−r+1/ac, tqkm−r+1/ad〉q,r−l

〈q, t2q2(km−r+1)/abcd〉q,r−l
Hl(z)

=
r∑

l=0

(−1)r−l 〈q1−rt−m, q1−rt1−m/ab, q1−rt1−m/ac, q1−rt1−m/ad〉q,r−l

〈q, q2(1−r)t2(1−m)/abcd〉q,r−l
Hl(z)

=
〈tm, tm−1ab, tm−1ac, tm−1ad〉q,r

〈q, t2(m−1)abcdqr−1〉q,r

r∑
l=0

(−1)l〈q−r, t2(m−1)abcdqr−1〉q,l

〈tm, tm−1ab, tm−1ac, tm−1ad〉q,l
Hl(z).

From the expression obtained above, it is clear that

Hl(z) =
〈t〉q,l

〈q〉q,l
m(l)(z) + terms lower than (l) with respect to ≤,

and

Gr(z) =
〈t〉q,r

〈q〉q,r
m(r)(z) + terms lower than (r) with respect to ≤.

Note that 〈t〉q,r = 〈q−k〉q,r 6= 0 for 0 ≤ r ≤ k. Also, we already know that each Gr(z) (r =
0, 1, . . . , km) satisfies the difference equation

DzGr(z) = 〈αtm−1qr;αtm−1〉Gr(z).

Suppose in general that a partition λ = (λ1, . . . , λm) satisfies the condition λi − λi+1 ≤ k
(i = 1, . . . ,m− 1). Since

λ1 + k ≤ λ2 + 2k ≤ · · · ≤ λm + km

in this case, it turns out that the eigenvalue dµ for any partition µ < λ is distinct from dλ

when the square roots of a, b, c, d, q are regarded as indeterminates. For such a partition λ,
the Koornwinder polynomial Pλ(z) = Pλ(z; a, b, c, d|q, t) can be specialized to t = q−k, and
any eigenfunction having the nontrivial leading term mλ(z) must be a constant multiple of
Pλ(z; a, b, c, d|q, q−k). This implies that, for each r with 0 ≤ r ≤ k, Gr(z) is a constant multiple
of P(r)(z) specialized to t = q−k:

Gr(z) =
〈t〉q,r

〈q〉q,r
P(r)(z)

∣∣
t=q−k (0 ≤ r ≤ k).

For each r = 0, 1, 2, . . ., consider the Laurent polynomial in K[z±1] defined by right-hand side
of the explicit formula (5.4) of Theorem 5.2. Then the both sides of (5.4) are regular at t = q−k

(k ≥ r), and they coincide with each other for t = q−k (k = r, r + 1, . . .). Hence the both sides
must be identical as rational functions in t

1
2 . This completes the proof of Theorem 5.2.
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A Remarks on higher order difference operators

In the case of type A, an explicit commuting family of higher order difference operators, denoted
below by D

(δ,κ)
r,x (r = 1, . . . ,m), including D

(δ,κ)
x as a first member, has been constructed by

Ruijsenaars [20]. He also proved in [23] that, when m = n, the kernel function of Cauchy
type, corresponding to our ΦA(x; y|δ, κ), intertwines the whole commuting families of difference
operators in x variable and y variables. (For the comparison of our ΦA(x; y|δ, κ) with the type A
kernel functions of Ruijsenaars [23], see Appendix B.1.)

Fix any nonzero entire function [x] satisfying the Riemann relation as in Section 2. We
consider a sequence of difference operators D

(δ,κ)
r,x (r = 1, . . . ,m) defined by

D(δ,κ)
r,x =

∑
I⊂{1,...,m}; |I|=r

∏
i∈I, j /∈I

[xi − xj + κ]
[xi − xj ]

∏
i∈I

T δ
xi

. (A.1)

Then, from the result of [20] and its degenerate cases, it follows that these operators D
(δ,κ)
r,x

(r = 1, . . . ,m) commute with each other. In this setting the same kernel function

