|  | SIGMA 5 (2009), 016, 12 pages      arXiv:0902.1958     
doi:10.3842/SIGMA.2009.016Contribution to the Special Issue on Dunkl Operators and Related Topics
 Imaginary Powers of the Dunkl Harmonic Oscillator
Adam Nowak and Krzysztof Stempak
Instytut Matematyki i Informatyki, Politechnika Wroclawska, 
      Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
 Received October 14, 2008, in final form February 08,
2009; Published online February 11, 2009 Abstract
In this paper we continue the study of spectral properties of the Dunkl
harmonic oscillator in the context of a finite reflection group on Rd
isomorphic to Z2d. We prove that imaginary powers of this operator are
bounded on Lp, 1 < p < ∞, and from L1 into weak L1.
 Key words:
Dunkl operators; Dunkl harmonic oscillator;
	imaginary powers; Calderón-Zygmund operators. 
pdf (245 kb)  
ps (181 kb)  
tex (14 kb)
 
 References
 
Askey R., Wainger S.,
 Mean convergence of expansions in Laguerre and Hermite series,
Amer. J. Math. 87 (1965), 695-708.Dunkl C.F.,
Reflection groups and orthogonal polynomials on the sphere,
Math. Z. 197 (1988), 33-60.Dunkl C.F.,
Differential-difference operators associated to reflection groups,
Trans. Amer. Math. Soc. 311 (1989), 167-183.Duoandikoetxea J.,
Fourier analysis,
Graduate Studies in Mathematics, Vol. 29, American Mathematical Society, Providence, RI, 2001.Lebedev N.N.,
Special functions and their applications,
Dover Publications, Inc., New York, 1972.Muckenhoupt B.,
On certain singular integrals,
Pacific J. Math. 10 (1960), 239-261.Muckenhoupt B.,
Mean convergence of Hermite and Laguerre series. II,
Trans. Amer. Math. Soc. 147 (1970), 433-460.Nowak A., Stempak K.,
Riesz transforms for multi-dimensional Laguerre function expansions,
Adv. Math. 215 (2007), 642-678.Nowak A., Stempak K.,
Riesz transforms  for  the Dunkl harmonic oscillator,
Math. Z., to appear, arXiv:0802.0474.Rosenblum M.,
Generalized Hermite polynomials and the Bose-like oscillator calculus,
in Nonselfadjoint Operators and Related Topics (Beer Sheva, 1992),
Oper. Theory Adv. Appl., Vol. 73, Birkhäuser, Basel, 1994, 369-396.Rösler M.,
Generalized Hermite polynomials and the heat equation for Dunkl operators,
Comm. Math. Phys. 192 (1998), 519-542, q-alg/9703006.Rösler M.,
One-parameter semigroups related to abstract quantum models of Calogero types,
in Infinite Dimensional Harmonic Analysis (Kioto, 1999),
 Gräbner, Altendorf, 2000, 290-305.Rösler M.,
Dunkl operators: theory and applications,
in Orthogonal Polynomials and Special Functions (Leuven, 2002),
 Lecture Notes in Math., Vol. 1817, Springer, Berlin, 2003, 93-135, math.CA/0210366.Stempak K., Torrea J.L.,
Poisson integrals and Riesz transforms for Hermite function expansions with weights,
J. Funct. Anal. 202 (2003), 443-472.Stempak K., Torrea J.L.,
Higher Riesz transforms and imaginary powers associated to the harmonic oscillator,
Acta Math. Hungar. 111 (2006), 43-64. |  |