ΦA(x; y|δ, κ) =
m∏

j,l=1

G(xj + yl + v − κ|δ)
G(xj + yl + v|δ)

as in (2.5) for the case m = n satisfies the difference equation

D(δ,κ)
r,x ΦA(x; y|δ, κ) = D(δ,κ)

r,y ΦA(x; y|δ, κ) (A.2)

for all r = 1, . . . ,m. This functional equation is in fact equivalent to∑
|I|=r

∏
i∈I; j /∈I

[xi − xj + κ]
[xi − xj ]

∏
i∈I; 1≤l≤m

[xi + yl + v − κ]
[xi + yl + v]

=
∑
|K|=r

∏
k∈K; l /∈K

[yk − yl + κ]
[yk − yl]

∏
k∈K; 1≤j≤m

[yk + xj + v − κ]
[yk + xj + v]

,

which is precisely the key identity of Kajihara–Noumi [6, Theorem 1.3], that was derived from
the determinantal formula of Frobenius.

In the trigonometric case, it is convenient to consider the generating function

D(q,t)
z (u) =

m∑
r=0

(−u)rD(q,t)
r,z , D(q,t)

r,z = t(
r
2)
∑
|I|=r

∏
i∈I;j /∈I

tzi − zj

zi − zj

∏
i∈I

Tq,zi

of the Macdonald q-difference operators, passing to the multiplicative variables. Then from the
eigenfunction expansion (4.3), it follows that the kernel function Π(z;w|q, t) of (4.1) for the
variables z = (z1, . . . , zm) and w = (w1, . . . , wn) satisfies the functional equation

(tmu; t)∞D(q,t)
z (tnu)Π(z;w|q, t) = (tnu; t)∞D(q,t)

w (tmu)Π(z;w|q, t).

It would be an important problem to find an elliptic extension of this formula for the case
m 6= n.

As for type BC, a commuting family of higher order difference operators for E
(µ|δ,κ)
x has

been constructed explicitly by van Diejen [2, 3] in the trigonometric case, and inductively by
Komori–Hikami [9] in the elliptic case. We expect that our kernel function ΦBC(x; y|δ, κ) should
intertwine the whole commuting families of higher order difference operators in x variables
and y variables (at least under the balancing condition in the elliptic case), similarly to the A
type case.
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B Comparison with [23]

As we already mentioned, in his series of works [23] Ruijsenaars has constructed kernel function
for elliptic difference operators of type (Am−1, Am−1) and (BCm, BCm) (see also [10, 11]). In
this section, we clarify how our difference operators and kernel functions in the elliptic case are
related to those of Ruijsenaars.

In what follows, we confine ourselves to the elliptic case, and set

p = e(ω2/ω1), q = e(δ/ω1); [x] = −z−
1
2 θ(z; p), z = e(x/ω1) (B.1)

as in Section 2.1, (2) Elliptic case, assuming that Im(ω2/ω1) > 0, Im(δ/ω1) > 0. We remark
that the quasi-periodicity of the function [x] is described as

[x + ωr] = εre(ηr(x + ωr
2 ))[x] (r = 0, 1, 2, 3),

where ω0 = 0, ω3 = −ω1 − ω2, and

ε0 = 1, ε1 = ε2 = ε3 = −1; η0 = η1 = 0, η2 = − 1
ω1

, η3 = 1
ω1

.

(We use below the index 0 instead of 4 for ωr, εr and ηr.) Since
3∏

s=1
[12ωs] = −2e(− ω2

2ω1
) = −2p−

1
2

in this case, we have the duplication formula

[2x] = 2e
(

ω2
2ω1

) 3∏
r=0

[
x− ωr

2

]
.

In defining kernel functions, we use the gamma function

G(x|δ) = G+(x|δ) = e
(

δ
2ω1

(
x/δ
2

))
Γ(pz; p, q)

of (2.4), associated with [x].
In the works of Ruijsenaars [23], the two periods ω1, ω2 and the scaling constant δ are

parametrized as

ω1 = “
π

r
”, ω2 = “ia+”, δ = “ia−”

in view of the symmetry between ω2 and δ (or p and q). In terms of the R-function

R(x) = “R(r, a+;x)” = θ
(
p

1
2 z; p

)
defined in [23, I, (1.21)], our [x] is expressed as

[x] = −e
(
− x

2ω1

)
R
(
x− ω2

2

)
.

Note that R(−x) = R(x). The elliptic gamma function

G(x) = “G(r, a+, a−;x)” = Γ
(
p

1
2 q

1
2 z; p, q

)
of Ruijsenaars [23, I, (1.19)] is related to our G(x|δ) by the formula

G(x|δ) = e
(

δ
2ω1

(
x/δ
2

))
G
(
x + 1

2(ω2 − δ)
)
.

The function G(x) is symmetric with respect to ω2 and δ (p and q), and satisfies the functional
equation

G
(
x + 1

2δ
)

= R(x)G
(
x− 1

2δ
)
, G(−x) = G(x)−1.
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B.1 Case of type A

As in (A.1), we consider the commuting family of difference operators D
(δ,κ)
r,x (r = 1, . . . ,m) of

type A in the variables x = (x1, . . . , xm). These operators are in fact identical to the difference
operator Ar,+(−x) of [23, I, (2.1)], up to multiplication by constants:

e
( r(m−r)κ

2ω1

)
D(δ,κ)

r,x =
∑
|I|=r

∏
i∈I; j /∈I

R(xi − xj + κ− ω2
2 )

R(xi − xj − ω2
2 ))

exp

(
δ
∑
i∈I

∂xi

)
= “Ar,+(−x)”,

under the identification of the parameter “µ” = κ; we denote below this operator by Ar,−x =
“Ar,+(−x)”. In the multiplicative variables zi = e(xi/ω1) (i = 1, . . . ,m), t = e(κ/ω1), the same
operator is expressed as

Ar,−x = t
1
2
r(m−r)D(δ,κ)

r,x =
∑
|I|=r

∏
i∈I; j /∈I

θ(tzi/zj ; p)
θ(zi/zj ; p)

∏
i∈I

Tq,zi .

The kernel function ΦA(x; y|δ, κ) of (2.5) for the m = n case can be expressed in terms of G(x) as

ΦA(x; y|δ, κ) = e

− mκ
2ω1δ

 m∑
j=1

xj +
m∑

l=1

yl

+ m2

4ω1δκ(κ + δ − 2v)

SA(−x; y),

SA(−x; y) =
m∏

j,l=1

G(−xj − yl − v + 1
2(δ − ω2))

G(−xj − yl − v + κ + 1
2(δ − ω2))

=
m∏

j,l=1

Γ(pczjwl/t; p, q)
Γ(pczjwl; p, q)

(c = e(v/ω1)).

The second factor SA(−x; y) of ΦA(x; y|δ, κ) coincides with “Sξ(−x, y)” of [23, I, (2.6)], under
the identification of parameters “µ” = κ and “ξ” = −v + 1

2(δ + κ−ω2). Since the first factor of
ΦA(x; y|δ, κ) is an eigenfunction of T δ

xi
and T δ

yk
with an equal eigenvalue e(−mκ/2ω1), from (A.2)

we obtain Ar,−xSA(−x; y) = Ar,−ySA(−x; y), namely

Ar,xSA(x; y) = Ar,−ySA(x; y) (r = 1, . . . ,m).

This gives formula (2.5) in [23, I] with “δ = +”. The statement for “δ = −” follows from the
symmetry of SA(x; y) between ω2 and δ (or p and q).

B.2 Case of type BC

We now consider the difference operator E
(µ|δ,κ)
x of type BCm, defined by (2.7), (2.10), (2.11)

with the function [x] of (B.1). For the variables x = (x1, . . . , xm) and the parameters µ =
(µ1, . . . , µ8), κ, we will use the multiplicative expressions together by setting

zi = e(xi/ω1) (i = 1, . . . ,m), uk = e(µk/ω1) (k = 1, . . . , 8), t = e(κ/ω1).

We first remark that, by (2.13), the difference operator E
(µ|δ,κ)
x can be rewritten in the form

tm−1p−1q−
3
2 (u1 · · ·u8)

1
2 E(µ|δ,κ)

x

=
∑

1≤i≤m; ε=±

(
qzε2

i

)−1Aε
i(x;µ|δ, κ)T εδ

xi
+

3∑
r=0

A0
r(x;µ|δ, κ). (B.2)
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Here the coefficients A±
i (x;µ|δ, κ) (i = 1, . . . ,m), A0

r(x;µ|δ, κ) (r = 0, 1, 2, 3) are obtained as
follows by modifying the corresponding coefficients of E

(µ|δ,κ)
x :

A+
i (x;µ|δ, κ) =

8∏
k=1

R
(
xi + µk − ω2

2

)
R
(
2xi − ω2

2

)
R
(
2xi + δ − ω2

2

) ∏
1≤j≤m; j 6=i

R
(
xi ± xj + κ− ω2

2

)
R
(
xi ± xj − ω2

2 )

=

8∏
k=1

θ(ukzi; p)

θ(z2
i ; p)θ(qz2

i ; p)

∏
1≤j≤m; j 6=i

θ(tziz
±1
j ; p)

θ(ziz
±1
j ; p)

,

A−
i (x;µ|δ, κ) = A+

i (−x;µ|δ, κ) (i = 1, . . . ,m),

A0
r(x;µ|δ, κ) = Cr

8∏
k=1

R
(
µk + ωr

2 − 1
2(ω2 + δ)

)
2R
(
κ− ω2

2

)
R
(
κ− δ − ω2

2

) m∏
j=1

R
(
± xj + κ + ωr

2 − 1
2(ω2 + δ)

)
R
(
± xj + ωr

2 − 1
2(ω2 + δ)

)

= Cr

8∏
k=1

θ
(
ukq

− 1
2 cr; p

)
2θ(t; p)θ(tq−1; p)

m∏
j=1

θ
(
tq−

1
2 crz

±1
j ; p

)
θ
(
q−

1
2 crz

±1
j ; p

) (r = 0, 1, 2, 3)

with constants

cr = e(ωr/2ω1), Cr = e

(
−2ωr

ω1
− ηr

(
ωr − 2δ + mκ + 1

2

8∑
k=1

µk

))
(r = 0, 1, 2, 3).

In the multiplicative expression, these constants are expressed as

c0 = 1, c1 = −1, c2 = p
1
2 , c3 = −p−

1
2 ;

C0 = C1 = 1, C2 = tmp−1q−2(u1 · · ·u8)
1
2 , C3 = t−mp3q2(u1 · · ·u8)−

1
2 .

In view of formula (B.2), we take a nonzero meromorphic function P (x) satisfying the system
of difference equations

T δ
xi

(P (x)) = qz2
i P (x) (i = 1, . . . ,m).

The simplest choice for such a function is given by P (x) = e
(

1
ω1δ

m∑
j=1

x2
j

)
. Then formula (B.2)

implies that the difference operator E
(µ|δ,κ)
x is expressed in the form

E(µ|δ,κ)
x = t−m+1pq

3
2 (u1 · · ·u8)−

1
2 P (x)E(µ|δ,κ)

x P (x)−1, (B.3)

as a constant multiple of the conjugation of a difference operator

E(µ|δ,κ)
x =

∑
1≤i≤m; ε=±

Aε
i(x;µ|δ, κ)T εδ

xi
+

3∑
r=0

A0
r(x;µ|δ, κ)

by P (x).
We also remark that the operator E(µ|δ,κ)

x has the following property with respect to shifting κ
to κ− ω2 (t to t/p):

E(µ|δ,κ)
x =

(
p2qt−2

)m−1
P (x)m−1E(µ|δ,κ−ω2)

x P (x)−m+1, t = e(κ/ω1).
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Together with (B.3), this also implies

E(µ|δ,κ)
x = t−3(m−1)p2m−1qm+ 1

2 (u1 · · ·u8)−
1
2 P (x)mE(µ|δ,κ−ω2)

x P (x)−m.

Setting κ = λ + ω2 (t = sp, s = e(λ/ω1)), we rewrite this formula as

E(µ|δ,λ+ω2)
x = s−3(m−1)p−m+2qm+ 1

2 (u1 · · ·u8)−
1
2 P (x)mE(µ|δ,λ)

x P (x)−m. (B.4)

The difference operator E(µ|δ,λ)
x appearing in (B.4) is essentially the same as the operator

“A+(h, µ;x)” of type BCm defined by Ruijsenaars [23, I, (4.1)–(4.3)] (see also (3.1)–(3.9)); the
difference between the two is only by an additive constant. In fact, we have

“A+(h, µ;x)” = E(µ|δ,λ)
x −

3∑
r=0

A0
r(ξr, . . . , ξr;µ|δ, λ), (B.5)

where ξ0 = ξ2 = ω1/2, ξ1 = ξ3 = 0, under the identification of the parameters

“hk” = µk − 1
2(ω2 + δ) (k = 0, 1, . . . , 7), “µ” = λ,

with µ0 = µ8.
By Theorem 2.3 we know that the kernel function of (2.15)

ΦBC(x; y|δ, κ) =
m∏

j=1

n∏
l=1

∏
ε1,ε2=±

G
(
ε1xj + ε2yl + 1

2(δ − κ)|δ
)

in the variables x = (x1, . . . , xm) and y = (y1, . . . , yn) satisfies the difference equation

E(µ|δ,κ)
x ΦBC(x; y|δ, κ) = E(µ̃|δ,κ)

y ΦBC(x; y|δ, κ),

µ̃k = 1
2(δ + κ)− µk (k = 1, . . . , 8)

under the balancing condition

(m− n− 1)κ− δ + 1
2

8∑
k=1

µk = 0 (tm−n−1q−1(u1 · · ·u8)
1
2 = 1). (B.6)

With G(x|δ) = G+(x|δ), (2.4), this kernel function is given explicitly by

ΦBC(x; y|δ, κ) = e
(f(x;y)

ω1δ

) m∏
j=1

n∏
l=1

∏
ε1,ε2=±

Γ
(
pq

1
2 t−

1
2 zε1

j wε2
l ; p, q

)

where wl = e(yl/ω1) (l = 1, . . . , n), and f(x; y) = n
m∑

j=1
x2

j + m
n∑

l=1

yl
2 + mn

4 (κ2− δ2). We express

ΦBC(x; y|δ, κ) in the form

ΦBC(x; y|δ, κ) = const · P (x)nP (y)mSBC(x; y),

where

P (x) = e

 1
ω1δ

m∑
j=1

x2
j

 , P (y) = e

(
1

ω1δ

n∑
l=1

y2
l

)
,
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SBC(x; y) =
m∏

j=1

n∏
l=1

∏
ε1,ε2=±

Γ
(
pq

1
2 t−

1
2 zε1

j wε2
l ; p, q

)
.

It should be noted that, by the substitution κ = λ + ω2 (t = sp, s = e(λ/ω1)), the function

SBC(x; y) =
m∏

j=1

n∏
l=1

∏
ε1,ε2=±

Γ
(
p

1
2 q

1
2 s−

1
2 zε1

j wε2
l ; p, q

)
=

m∏
j=1

n∏
l=1

∏
ε1,ε2=±

G
(
ε1xj + ε2yl − 1

2λ
)

becomes manifestly invariant under the action of the Weyl group of type BCm (resp. BCn) on
the variables x = (x1, . . . , xm) (resp. y = (y1, . . . , yn)), and symmetric with respect to ω2 and δ
(p and q). This function SBC(x; y) can be thought of as the (BCm, BCn)-version of Ruijsenaars’
kernel function “S(x; y)” in [23].

We now have the functional equation

E(µ|δ,κ)
x P (x)nP (y)mSBC(x; y) = E(µ̃|δ,κ)

y P (x)nP (y)mSBC(x; y)

under the balancing condition (B.6). Hence, by applying (B.4) with κ = λ + ω2, we obtain

const · P (x)mE(µ|δ,λ)
x P (x)n−mP (y)mSBC(x; y)

= const · P (y)nE(µ̃|δ,λ)
y P (x)nP (y)m−nSBC(x; y),

namely,

const · E(µ|δ,λ)
x P (x)n−mP (y)m−nSBC(x; y)

= const · E(µ̃|δ,λ)
y P (x)n−mP (y)m−nSBC(x; y).

The constants in front of the both sides simplifies by (B.6), to imply the functional equation

(pq/s)mE(µ|δ,λ)
x P (x)n−mP (y)m−nSBC(x; y)

= (pq/s)nE(µ̃|δ,λ)
y P (x)n−mP (y)m−nSBC(x; y),

under the balancing condition

1
2

8∑
k=1

µk = δ − (m− n− 1)(λ + ω2) ((u1 · · ·u8)
1
2 = q(ps)−m+n+1).

In particular, when m = n we have

E(µ|δ,λ)
x SBC(x; y) = E(µ̃|δ,λ)

y SBC(x; y), (B.7)

under the balancing condition

1
2

8∑
k=1

µk = λ + ω2 + δ ((u1 · · ·u8)
1
2 = spq). (B.8)

The functional equation (B.7) is precisely the formula (4.24) of [23, I, Proposition 4.1], for
“δ = +” with the parameter

“hk” = µk − 1
2(ω2 + δ) (k = 0, 1, . . . , 7), “µ” = λ.

The balancing condition (B.8) corresponds to condition (4.26), “µ = 2ia + 1
2

7∑
k=0

hk”. Also the

parameters µ̃k = 1
2(λ + ω2 + δ) − µk (k = 1, . . . , 8) for the y variables are consistent with

“(−JRh)k = µ
2 − ia − hk” (k = 0, 1, . . . , 7). (The constant “σ+(h)” on the right side of [23, I,

(4.24)], arises as the difference of constant terms of two operators, as indicated in (B.5).)
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C Er(z; a|t) and Hl(z; a|q, t) as interpolation polynomials

In Section 5 we presented some explicit expansion formulas for Koornwinder polynomials at-
tached to single columns and to single rows, in terms of invariant Laurent polynomials Er(z; a|t)
and Hl(z; a|q, t), respectively. These Laurent polynomials Er(z; a|t) and Hl(z; a|q, t) are essen-
tially the same objects as the BCm-interpolation polynomials of Okounkov [18] attached to
single columns and single rows. Our Theorems 5.1 and 5.2 provides with explicit expressions for
the corresponding special cases of the binomial expansion of Koornwinder polynomials in terms
of BCm-interpolation polynomials as discussed in Okounkov [18] and Rains [19].

In the notation of Section 5, the BCm interpolation polynomial P ∗
λ (z; q, t, a) attached a par-

tition λ = (λ1, . . . , λm) [18] is characterized uniquely, up to multiplication by a constant, as a
Laurent polynomial in K[z±] of degree |λ| satisfying the following conditions:

(0) P ∗
λ (z; q, t, a) is W -invariant in the shifted variables ztδa = (z1t

m−1a, z2t
m−2a, . . . , zma),

where δ = (m− 1,m− 2. . . . , 0).

(1) P ∗
λ (qµ; q, t, a) = 0 for any partition µ = (µ1, . . . , µm) such that µ 6⊃ λ.

(2) P ∗
λ (qλ; q, t, a) 6= 0.

In this section we show that the Laurent polynomials Er(ztδa; a|t) and Hl(ztδa; a|q, t) co-
incide, up to constant multiplication, with the interpolation polynomials P ∗

(1r)(z; q, t, a) and
P ∗

(l)(z; q, t, a), respectively. We prove that these polynomials actually have the interpolation
properties as mentioned above.

Proposition C.1. For each r = 0, 1, . . . ,m, let Er(z; a|t) be the W -invariant Laurent polyno-
mial defined in (5.1).

(0) Er(z1, . . . , zr, t
m−r−1a, . . . , a; a|t) = 〈z1; tm−ra〉 · · · 〈zr; tm−ra〉.

(1) For any partition µ with l(µ) < r, i.e., µ 6⊃ (1r), Er(qµtδa; a|t) = 0.

(2) Er(qtm−1a, . . . , qtm−ra, tm−r−1a, . . . , a; a|t) = (−1)r〈tm−ra; qtm−ra〉t,r.

Proof. Since Er(z; a|t) is symmetric in z = (z1, . . . , zm), from the recurrence relation (5.5) we
have

Er(z; a|t) = Er(z1, . . . , zm−1; ta|t) + Er−1(z1, . . . , zm−1; a|t)〈zm; a〉,

and hence by setting zm = a,

Er(z1, . . . , zm−1, a; a|t) = Er(z1, . . . , zm−1; ta|t).

This implies

Er

(
z1, . . . , zr, t

m−r−1a, . . . , a; a|t
)

= Er

(
z1, . . . , zr, t

m−r−1a, . . . , ta; ta|t
)

= · · ·
= Er

(
z1, . . . , zr; tm−ra|t

)
= 〈z1; tm−ra〉 · · · 〈zr; tm−ra〉

for r = 0, 1, . . . ,m, which proves (0). In particular, we have

Er

(
z1, . . . , zr−1, t

m−ra, tm−r−1a, . . . , a; a|t
)

= 0,

which implies Er(qµtδa; a|t) = 0 for any partition such that l(µ) < r, namely, µ 6⊃ (1r). State-
ment (0) also implies

Er

(
qtm−1a, . . . , qtm−ra, tm−r−1a, . . . , a; a|t

)
= (−1)r〈tm−ra; qtm−ra〉t,r. �
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From this proposition we see that Er(ztδa; a|t) is a constant multiple of the interpolation
polynomial P ∗

(1r)(z; q, t, a) for each r = 0, 1, . . . ,m.

Proposition C.2. For l = 0, 1, 2, . . ., let Hl(z; a|q, t) be the W -invariant Laurent polynomial
defined in (5.3).

(1) For any partition µ = (µ1, . . . , µm) with µ1 < l, i.e., µ 6⊃ (l), Hl(qµtδa; a|q, t) = 0.

(2) Hl(qltm−1a, tm−2a, . . . , a; a|q, t) = 〈t〉q,l〈qlt2(m−1)a2〉q,l.

Proof. By the definition (5.3), the Laurent polynomials Hl(z; a|q, t) (l = 0, 1, 2 . . .) satisfy the
recurrence formula

Hl(z; a|q, t) =
l∑

r=0

〈t〉q,l−r

〈q〉q,l−r
Hr(z1, . . . , zm−1; a|q, t)〈zm; qrtm−1a〉q,l−r.

Since these Laurent polynomials are symmetric in z = (z1, . . . , zm) (Lemma 5.4), we also have

Hl(z; a|q, t) =
l∑

r=0

〈t〉q,l−r

〈q〉q,l−r
〈z1; tm−1qra〉q,l−rHr(z2, . . . , zm; a|q, t).

We prove proposition by the induction on m. For an arbitrary partition µ = (µ1, . . . , µm), we
specialize this recurrence formula to z = qµtδa:

Hl(qµtδa; a|q, t) =
l∑

r=0

〈t〉q,l−r

〈q〉q,l−r
〈qµ1tm−1a; qrtm−1a〉q,l−rHr(qµ2tm−2a, . . . , qµma; a|q, t). (C.1)

By the induction hypothesis we have

Hr(qµ2tm−2a, . . . , qµma; a|q, t) = 0

for r > µ1. For r ≤ µ1, we see

〈qµ1tm−1a; qrtm−1a〉q,l−r = (−1)l−r〈q−µ1+r〉q,l−r〈qµ1+rt2(m−1)a2〉q,l−r.

Since −µ1 + r ≤ 0, 〈q−µ1+r〉q,l−r = 0 if l− r > µ1− r, i.e., µ1 < l. This means that all the terms
on the right side of (C.1) vanish when µ1 < l, and hence, Hl(qµtδa; a|q, t) = 0. When µ = (l),
the only nontrivial term arises from r = 0:

Hl(qltm−1a, tm−2a, . . . , a; a|q, t) =
〈t〉q,l

〈q〉q,l
〈qltm−1a; tm−1a〉q,l = 〈t〉q,l〈qlt2(m−1)a2〉q,l. �

This proposition implies that Hl(ztδa; a|a, t) is a constant multiple of the interpolation poly-
nomial P ∗

(l)(z; q, t, a) for each l = 0, 1, 2, . . ..
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